Анаболические реакции сопутствующие циклу кребса. Цикл трикарбоновых кислот (ЦТК)

(лимонно-кислый цикл или цикл Кребса)

В аэробных условиях образовавшийся ацетил-СоА вступает в цикл Кребса. В цикле Кребса после реакций отнятия и присоединения воды, декарбоксилирования и дегидрирования ацетильный остаток, поступивший в цикл в виде ацетил-СоА, полностью расщепляется. Суммарная реакция записывается в следующем виде:

СН 3 СО ~ S-СоА + 3Н 2 О + АДФ + Н 3 РО 4 →

НS-СоА + 2СО 2 + 4[Н 2 ] + АТФ

Цикл Кребса проходит одинаково у животных и растений. Это является еще одним доказательством единства происхождения. Цикл происходит в строме митохондрий. Рассмотрим его подробней:

Первая реакция цикла – перенос ацетильного остатка от ацетил-СоА на щавелево-уксусную кислоту (ЩУК) с образованием лимонной кислоты (цитрат) (рис. 3.2).

В ходе реакции, катализируемой цитратсинтазой, растрачивается макроэргическая связь ацетил-СоА, т. е. та энергия, какая была запасена в процессе окисления пирувата перед началом цикла. Это значит, как и гликолиз, цикл Кребса начинается не с запасания энергии в клетке, а с расходования.

Подчеркнем, что цепь преобразований, образующих этот цикл и направленных, в конечном счете, на разрушение углеродного состава ряда кислот, начинается с их увеличения: двухуглеродный фрагмент (уксусная кислота) присоединяется к четырехугольному фрагменту ЩУК с образованием шестиуглеродной трикарбоновой кислоты цитрата, которая может запасаться в клетках в больших количествах.

Таким образом, цикл Кребса – процесс каталитический и начинается не с катаболизма (разрушения), а с синтеза цитрата. Цитратсинтетаза, катализирующая эту реакцию, относится к регуляторным ферментам: она ингибируется НАДН и АТФ. НАДН – конечный продукт, в форме которого запасается энергия, освобождаемая в процессе дыхания. Чем активней цитратсинтетаза, тем быстрей пойдут и другие реакции цикла, быстрей пойдет дегидрирование веществ с образованием НАДН. Однако увеличение количества последнего вызывает ингибирование фермента, и цикл затормозится. Это пример реакции по принципу обратной связи.

Следующая серия реакций – преобразование цитрата в активную изолимонную кислоту (изоцитрат). Она протекает при участии воды и по сути сводится до внутримолекулярного преобразования лимонной кислоты. Промежуточным продуктом этого преобразования является цис-аконитовая кислота:



Катализируются обе реакции аконитазой. Затем изоцитрат дегидрируется с участием изоцитратдегидрогеназы, коферментом которой является НАД + . В результате окисления образуется щавелево-янтарная кислота (оксалосукцинат).

Последняя кислота декарбоксилируется. Отсоединяющийся СО 2 принадлежит ацетильному остатку, вступившему в цикл в виде ацетил-СоА. В результате декарбоксилирования образуется очень активная α-кетоглутаровая кислота (кетоглутарат).

α-Кетоглутарат, в свою очередь, подвергается тем же изменением, которые происходят перед началом цикла с пируватом: одновременное окисление и декарбоксилирование.

В реакции принимает участие α-кетоглутарат дегидрогеназный комплекс:

α-кетоглутарат + НАД + + СоА–SН →

сукцинил-S-СоА + СО 2 + НАДН + Н + →

сукцинил–S–СОА + АДФ + Н 3 РО 4 →

янтарная кислота + АТФ + СоА–SН

Освободившийся СО 2 является другой частицей, которая отщепляется от ацетильного остатка. Образовавшийся в результате этих сложных преобразованием янтарная кислота (сукцинат) вновь дегидрируется, и образуется фумаровая кислота (фумарат). Реакция происходит с помощью сукцинатдегидрогеназы. Фумарат после присоединения молекулы воды легко преобразуется в яблочную кислоту (малат). В реакции принимает участие фумаратгидротаза.

Яблочная кислота, окисляясь, преобразуется в ЩУК при участии НАД + – специфической малатдегидрогеназы.

