Вращательное движение твердого тела формулы. Вращательное движение твердого тела вокруг неподвижной оси

И Савельева .

При поступательном движении тела (§ 60 в учебнике Е. М. Никитина) все его точки движутся по одинаковым траекториям и в каждый данный момент они имеют равные скорости и равные ускорения.

Поэтому поступательное движение тела задают движением какой-либо одной точки, обычно движением центра тяжести.

Рассматривая в какой-либо задаче движение автомобиля (задача 147) или тепловоза (задача 141), фактически рассматриваем движение их центров тяжести.

Вращательное движение тела (Е. М. Никитин , § 61) нельзя отождествить с движением какой-либо одной его точки. Ось любого вращающегося тела (маховика дизеля, ротора электродвигателя, шпинделя станка, лопастей вентилятора и т. п.) в процессе движения занимает в пространстве относительно окружающих неподвижных тел одно и то же место.

Движение материальной точки или поступательное движение тела характеризуют в зависимости от времени линейные величины s (путь, расстояние), v (скорость) и а (ускорение) с его составляющими a t и a n .

Вращательное движение тела в зависимости от времени t характеризуют угловые величины : φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек 2).

Закон вращательного движения тела выражается уравнением
φ = f (t).

Угловая скорость - величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени
ω = dφ/dt = f" (t).

Угловое ускорение - величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости
ε = dω/dt = f"" (t).

Приступая к решению задач на вращательное движение тела, необходимо иметь в виду, что в технических расчетах и задачах, как правило, угловое перемещение выражается не в радианах φ, а в оборотах φ об.

Поэтому необходимо уметь переходить от числа оборотов к радианному измерению углового перемещения и наоборот.

Так как один полный оборот соответствует 2π рад, то
φ = 2πφ об и φ об = φ/(2π).

Угловая скорость в технических расчетах очень часто измеряется в оборотах, произведенных в одну минуту (об/мин), поэтому необходимо отчетливо уяснить, что ω рад/сек и n об/мин выражают одно и то же понятие - скорость вращения тела (угловую скорость), но в различных единицах - в рад/сек или в об/мин.

Переход от одних единиц угловой скорости к другим производится по формулам
ω = πn/30 и n = 30ω/π.

При вращательном движении тела все его точки движутся по окружностям, центры которых расположены на одной неподвижной прямой (ось вращающегося тела). Очень важно при решении задач, приведенных в этой главе, ясно представлять зависимость между угловыми величинами φ, ω и ε, характеризующими вращательное движение тела, и линейными величинами s, v, a t и a n , характеризующими движение различных точек этого тела (рис 205).

Если R - расстояние от геометрической оси вращающегося тела до какой-либо точки А (на рис. 205 R=OA), то зависимость между φ - углом поворота тела и s - расстоянием, пройденным точкой тела за то же время, выражается так:
s = φR.

Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством
v = ωR.

Касательное ускорение точки зависит от углового ускорения и определяется формулой
a t = εR.

Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью
a n = ω 2 R.

При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности - совершает криволинейное движение.

§ 33. Равномерное вращательное движение

Если угловая скорость ω=const, то вращательное движение называется равномерным.

Уравнение равномерного вращения имеет вид
φ = φ 0 + ωt.

В частном случае, когда начальный угол поворота φ 0 =0,
φ = ωt.

Угловую скорость равномерно вращающегося тела
ω = φ/t
можно выразить и так:
ω = 2π/T,
где T - период вращения тела; φ=2π - угол поворота за один период.

§ 34. Равнопеременное вращательное движение

Вращательное движение с переменной угловой скоростью называется неравномерным (см. ниже § 35). Если же угловое ускорение ε=const, то вращательное движение называется равнопеременным . Таким образом, равнопеременное вращение тела - частный случай неравномерного вращательного движения.

Уравнение равнопеременного вращения
(1) φ = φ 0 + ω 0 t + εt 2 /2
и уравнение, выражающее угловую скорость тела в любой момент времени,
(2) ω = ω 0 + εt
представляют совокупность основных формул вращательного равнопеременного движения тела.

В эти формулы входят всего шесть величин: три постоянных для данной задачи φ 0 , ω 0 и ε и три переменных φ, ω и t. Следовательно, в условии каждой задачи на равнопеременное вращение должно содержаться не менее четырех заданных величин.

Для удобства решения некоторых задач из уравнений (1) и (2) можно получить еще две вспомогательные формулы.

Исключим из (1) и (2) угловое ускорение ε:
(3) φ = φ 0 + (ω + ω 0)t/2.

Исключим из (1) и (2) время t:
(4) φ = φ 0 + (ω 2 - ω 0 2)/(2ε).

В частном случае равноускоренного вращения, начавшегося из состояния покоя, φ 0 =0 и ω 0 =0. Поэтому приведенные выше основные и вспомогательные формулы принимают такой вид:
(5) φ = εt 2 /2;
(6) ω = εt;
(7) φ = ωt/2;
(8) φ = ω 2 /(2ε).

§ 35. Неравномерное вращательное движение

Рассмотрим пример решения задачи, в которой задано неравномерное вращательное движение тела.

Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором какие – нибудь две точки, принадлежащие телу (или неизменно связанные с ним), остаются во все время движения неподвижными (рис. 2.2).

Рисунок 2.2

Проходящая через неподвижные точки А иВ прямая называетсяосью вращения. Так как расстояние между точками твердого тела должны оставаться неизменными, то очевидно, что при вращательном движении все точки, принадлежащие оси будут неподвижны, а все остальные будут описывать окружности, плоскости которых перпендикулярны оси вращения, а центры лежат на этой оси. Для определения положения вращающегося тела проведем через ось вращения, вдоль которой направлена осьAz , полуплоскостьІ – неподвижную и полуплоскостьІІ врезанную в само тело и вращающуюся вместе с ним. Тогда положение тела в любой момент времени однозначно определится взятым с соответствующим знаком угломφ между этими плоскостями, который назовемуглом поворота тела. Будем считать уголφ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца осиAz ), а отрицательным, если по ходу часовой стрелки. Измерять уголφ будем в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость углаφ от времениt , т.е.

.

Это уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость ω и угловое ускорениеε.

9.2.1. Угловая скорость и угловое ускорение тела

Величина, характеризующая быстроту изменения угла поворота φ с течением времени, называется угловой скоростью.

Если за промежуток времени
тело совершает поворот на угол
, то численно средней угловой скоростью тела за этот промежуток времени будет
. В пределе при
получим

Таким образом, числовое значение угловой скорости тела в данный момент времени равно первой производной от угла поворота по времени.

Правило знаков: когда вращение происходит против хода часовой стрелки, ω> 0, а когда по ходу часовой стрелки, тоω< 0.

или, так как радиан – величина безразмерная,
.

В теоретических выкладках удобнее пользоваться вектором угловой скорости , модуль которого равени который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно против хода часовой стрелки. Этот вектор сразу определяет и модуль угловой скорости, и ось вращения, и направление вращения вокруг этой оси.

Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела.

Если за промежуток времени
приращение угловой скорости равно
, то отношение
, т.е. определяет значение среднего ускорения вращающегося тела за время
.

При стремлении
получаем величину углового ускорения в моментt :

Таким образом, числовое значение углового ускорения тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела во времени.

В качестве единицы измерения обычно применяют или, что тоже,
.

Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным , а если убывает, -замедленным. Когда величиныω иε имеют одинаковые знаки, то вращение будет ускоренным, когда разные – замедленным.По аналогии с угловой скоростью угловое ускорение также можно изобразить в виде вектора, направленного вдоль оси вращения. При этом

.

Если тело вращается ускоренно направление совпадает с, и противоположнопри замедленном вращении.

Если угловая скорость тела остается во время движения постоянной (ω= const ), то вращение тела называетсяравномерным .

Из
имеем
. Отсюда, считая, что в начальный момент времени
угол
, и беря интегралы слева отдо, а справа от 0 доt , получим окончательно

.

При равномерном вращении, когда =0,
и
.

Скорость равномерного вращения часто определяют числом оборотов в минуту, обозначая эту величину через n об/мин. Найдем зависимость междуn об/мин иω 1/с. При одном обороте тело повернется на 2π, а приn оборотах на 2π n ; этот поворот делается за 1 мин, т.е.t = 1мин=60с. Из этого следует, что

.

Если угловое ускорение тела во все время движения остается постоянным (ε= const ), то вращение называетсяравнопеременным .

В начальный момент времени t =0 угол
, а угловая скорость
(- начальная угловая скорость).
;

. Интегрируя левую часть отдо, а правую от 0 доt , найдем

Угловая скорость ω этого вращения
. Если ω и ε имеют одинаковые знаки, вращение будетравноускоренным , а если разные –равнозамедленным.

Движение твердого тела называется вращательным, если во время движения все точки тела, расположенные на некоторой прямой, называемой осью вращения, остаются неподвижными (рис. 2.15).