Напомним, что ЩУК конечный продукт цикла Кребса – образуется и при фотосинтезе С 4 -растений (цикл Хетча – Слека) при карбоксилировании ФЕП на свету, и в темноте у растений типа САМ.

Таким образом, цикл Кребса заканчивается и может начинаться сначала. Одно условие – подача новых молекул ацетил-СоА.

Главное значение цикл Кребса состоит в запасании энергии, которая освобождается в результате разрушения пирувата, в макроэргических связях АТФ. Поставляя в клетку АТФ, цикл Кребса может являться регулятором других процессов, идущих с затратой энергии, таких как транспорт воды и солей, синтез и транспорт органических веществ. Чем быстрей проходит преобразование веществ в цикле, тем больше может синтезироваться АТФ, тем быстрей пойдут указанные процессы.

Промежуточные вещества, образуемые в цикле, могут использоваться на синтез белков, жиров, углеводов. Например, ацетил-СоА – необходимый продукт для синтеза жирных кислот, кетоглутарат может в результате восстановительного аминирования преобразовываться в глутаминовую, а фумарат или ЩУК – в аспарагиновую кислоты.

Суммарный результат цикла Кребса сводится, таким образом, к тому, что каждая ацетильная группа (двухуглеродный фрагмент), которая образуется из пирувата (трехуглеродный фрагмент) расщепляется до СО 2 . Во время этого процесса восстанавливается НАД + , ФАД + и синтезируется АТФ.

В регуляции цикла ди- и трикарбоновых кислот важное значение имеет соотношение между НАДН и НАД + , а также концентрация АТФ. Высокое содержание АТФ и НАДН угнетает активность таких ферментов цикла Кребса, как пируватдегидрогеназа, цитратсинтетаза, изоцитратдегидрогеназа, малатдегидрогеназа. Повышение концентрации оксалоацетата угнетает ферменты, активность которых связана с его синтезом, – сукцинатдегидрогеназы и малатдегидрогеназы. Окисление 2-оксиглутаровой кислоты ускоряется аденилатами, а сукцината – АТФ, АДФ и убихиноном. В цикле Кребса имеется и ряд других пунктов регулирования.

Глиоксилатный путь

При прорастании богатых жиром семян ход цикла Кребса немного изменяется. Это разновидность цикла Кребса, в которой участвует глиоксиловая кислота, получила название глиоксилатного цикла (рис.3.3).

Первые этапы преобразований до образования изоцитрата (изолимонной кислоты) идут подобно циклу Кребса. Затем ход реакций изменяется. Изоцитрат при участии изоцитратлиазы расщепляется на янтарную и глиоксиловую кислоты:



Сукцинат (янтарная к-та) выходит из цикла, а глиоксилат связывается с ацетил-СоА и образуется малат. Реакция катализируется малатсинтазой. Малат окисляется до ЩУК и цикл заканчивается. Кроме двух ферментов – изоцитратазы (изоцитратлиазы) и малатсинтазы, все остальные такие же, что и в цикле Кребса. При окислении малата восстанавливается молекула НАД + . Источником ацетил-СоА для этого цикла служат жирные кислоты, образующиеся при разрушении жиров. Суммарное уравнение цикла можно записать в виде:

2СН 3 СО-S-СоА + 2Н 2 О + НАД + →

2НS-СоА + СООН-СН 2 -СН 2 -СООН + НАДН + Н +

Глиоксилатный цикл происходит в специальных органеллах – глиоксисомах.

Какое значение имеет этот цикл? Восстановленный НАДН может окисляться с образованием трех молекул АТФ. Сукцинат (янтарная кислота) выходит из глиоксисомы и поступает в митохондрию, где включается в цикл Кребса. Тут он преобразуется в ЩУК, затем в пируват, фосфоенолпируват и дальше в сахар.

Таким образом, с помощью глиоксилатного цикла жиры могут преобразовываться в углеводы. Это очень важно особенно при прорастании семян, так как сахара могут транспортироваться из одной части растения в другую, а жиры лишены такой возможности. Глиоксилат может служить материалом для синтеза порфиринов, а это значит и хлорофилла.

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Гликолиз превращает глюкозу в пируват и продуцирует две молекулы АТФ из молекулы глюкозы - это небольшая часть потенциальной энергии этой молекулы.