Положение тела при вращательном движении принято определять углом поворота тела , который измеряется как двугранный угол между неподвижной и подвижной плоскостями, проходящими через ось вращения. Причем, подвижная плоскость связана с вращающимся телом.

Введем в рассмотрение подвижную и неподвижную системы координат, начало которых разместим в произвольной точке О оси вращения. Ось Oz, общую для подвижной и неподвижной систем координат, направим по оси вращения, ось Ох неподвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в неподвижной плоскости, ось Ох 1 подвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в подвижной плоскости (рис. 2.15).

Если рассматривать сечение тела плоскостью, перпендикулярной оси вращения, то угол поворота φ можно определять как угол между неподвижной осью Ох и подвижной осью Ох 1 , неизменно связанной с вращающимся телом (рис. 2.16).

Принято направление отсчета угла поворота тела φ против хода часовой стрелки считать положительным, если смотреть с положительного направления оси Oz.

Равенство φ = φ(t) , описывающее изменение угла φ во времени, называется законом или уравнением вращательного движения твердого тела.

Быстрота и направление изменения угла поворота твердого тела характеризуются угловой скоростью. Абсолютное значение угловой скорости принято обозначать буквой греческого алфавита ω (омега). Алгебраическое значение угловой скорости принято обозначать . Алгебраическое значение угловой скорости равно первой производной по времени от угла поворота:

. (2.33)

Единицы измерения угловой скорости равны единицам измерения угла, деленным на единицу измерения времени, например, град/мин, рад/ч. В системе СИ единица измерения угловой скорости рад/с, но чаще наименование этой единицы измерения записывается в виде 1/с.

Если > 0, то тело вращается против хода часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Если < 0, то тело вращается по ходу часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Быстрота и направление изменения угловой скорости характеризуются угловым ускорением. Абсолютную величину углового ускорения принято обозначать буквой греческого алфавита e (эпсилон). Алгебраическую величину углового ускорения принято обозначать . Алгебраическая величина углового ускорения равна первой производной по времени от алгебраического значения угловой скорости или второй производной от угла поворота:


Единицы измерения углового ускорения равны единицам измерения угла, деленным на единицу измерения времени в квадрате. Например, град/с 2 , рад/ч 2 . В системе СИ единицей измерения углового ускорения является рад/с 2 , но чаще наименование этой единицы измерения записывается в виде 1/с 2 .

Если алгебраические значения угловой скорости и углового ускорения имеют один знак, то угловая скорость с течением времени увеличивается по модулю, а если разный, то уменьшается.

Если угловая скорость постоянна (ω = const), то принято говорить, что вращение тела равномерное. В этом случае:

φ = · t + φ 0 , (2.35)

где φ 0 - начальный угол поворота.

Если постоянно угловое ускорение (e = const), то принято говорить, что вращение тела равноускоренное (равнозамедленное). В этом случае:

где 0 - начальная угловая скорость.

В остальных случаях для определения зависимости φ от и необходимо интегрировать выражения (2.33), (2.34) при заданных начальных условиях.

На рисунках направление вращения тела иногда показывают изогнутой стрелкой (рис. 2.17).

Часто в механике угловая скорость и угловое ускорение рассматриваются как векторные величины и . Оба эти вектора направляются по оси вращения тела. Причем вектор направляют в одну сторону с ортом, определяющим направление оси координат, совпадающей с осью вращения, если >0, и в противоположную, если
Аналогично выбирают направление вектора (рис. 2.18).

При вращательном движении тела каждая из его точек (кроме точек, расположенных на оси вращения) перемещается по траектории, представляющей собой окружность с радиусом, равным кратчайшему расстоянию от точки до оси вращения (рис. 2.19).

Поскольку для окружности касательная в любой ее точке составляет угол 90° с радиусом, то вектор скорости точки тела, совершающего вращательное движение, будет направлен перпендикулярно радиусу и лежать в плоскости окружности, являющейся траекторией движения точки. Касательная составляющая ускорения будет лежать на одной прямой со скоростью, а нормальная будет направлена по радиусу к центру окружности. Поэтому иногда касательную и нормальную составляющие ускорения при вращательном движении называют соответственно вращательной и центростремительной (осестремительной) составляющими (рис. 2.19)

Алгебраическая величина скорости точки определяется выражением:

, (2.37)

где R = OM - кратчайшее расстояние от точки до оси вращения.