При аэробных условиях пируват из гликолиза превращается в ацетил-КоА и окисляется в С0 2 в цикле трикарбоновых кислот (цикл лимонной кислоты). При этом электроны, освобождающиеся в реакциях этого цикла, проходят НАДН и ФАДН 2 на 0 2 - конечный акцептор. Электронный транспорт сопряжен с созданием протонного градиента мембраны митохондрий, энергия которого используется затем на синтез АТФ в результате окислительного фосфорилирования. Рассмотрим эти реакции.

В аэробных условиях пировиноградная кислота (1-й этап) подвергается окислительному декарбоксилированию, более эффективному, чем трансформация в молочную кислоту, с образованием ацетил-КоА (2-й этап), который может окисляться до конечных продуктов распада глюкозы - С0 2 и Н 2 0 (3-й этап). Г. Кребс (1900-1981), немецкий биохимик, изучив окисление отдельных органических кислот, объединил их реакции в единый цикл. Поэтому в его честь цикл трикарбоновых кислот часто называют циклом Кребса.

Окисление пировиноградной кислоты до ацетил-КоА происходит в митохондриях при участии трех ферментов (пируватде- гидрогеназа, липоамиддегидрогеназа, липоилацетилтрансфера- за) и пяти коферментов (НАД, ФАД, тиаминпирофосфат, амид липоевой кислоты, коэнзим А). В составе этих четырех коферментов находятся витамины группы В (В х, В 2 , В 3 , В 5), что свидетельствует о необходимости этих витаминов для нормального окисления углеводов. Под влиянием этой сложной ферментной системы пируват в реакции окислительного декарбоксилирования превращается в активную форму уксусной кислоты - ацетил- коэнзим А:

При физиологических условиях пируватдегидрогеназа - исключительно необратимый фермент, что объясняет невозможность конверсии жирных кислот в углеводы.

Наличие макроэргической связи в молекуле ацетил-КоА указывает на высокую реакционную способность этого соединения. В частности, ацетил-КоА может выступать в митохондриях для генерации энергии, в печени избыток ацетил-КоА поступает на синтез кетоновых тел, в цитозоле участвует в синтезах сложных молекул, таких как стериды и жирные кислоты.

Полученный в реакции окислительного декарбоксилирова- ния пировиноградной кислоты ацетил-КоА вступает в цикл три- карбоновых кислот (цикл Кребса). Цикл Кребса - финальный катаболический путь окисления углеводов, жиров, аминокислот, является по существу «метаболическим котлом». Реакции цикла Кребса, протекающие исключительно в митохондриях, также носят название цикла лимонной кислоты или цикла три- карбоновых кислот (ЦТК).

Одной из важнейших функций цикла трикарбоновых кислот является генерация восстановленных коферментов (3 молекулы НАДН + Н + и 1 молекула ФАДН 2) с последующим переносом атомов водорода или их электронов к конечному акцептору - молекулярному кислороду. Этот транспорт сопровождается большим уменьшением свободной энергии, часть которой используется в процессе окислительного фосфорилирования для запасания в форме АТФ. Понятно, что цикл трикарбоновых кислот является аэробным, зависимым от кислорода.

1. Начальная реакция цикла трикарбоновых кислот представляет конденсацию ацетил-КоА и щавелево-уксусной кислоты с участием фермента цитратсинтазы митохондриального матрикса с образованием лимонной кислоты.

2. Под влиянием фермента аконитазы, катализирующего удаление молекулы воды из цитрата, последний превращается


в цыс-аконитовую кислоту. Вода комбинирует с цыс-аконито- вой кислотой, превращаясь в изолимонную.

3. Затем фермент изоцитратдегидрогеназа катализирует первую дегидрогеназную реакцию цикла лимонной кислоты, когда изолимонная кислота превращается в реакции окислительного декарбоксилирования в а-кетоглутаровую:

В этой реакции образуется первая молекула С0 2 и первая молекула НАДН 4- Н + цикла.

4. Дальнейшее превращение а-кетоглутаровой кислоты в сукцинил-КоА катализируется мультиферментным комплексом а-кетоглутаровой дегидрогеназы. Эта реакция химически является аналогом пируватдегидрогеназной реакции. В ней участвуют липоевая кислота, тиаминпирофосфат, HS-KoA, НАД + , ФАД.

В результате этой реакции вновь образуется молекула НАДН + Н + и С0 2 .

5. Молекула сукцинил-КоА имеет макроэргическую связь, энергия которой сохраняется в следующей реакции в форме ГТФ. Под влиянием фермента сукцинил-КоА-синтетазы сукци- нил-КоА превращается в свободную янтарную кислоту. Отметим, что янтарная кислота также может быть получена из ме- тилмалонил-КоА при окислении жирных кислот с нечетным числом атомов углерода.

Эта реакция является примером субстратного фосфорилирования, так как макроэргическая молекула ГТФ в данном случае образуется без участия цепи транспорта электронов и кислорода.

6. Янтарная кислота окисляется в фумаровую кислоту в сук- цинатдегидрогеназной реакции. Сукцинатдегидрогеназа, типичный железосеросодержащий фермент, коферментом которого является ФАД. Сукцинатдегидрогеназа - единственный фермент, фиксируемый на внутренней митохондриальной мембране, тогда как все другие ферменты цикла находятся в митохондриальном матриксе.

7. Затем следует гидратация фумаровой кислоты в яблочную кислоту под влиянием фермента фумаразы в обратимой реакции при физиологических условиях:

8. Финальной реакцией цикла трикарбоновых кислот является малатдегидрогеназная реакция с участием активного фермента митохондриальной НАД~-зависимой малатдегидро- геназы, в которой образуется третья молекула восстановленного НАДН + Н + :


Образованием щавелево-уксусной кислоты (оксалоацетата) завершается один оборот цикла трикарбоновых кислот. Щавелево-уксусная кислота может быть использована в окислении второй молекулы ацетил-КоА, и этот цикл реакций может неоднократно повторяться, постоянно приводя к получению щавелево-уксусной кислоты.

Таким образом, окисление в ЦТК одной молекулы ацетил- КоА как субстрата цикла приводит к получению одной молекулы ГТФ, трех молекул НАДФ + Н + и одной молекулы ФАДН 2 . Окисление этих восстановителей в цепи биологического окис-


ления приводит к синтезу 12 молекул АТФ. Этот расчет понятен из темы «Биологическое окисление»: включение одной молекулы НАД + в систему транспорта электронов сопровождается в конечном счете образованием 3 молекул АТФ, включение молекулы ФАДН 2 обеспечивает образование 2 молекул АТФ и одна молекула ГТФ эквивалентна 1 молекуле АТФ.

Отметим, что два атома углерода адетил-КоА вступают в цикл трикарбоновых кислот и два атома углерода покидают цикл в виде С0 2 в реакциях декарбоксилирования, катализируемых изоцитратдегидрогеназой и альфа-кетоглутарат-дегид- рогеназой.

При полном окислении молекулы глюкозы в аэробных условиях до С0 2 и Н 2 0 образование энергии в форме АТФ составляет:

  • 4 молекулы АТФ при конверсии молекулы глюкозы в 2 молекулы пировиноградной кислоты (гликолиз);
  • 6 молекул АТФ, образующиеся в 3-фосфоглицеральдегид- дегидрогеназной реакции (гликолиз);
  • 30 молекул АТФ, образующиеся при окислении двух молекул пировиноградной кислоты в пируватдегидрогеназной реакции и в последующих превращениях двух молекул аце- тил-КоА до С0 2 и Н 2 0 в цикле трикарбоновых кислот. Следовательно, общий выход энергии при полном окислении молекулы глюкозы может составлять 40 молекул АТФ. Однако следует принять во внимание, что при окислении глюкозы на стадии превращения глюкозы в глюкозо-6-фосфат и на стадии превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат затрачено две молекулы АТФ. Поэтому «чистый» выход энергии при окислении молекулы глюкозы составляет 38 молекул АТФ.

Можно сравнить энергетику анаэробного гликолиза и аэробного катаболизма глюкозы. Из 688 ккал энергии, теоретически заключенных в 1 грамм-молекуле глюкозы (180 г), 20 ккал находятся в двух молекулах АТФ, образующихся в реакциях анаэробного гликолиза, и 628 ккал теоретически остаются в форме молочной кислоты.

В аэробных условиях из 688 ккал грамм-молекулы глюкозы в 38 молекулах АТФ получено 380 ккал. Таким образом, эффективность использования глюкозы в аэробных условиях выше, чем в анаэробном гликолизе, примерно в 19 раз.

Следует указать, что все реакции окисления (окисление три- озофосфата, пировиноградной кислоты, четыре реакции окисления цикла трикарбоновых кислот) конкурируют в синтезе АТФ из АДФ и Ф неор (эффект Пастера). Это значит, что образующаяся молекула НАДН + Н + в реакциях окисления имеет выбор между реакциями дыхательной системы, переносящими водород на кислород, и ферментом ЛДГ, передающим водород на пировиноградную кислоту.

На ранних стадиях цикла трикарбоновых кислот его кислоты могут выходить из цикла для участия в синтезе других соединений клетки без нарушений функционирования самого цикла. Различные факторы вовлекаются в регуляцию активности цикла трикарбоновых кислот. Среди них в первую очередь следует назвать поступление молекул ацетил-КоА, активность пируватдегидрогеназного комплекса, активность компонентов дыхательной цепи и сопряженное с ней окислительное фосфорилирование, а также уровень щавелево-уксусной кислоты.

Молекулярный кислород непосредственно не участвует в цикле трикарбоновых кислот, однако его реакции осуществляются только в аэробных условиях, так как НАД~ и ФАД могут быть регенерированы в митохондриях лишь при переносе электронов на молекулярный кислород. Следует подчеркнуть, что гликолиз, в отличие от цикла трикарбоновых кислот, возможен и при анаэробных условиях, так как НАД~ регенерируется при переходе пировиноградной кислоты в молочную.

Помимо образования АТФ, цикл трикарбоновых кислот имеет еще одно важное значение: цикл обеспечивает структурами-посредниками различные биосинтезы организма. Например, большинство атомов порфиринов происходит из сукцинил- КоА, многие аминокислоты являются производными а-кето- глутаровой и щавелево-уксусной кислот, а фумаровая кислота имеет место в процессе синтеза мочевины. В этом проявляется интегральность цикла трикарбоновых кислот в обмене углеводов, жиров, белков.

Как показывают реакции гликолиза, способность большинства клеток генерировать энергию заключена в их митохондриях. Число митохондрий в различных тканях связано с физиологическими функциями тканей и отражает их возможность участия в аэробных условиях. Например, эритроциты не имеют митохондрий и, следовательно, не обладают способностью генерировать энергию, используя кислород как конечный акцептор электронов. Однако в сердечной мышце, функционирующей в аэробных условиях, половина объема цитоплазмы клеток представлена митохондриями. Печень также зависит от аэробных условий для своих различных функций, и гепатоциты млекопитающих содержат до 2 тыс. митохондрий в одной клетке.

Митохондрии включают две мембраны - внешнюю и внутреннюю. Внешняя мембрана более простая, состоящая из 50% жиров и 50% белков, имеет сравнительно мало функций. Внутренняя мембрана структурно и функционально представляется более сложной. Примерно 80% ее объема составляют белки. Она содержит большинство ферментов, участвующих в электронном транспорте и окислительном фосфорилировании, метаболические посредники и аденин-нуклеотиды между цитозолем и митохондриальным матриксом.

Различные нуклеотиды, вовлекаемые в окислительно-восстановительные реакции, такие как НАД + , НАДН, НАДФ + , ФАД и ФАДН 2 , не проникают сквозь внутреннюю митохондриальную мембрану. Ацетил-КоА не может поступать из митохондриального отдела в цитозоль, где он требуется для синтеза жирных кислот или стеролов. Поэтому внутримитохондри- альный ацетил-КоА конвертируется в цитрат-синтазной реакции цикла трикарбоновых кислот и в таком виде поступает в цитозоль.

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом.

Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было доказано, что цикл трикарбоновых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса, – общий конечный путь окисления ацетильных групп (в виде ацетил-CоА), в которые в процессе катаболизма превращается большая часть органических молекул, играющих роль «клеточного топлива»: углеводов, жирных кислот и аминокислот.

Ацетил-СоА, образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях, вступает в цикл Кребса. Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций. Начинается цикл конденсацией ацетил-СоА с оксалоацетатом и образованием лимонной кислоты (цитрата). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и двух декарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-СоА сгорает до СО 2 и Н 2 О, а молекула оксалоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса.

Первая реакция катализируется ферментом цитрат-синтазой; при этом ацетильная группа ацетил-СоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-СоА, который затем самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-СoA.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис- аконитовой кислоты, которая, присоединив молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации-дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата:

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии NAD-зависимой изо-цитратдегидрогеназы.

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. NAD + -зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим ADP. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

Во время четвертой реакции происходит окислительное декарбокси-лирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-CоА. Механизм этой реакции сходен с механизмом реакции окислительного декарбоксилирования пирувата до ацетил-СоА, α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: TPP, амид липоевой кислоты, HS-CoA, FAD и NAD + .

Пятая реакция катализируется ферментом сукцинил-СоА-синтетазой. В ходе этой реакции сукцинил-СоА при участии GTP и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи GTP за счет высокоэргической тиоэфирной связи сукцинил-СоА:

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент FAD. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной:

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, т.е. в ходе реакции образуется L-яблочная кислота:

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной NAD-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление («сгорание») одной молекулы ацетил-CоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-CоА, а коферменты (NAD + и FAD), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи (в цепи дыхательных ферментов), локализованной в мембране митохондрий. Образовавшийся FADН 2 прочно связан с сукцинатдегидрогеназа, поэтому он передает атомы водорода через CoQ.

Освобождающаяся в результате окисления ацетил-CоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях ATP. Из четырех пар атомов водорода три пары переносят NADH на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуется три молекулы ATP (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул ATP. Одна пара атомов от сукцинатдегидрогеназы-FADН 2 попадает в систему транспорта электронов через CoQ, в результате образуется только две молекулы ATP. В ходе цикла Кребса синтезируется также одна молекула GTP (субстратное фосфорилирование), что равносильно одной молекуле ATP. Итак, при окислении одной молекулы ацетил-CоА в цикле Кребса и системе окислительного фосфорилирования может образоваться двенадцать молекул ATP.

Как отмечалось, одна молекула NADH (три молекулы ATP) образуется при окислительном декарбоксилировании пирувата в ацетил-CоА. При расщеплении одной молекулы глюкозы образуется две молекулы пирувата, а при окислении их до двух молекул ацетил-CоА и в ходе двух оборотов цикла трикарбоновых кислот синтезируется тридцать молекул ATP (следовательно, окисление молекулы пирувата до СО 2 и Н 2 О дает пятнадцать молекул ATP). К этому количеству надо добавить две молекулы ATP, образующиеся при аэробном гликолизе, и шесть молекул ATP, синтезирующихся за счет окисления двух молекул внемитохондриального NADH, которые образуются при окислении двух молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О синтезируется тридцать восемь молекул ATP. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.

Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата две молекулы NADH в дальнейшем при окислении могут давать не шесть молекул АТР, а только четыре. Дело в том, что сами молекулы внемитохондриального NADH не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма. Цитоплазматический NADH сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется NАDН-зависимой цитоплазматической глицерол-3-фосфатдегидрогеназой:

Дигидроксиацетонфосфат + NАDН + Н + ↔ Глицерол-3-фосфат + NАD + .

Образовавшийся глицерол-3-фосфат легко проникает через митохондриальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфатдегидрогеназа (флавиновый фермент) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата.


Цикл трикарбоновых кислот (ЦТК) или цикл лимонной кислоты или цикл Кребса – путь окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов.

Цикл трикарбоновых кислот представлен в клетках всех организмов: растений, животных и микроорганизмов.

Этот цикл является основой метаболизма и выполняет две важных функции:

Снабжения организма энергией;

Интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Напомню, что реакции аэробного гликолиза локализованы в цитоплазме клетки и приводят к образованию пирувата (ПВК).

Последующие превращения пирувата протекают в матриксе митохондрий.

В матриксе пируват превращается в ацетил-КоА – макроэргическое соединение. Реакция катализируется ферментом НАД-зависимой пируватдекарбоксилазой:

Восстановленная форма НАДН∙Н + , образовавшаяся в результате этой реакции, поступает в дыхательную цепь и генерирует 6 молекул АТФ (в пересчете на 1 молекулу глюкозы).

ЦТК представляет собой последовательность из восьми реакций, протекающих в матриксе митохондрий (Рис. 1):

Рис. 1. Схема цикла трикарбоновых кислот

1) Необратимая реакция конденсации ацетил-КоА со щавелевоуксусной кислотой (оксалоацетатом), катализируемая ферментом цитратсинтетазой, с образованием лимонной кислоты (цитрата ).

2) Обратимая реакция изомеризация лимонной кислоты (цитрата ) в изолимонную кислоту (изоцитрат ), в процессе которой происходит перенос гидроксигруппы к другому атому углерода, катализируется ферментом аконитазой .

Реакция идёт через образование промежуточного продукта
цис-аканитовой кислоты (цис-аконитата ).

3) Необратимая реакция окислительного декарбоксилирования изолимонной кислоты (изоцитрата ): гидроксигруппа изолимонной кислоты окисляется до карбонильной группы с помощью окисленной формы НАД + и одновременно отщепляется карбоксильная группа в
β-положении с образованием α-кетоглутаровой кислоты (α-кетоглутарата ). Промежуточный продукт этой реакции щавелевоянтарная кислота (оксалосукцинат ).

Это первая реакция цикла, в которой происходит восстановление окисленной формы НАД + -кофермента до НАДН∙Н + , фермента изоцитратдегидрогеназы.

Восстановленная форма НАДН∙Н поступает в дыхательную цепь, там окисляется до НАД + , что приводит к образованию 2 молекул АТФ .

4) Обратимая реакция окислительного декарбоксилирования
α-кетоглутаровой кислоты до макроэргического соединения сукцинил-КоА . Реакцию катализирует фермент 2-оксоглутаратдегидрогеназный комплекс.

5) Реакция является единственной в цикле реакцией субстратного фосфорилирования; катализируется ферментом сукцинил-КоА-синтетазой. В этой реакции сукцинил-КоА при участии гуанодиндифосфата (ГДФ ) и неорганического фосфата (H 3 PO 4 ) превращается в янтарную кислоту (сукцинат ).

Одновременно происходит синтез макроэргического соединения ГТФ за счёт макроэргической связи тиоэфирной связи сукцинил-КоА.

6) Реакция дегидрирования янтарной кислоты (сукцината ) с образованием фумаровой кислоты (фумарата).

Реакция катализируется сложным ферментом сукцинатдегидрогеназой, в молекуле которой кофермент ФАД + ковалентно связан, а белковой частью фермента. Окисленная форма ФАД + в результате реакции восстанавливается до ФАД∙Н 2 .

Восстановленная форма ФАД∙Н 2 поступает в дыхательную цепь, там регенерирует до окисленной формы ФАД + , что приводит к образованию двух молекул АТФ.

7) Реакция гидратации фумаровой кислоты (фумарата ) до яблочной кислоты (малата ). Реакция катализируется ферментом фумаразой.

8) Реакция дегидрирования яблочной кислоты до щавелеуксусной кислоты (оксалоацетата ). Реакция катализируется ферментом НАД + -зависимой-малатдегидрогеназой.

В результате реакции окисленная форма НАД восстанавливается до восстановленной формы НАДН∙Н + .

Восстановленная форма НАДН∙Н поступает в дыхательную цепь, там окисляется до НАД + , что приводит к образованию 2 молекул АТФ.

Суммарное уравнение ЦТК можно записать следующим образом:

Ацетил-КоА + 3НАД + + ФАД + + ГДФ + H 3 PO 4 =

2 CO 2 + H 2 O + HS -КоА + 3НАДН∙Н + ФАД∙Н 2 + ГТФ

Как видно из схемы суммарного уравнения ЦТК в этом процессе восстанавливаются:

Три молекулы НАДН∙Н (реакции 3, 4, 8);

Одна молекула ФАД∙Н 2 (реакция 6).

При аэробном окислении из этих молекул в электрон-транспортной цепи в процессе окислительного фосфорилирования образуется при окислении:

Одной молекулы НАДН∙Н – 3 молекулы АТФ ;

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.