Алгебраическая величина касательной составляющей ускорения определяется выражением:

. (2.38)

Модуль нормальной составляющей ускорения определяется выражением:

. (2.39)

Вектор ускорения точки при вращательном движении определяется по правилу параллелограмма как геометрическая сумма касательной и нормальной составляющих. Соответственно модуль ускорения может быть определен по теореме Пифагора :

Если угловая скорость и угловое ускорение определены как векторные величины , , то векторы скорости, касательной и нормальной составляющих ускорения могут быть определены по формулам:

где - радиус-вектор, проведенный в точку М из произвольной точки оси вращения (рис. 2.20).

Решение задач на вращательное движение одного тела обычно не вызывает никаких трудностей. Используя формулы (2.33)-(2.40), можно легко определить любой неизвестный параметр.

Определенные сложности возникают при решении задач, связанных с исследованием механизмов, состоящих из нескольких взаимосвязанных тел, совершающих как вращательное, так и поступательное движение.

Общий подход к решению подобных задач заключается в том, что движение от одного тела к другому передается через одну точку - точку касания (контакта). Причем у соприкасающихся тел равны скорости и касательные составляющие ускорений в точке контакта. Нормальные составляющие ускорения у соприкасающихся тел в точке контакта различны, они зависят от траектории движения точек тел.

При решении задач такого типа удобно в зависимости от конкретных обстоятельств использовать как формулы, приведенные в разделе 2.3, так и формулы для определения скорости и ускорения точки при задании ее движения естественным (2.7), (2.14) (2.16) или координатным (2.3), (2.4), (2.10), (2.11) способами. При этом если движение тела, к которому принадлежит точка, вращательное, траектория движения точки будет представлять собой окружность. Если движение тела прямолинейное поступательное, то траектория движения точки будет представлять собой прямую линию.

Пример 2.4. Тело вращается вокруг неподвижной оси. Угол поворота тела изменяется по закону φ = π · t 3 рад. Для точки, находящейся на расстоянии OM = R = 0,5 м от оси вращения, определить скорость, касательную, нормальную составляющие ускорения и ускорение в момент времени t 1 = 0,5 с. Показать направление этих векторов на чертеже.

Рассмотрим сечение тела плоскостью, проходящей через точку О перпендикулярно оси вращения (рис. 2.21). На этом рисунке точка О - точка пересечения оси вращения и секущей плоскости, точки М о и M 1 - соответственно начальное и текущее положение точки М. Через точки О и М о проведем неподвижную ось Ох , а через точки О и М 1 - подвижную ось Ох 1 . Угол между этими осями будет равен

Закон изменения угловой скорости тела найдем, продифференцировав закон изменения угла поворота:

В момент t 1 угловая скорость будет равна

Закон изменения углового ускорения тела найдем, продифференцировав закон изменения угловой скорости:

В момент t 1 угловое ускорение будет равно:

1/с 2 ,

Алгебраические величины векторов скорости, касательной составляющей ускорения, модуля нормальной составляющей ускорения и модуля ускорения найдем по формулам (2.37), (2.38), (2.39), (2.40):

М/с 2 ;

м/с 2 .

Так как угол φ 1 >0, то откладывать его от оси Ох будем против хода часовой стрелки. А так как > 0, то векторы будут направлены перпендикулярно радиусу OM 1 таким образом, чтобы мы видели их вращающимися против хода часовой стрелки. Вектор будет направлен по радиусу OM 1 к оси вращения. Вектор построим по правилу параллелограмма на векторах τ и .

Пример 2.5. По заданному уравнению прямолинейного поступательного движения груза 1 х = 0,6t 2 - 0,18 (м) определить скорость, а также касательную, нормальную составляющую ускорения и ускорение точки М механизма в момент времени t 1 , когда путь, пройденный грузом 1, равен s = 0,2 м. При решении задачи будем считать, что проскальзывание в точке контакта тел 2 и 3 отсутствует, R 2 = 1,0 м, r 2 = 0,6 м, R 3 = 0,5 м (рис. 2.22).

Закон прямолинейного поступательного движения груза 1 задан в координатной форме. Определим момент времени t 1 , для которого путь, пройденный грузом 1, будет равен s

s = x(t l)-x(0) ,

откуда получим:

0,2 = 0,18 + 0,6t 1 2 - 0,18.

Следовательно,

Продифференцировав по времени уравнение движения, найдем проекции скорости и ускорения груза 1 на ось Ох:

м/с 2 ;

В момент t = t 1 проекция скорости груза 1 будет равна:

то есть будет больше нуля, как и проекция ускорения груза 1. Следовательно, груз 1 будет в момент t 1 двигаться вниз равноускоренно, соответственно, тело 2 будет вращаться равноускоренно в направлении против хода часовой стрелки, а тело 3 - по ходу часовой стрелки.

Тело 2 приводится во вращение телом 1 через нить, намотанную на малый барабан. Поэтому модули скоростей точек тела 1, нити и поверхности малого барабана тела 2 равны, также равны будут и модули ускорений точек тела 1, нити и касательной составляющей ускорения точек поверхности малого барабана тела 2. Следовательно, модуль угловой скорости тела 2 можно определить как

Модуль углового ускорения тела 2 будет равен:

1/с 2 .

Определим модули скорости и касательной составляющей ускорения для точки К тела 2 - точки контакта тел 2 и 3:

м/с, м/с 2

Так как тела 2 и 3 вращаются без взаимного проскальзывания, модули скорости и касательной составляющей ускорения точки К - точки контакта у этих тел будут равны.

направим перпендикулярно радиусу в сторону вращения тела, так как тело 3 вращается равноускоренно

ОПРЕДЕЛЕНИЕ: Вращательным движением твердого тела будем называть такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и ой же прямой, называемой осью вращения.

Для изучения динамики вращательного к известным кинематическим величинам добавляются ещё две величины : момент силы (M) и момент инерции (J).

1. Из опыта известно: ускорение вращательного движения зависит не только от величины силы, действующей на тело, но и от расстояния от оси вращения до линии, вдоль которой действует сила. Для характеристики этого обстоятельства вводится физическая величина называемая моментом силы .

Рассмотрим простейший случай.

ОПРЕДЕЛЕНИЕ: Моментом силы относительно некоторой точки “O” называется векторная величина , определяемая выражением , где – радиус-вектор, проведенный из точки “O” в точку приложения силы.

Из определения следует, что является аксиальным вектором. Его направление выбрано так, что вращение вектора вокруг точки “O” в направлении силы и вектор образуют правовинтовую систему. Модуль момента силы равен , где a – угол между направлениями векторов и , а l = r·sin a – длина перпендикуляра, опущенного из точки “O” на прямую, вдоль которой действует сила (называется плечом силы относительно точки “O”) (рис. 4.2).

2. Опытные данные свидетельствуют, что на величину углового ускорения оказывает влияние не только масса вращающегося тела, но и распределение массы относительно оси вращения. Величина, учитывающая это обстоятельство, носит название момента инерции относительно оси вращения.

ОПРЕДЕЛЕНИЕ: Строго говоря, моментом инерции тела относительно некоторой оси вращения называется величина J, равная сумме произведений элементарных масс на квадраты их расстояний от данной оси .

Суммирование проводится по всем элементарным массам, на которые было разбито тело. Следует иметь ввиду, что эта величина (J) существует безотносительно к вращению (хотя понятие момента инерции было введено при рассмотрении вращения твердого тела).

Каждое тело независимо от того покоится оно или вращается обладает определенным моментом инерции относительно любой оси, подобно тому как тело обладает массой независимо от того движется оно или покоится.

Учитывая, что , момент инерции можно представить в виде: . Это соотношение приближенно и оно будет тем точнее, чем меньше элементарные объемы и соответствующие им элементы массы. Следовательно, задача нахождения моментов инерции сводится к интегрированию: . Здесь интегрирование проводится по всему объему тела.

Запишем моменты инерции некоторых тел правильной геометрической формы.



1. Однородный длинный стержень.
Рис. 4.3 Момент инерции относительно оси, перпендикулярной к стержню и проходящей через его середину равен
2. Сплошной цилиндр или диск.
Рис. 4.4 Момент инерции относительно оси, совпадающей с геометрической осью, равен .
3. Тонкостенный цилиндр радиуса R.
Рис. 4.5
4. Момент инерции шара радиуса R относительно оси, проходящей через его центр
Рис. 4.6
5. Момент инерции тонкого диска (толщина b<
Рис. 4.7
6. Момент инерции бруска
Рис. 4.8
7. Момент инерции кольца
Рис. 4.9

Вычисления момента инерции здесь достаточно просты, т.к. тело предполагаем однородным и симметричным, а момент инерции определяем относительно оси симметрии.

Для определения момента инерции тела относительно любой оси необходимо воспользоваться теоремой Штейнера.

ОПРЕДЕЛЕНИЕ: Момент инерции J относительно произвольной оси равен сумме момента инерции J с относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тела на квадрат расстояния между осями (рис. 4.10).

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .