Гипербола и её каноническое уравнение.

Глава III. Кривые второго порядка

§ 43. Уравнения эллипса, гиперболы и параболы
в других (неканонических) системах координат

Применим выведенные в § 13 формулы перехода от одной прямоугольной декартовой системы координат к другой для изучения неканонических уравнений гиперболы, параболы, эллипса.

1) Рассмотрим уравнение

ху = а , а > 0. (1)

Из школьного курса известно, что уравнение (1) называется уравнением гиперболы и имеет график, изображенный на рис. 121.

Посмотрим, каким будет уравнение этой гиперболы в другой системе координат, в системе, которая получается из исходной поворотом базисных векторов на угол α = 45°.

В данном случае старые координаты х и у выражаются через новые х " и у " следующим образом:

Заменяя в уравнении (1) старые переменные новыми, получаем

√ 2 / 2 (х " - у ") √ 2 / 2 (х " + у ") = a

х " 2 - у " 2 = 2а . (2)

Мы получили каноническое уравнение равносторонней гиперболы. Следовательно, уравнение (1) задает равностороннюю гиперболу. Старые оси координат являются асимптотами гиперболы, поэтому уравнение (1) называют уравнением гиперболы, отнесенным к асимптотам (см. рис. 121). Сравнивая уравнения (1) и (2), видим, что действительная ось гиперболы, заданной уравнением (1), равна √2а .

Новая система координат О , i" , j" называется канонической, так как в ней уравнение гиперболы имеет канонический вид.

Уравнение ху = а, а < 0, приводится к каноническому виду аналогично. Для получения новых базисных векторов в этом случае следует повернуть старые базисные векторы на угол α = - 45°.

Задача 1. Дано каноническое уравнение равносторонней гиперболы х 2 - у 2 = 18. Написать ее уравнение, отнесенное к асимптотам.

Выполним поворот на угол α == -45°. Тогда старше координаты выражаются через новые по формулам

Подставив в данное уравнение значения х и у , получим

1 / 2 (х " - у ") 2 - 1 / 2 (х " + у ") 2 = 18

или после упрощения х"у" = 9.

2) Рассмотрим уравнение

y = αx 2 + βx + γ, α =/=0. (3)

Вам хорошо знакомо это уравнение и его график: парабола с осью, параллельной оси ординат. Записав уравнение (3) в виде

(4)

находим координаты вершины параболы

Перейдем к новой системе координат, направления осой которой совпадают с направлениями осей старой системы, а начало координат О" находится в вершине параболы. Точка О" имеет, следовательно, координаты (). Положив в формулах переноса

Так выражаются в данном случае старые координаты x и у через новые х" и у" . Заменяя в уравнении (4) старые координаты новыми, приходим к уравнению

y" = αx " 2 , α =/= 0.

Итак, если парабола в некоторой системе координат имеет уравнение (3), то всегда можно перейти к новой системе координат, в которой уравнение параболы будет иметь более простой вид: y" = αx " 2 , α =/= 0. Более того, всегда можно выбрать систему координат так, чтобы коэффициент в уравнении параболы был положителен. В самом деле, пусть α < 0, т. е. парабола расположена так, как показано на рис. 122.

Тогда в системе О", i", j" , которая получается из системы О", i", j" поворотом осей на угол α = 180°, уравнение параболы будет иметь вид y"" = - αx"" 2 . Полагая α 1 = - α, получаем y"" = α 1 x"" 2 , где α 1 > 0.

3) Пусть в некоторой системе координат парабола задана уравнением

y = αx 2 , α > 0. (5)

Перейдем к новой системе координат, которая получается из исходной поворотом базисных векторов на угол α = 90° (рис. 123).

Формулы поворота в этом случае принимают вид

Применяя в уравнении (5) старые координаты новыми, получаем

х" = αу" 2 или у" 2 = 1 / α х" .

Обозначим 1 / α через 2р , тогда

у" 2 = 2рх" .

Мы получили каноническое уравнение параболы. Таким образом, уравнением (5) задается парабола с фокальным параметром, равным 1 / 2α .

Из результатов, полученных в пункте 2), следует, что фокальный параметр параболы, заданной уравнением y = αx 2 + βx + γ, α =/=0 , равен 1 / 2 |α | .

Задача 2. Дано уравнение параболы y = 2x 2 + 6x + 7.

Привести его к каноническому виду. Найти расстояние от фокуса параболы до ее директрисы.

Выделим полный квадрат в правой части данного уравнения

у = 2(x 2 + 3х ) + 7 = 2(x + 3 / 2) 2 + 5 / 2 .

Координаты вершины параболы (- 3 / 2 ; 5 / 2).

Перейдем к новой системе координат, которая получается из исходной переносом начала координат в точку O" (- 3 / 2 ; 5 / 2) и поворотом базисных векторов на угол α = 90°
(рис. 124).

По формулам (3) § 13 получаем

Подставив эти значения х и у в уравнение параболы, получим

5 / 2 + x" =2(- 3 / 2 - y" + 3 / 2) 2 + 5 / 2

т. e. x" = 2y" 2 , или y" 2 = 1 / 2 x" .

Из полученного уравнения видно, что расстояние от фокуса параболы до директрисы (фокальный параметр) равно 1 / 4 .

4) Рассмотрим уравнение

(6)

Это уравнение похоже на каноническое уравнение эллипса, но не является таковым, так как в каноническом уравнении эллипса а > b.

Перейдем от системы координат хОу к системе х"Оу" , которая получается из исходной системы поворотом базисных векторов на угол α = 90°. Формулы поворота в этом случае имеют вид

Поэтому в новой системе данное уравнение запишется так:

Мы получили каноническое уравнение эллипса. Следовательно, уравнением (6) задается эллипс, большая ось которого лежит на оси Оу , малая на оси Ох . Фокусы такого эллипса расположены в точках F 1 (0; с ) и F 2 (0; -с ), где с = b 2 - a 2 (рис. 125).

Задача 3. Доказать, что кривая, заданная уравнением

25х 2 + 16y 2 -50х + 64y - 311 = 0,

является эллипсом. Найти его полуоси и координаты фокусов. Дать чертеж.

Преобразуем данное уравнение к виду:

25 (х - 1) 2 + 16 (у + 2) 2 = 400.

Oт системы координат хОу перейдем к системе х"О"у" , сохранив направление осей, а начало координат поместив и точку О" (1; -2). Тогда старые и новые координаты будут связаны формулами переноса

Поэтому в новой системе координат кривая имеет уравнение

25х" 2 + 16у" 2 = 400

Итак, данная кривая является эллипсом, полуоси которого равны 5 и 4. Полуфокусное расстояние с = √25-16 =3. Фокусы эллипса в новой системе имеют координаты (0; 3) и (0; -3). По формулам переноса находим их координаты в старой системе:
(1; 1) и (1; -5). Чертеж дан на рис. 126.

Задача 4. Написать уравнение эллипса, одна ось которого принадлежит оси ординат и равна 12, а другая ось принадлежит оси абсцисс и равна 8.

По условию задачи b = 6, а = 4, следовательно,

Задача 5. Написать уравнение эллипса, одна ось которого принадлежит оси ординат и равна 20, а расстояние между фокусами равно 16. Центр эллипса находится в точке
(0; 0).

Искомое уравнение эллипса можно записать в виде

Так как 2с = 16, 2b = 20, то с = 8, b = 10, а так как фокусы расположены на оси Оу , то
а 2 = b 2 - c 2 = 100 - 64 = 36 .Следовательно, эллипс имеет уравнение

Задача 6. Найти длины полуосей эллипса 25х 2 + 16у 2 = 400 и вычислить координаты его фокусов.

Запишем данное уравнение в виде

Следовательно, а 2 = 16, b 2 = 25 и с = b 2 - a 2 = √25-16 =3.
В результате имеем а = 4, b = 5, F 1 (0; 3),F 2 (0; - 3).

    Гипербола представляет собой плоскую кривую, для каждой точки которой модуль разности расстояний до двух заданных точек (фокусов гиперболы ) является постоянным. Расстояние между фокусами гиперболы называется фокусным расстоянием и обозначается через \(2c\). Середина отрезка, соединяющего фокусы, называется центром . У гиперболы имеются две оси симметрии: фокальная или действительная ось, проходящая через фокусы, и перпендикулярная ей мнимая ось, проходящая через центр. Действительная ось пересекает ветви гиперболы в точках, которые называются вершинами . Отрезок, соединяющий центр гиперболы с вершиной, называется действительной полуосью и обозначается через \(a\). Мнимая полуось обозначается символом \(b\). Каноническое уравнение гиперболы записывается в виде
    \(\large\frac{{{x^2}}}{{{a^2}}}\normalsize - \large\frac{{{y^2}}}{{{b^2}}}\normalsize = 1\).

    Модуль разности расстояний от любой точки гиперболы до ее фокусов является постоянной величиной:
    \(\left| {{r_1} - {r_2}} \right| = 2a\),
    где \({r_1}\), \({r_2}\) − расстояния от произвольной точки \(P\left({x,y} \right)\) гиперболы до фокусов \({F_1}\) и \({F_2}\), \(a\) − действительная полуось гиперболы.

    Уравнения асимптот гиперболы
    \(y = \pm \large\frac{b}{a}\normalsize x\)

    Соотношение между полуосями гиперболы и фокусным расстоянием
    \({c^2} = {a^2} + {b^2}\),
    где \(c\) − половина фокусного расстояния, \(a\) − действительная полуось гиперболы, \(b\) − мнимая полуось.

    Эксцентриситет гиперболы
    \(e = \large\frac{c}{a}\normalsize > 1\)

    Уравнения директрис гиперболы
    Директрисой гиперболы называется прямая, перпендикулярная ее действительной оси и пересекающая ее на расстоянии \(\large\frac{a}{e}\normalsize\) от центра. У гиперболы − две директрисы, отстоящие по разные стороны от центра. Уравнения директрис имеют вид
    \(x = \pm \large\frac{a}{e}\normalsize = \pm \large\frac{{{a^2}}}{c}\normalsize\).

    Уравнение правой ветви гиперболы в параметрической форме
    \(\left\{ \begin{aligned} x &= a \cosh t \\ y &= b \sinh t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(a\), \(b\) − полуоси гиперболы, \(t\) − параметр.

    Общее уравнение гиперболы
    где \(B^2 - 4AC > 0\).

    Общее уравнение гиперболы, полуоси которой параллельны осям координат
    \(A{x^2} + C{y^2} + Dx + Ey + F = 0\),
    где \(AC

    Равнобочная гипербола
    Гипербола называется равнобочной , если ее полуоси одинаковы: \(a = b\). У такой гиперболы асимптоты взаимно перпендикулярны. Если асимптотами являются горизонтальная и вертикальная координатные оси (соответственно, \(y = 0\) и \(x = 0\)), то уравнение равнобочной гиперболы имеет вид
    \(xy = \large\frac{{{e^2}}}{4}\normalsize\) или \(y = \large\frac{k}{x}\normalsize\), где \(k = \large\frac{e^2}{4}\normalsize .\)

    Параболой называется плоская кривая, в каждой точки которой выполняется следующее свойство: расстояние до заданной точки (фокуса параболы ) равно расстоянию до заданной прямой (директрисы параболы ). Расстояние от фокуса до директрисы называется параметром параболы и обозначается через \(p\). Парабола имеет единственную ось симметрии, которая пересекает параболу в ее вершине . Каноническое уравнение параболы имеет вид
    \(y = 2px\).

    Уравнение директрисы
    \(x = - \large\frac{p}{2}\normalsize\),

    Координаты фокуса
    \(F \left({\large\frac{p}{2}\normalsize, 0} \right)\)

    Координаты вершины
    \(M \left({0,0} \right)\)

    Общее уравнение параболы
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \(B^2 - 4AC = 0\).

    Уравнение параболы, ось симметрии которой параллельна оси \(Oy\)
    \(A{x^2} + Dx + Ey + F = 0\;\left({A \ne 0, E \ne 0} \right) \),
    или в эквивалентной форме
    \(y = a{x^2} + bx + c,\;\;p = \large\frac{1}{2a}\normalsize\)

    Уравнение директрисы
    \(y = {y_0} - \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F\left({{x_0},{y_0} + \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \({x_0} = - \large\frac{b}{{2a}}\normalsize,\;\;{y_0} = ax_0^2 + b{x_0} + c = \large\frac{{4ac - {b^2}}}{{4a}}\normalsize\)

    Уравнение параболы с вершиной в начале координат и осью симметрии, параллельной оси \(Oy\)
    \(y = a{x^2},\;\;p = \large\frac{1}{{2a}}\normalsize\)

    Уравнение директрисы
    \(y = - \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F \left({0, \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \(M \left({0,0} \right)\)

III уровень

3.1. Гипербола касается прямых 5x – 6y – 16 = 0, 13x – 10y – – 48 = 0. Запишите уравнение гиперболы при условии, что ее оси совпадают с осями координат.

3.2. Составьте уравнения касательных к гиперболе

1) проходящих через точку A (4, 1), B (5, 2) и C (5, 6);

2) параллельных прямой 10x – 3y + 9 = 0;

3) перпендикулярных прямой 10x – 3y + 9 = 0.

Параболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры параболы:

Точка F (p /2, 0) называется фокусом параболы, величина p параметром , точка О (0, 0) – вершиной . При этом прямая OF , относительно которой парабола симметрична, задает ось этой кривой.


Величина где M (x , y ) – произвольная точка параболы, называется фокальным радиусом , прямая D : x = –p /2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетом параболы.

Основное характеристическое свойство параболы : все точки параболы равноудалены от директрисы и фокуса (рис. 24).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 25).:


Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1. Определить параметры и форму параболы по ее каноническому уравнению:

Решение. 1. Уравнение y 2 = –8x определяет параболу с вершиной в точке О Оx . Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2 = –2px , находим: 2p = 8, p = 4, p /2 = 2. Следовательно, фокус находится в точке F (–2; 0), уравнение директрисы D : x = 2 (рис. 26).


2. Уравнение x 2 = –4y задает параболу с вершиной в точке O (0; 0), симметричную относительно оси Oy . Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2py , находим: 2p = 4, p = 2, p /2 = 1. Следовательно, фокус находится в точке F (0; –1), уравнение директрисы D : y = 1 (рис. 27).


Пример 2. Определить параметры и вид кривой x 2 + 8x – 16y – 32 = 0. Сделать чертеж.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

x 2 + 8x – 16y – 32 =0;

(x + 4) 2 – 16 – 16y – 32 =0;

(x + 4) 2 – 16y – 48 =0;

(x + 4) 2 – 16(y + 3).

В результате получим

(x + 4) 2 = 16(y + 3).

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх (), осью x = –4. Фокус находится в точке F (–4; –3 + p /2), т. е. F (–4; 1) Директриса D задается уравнением y = –3 – p /2 или y = –7 (рис. 28).




Пример 4. Составить уравнение параболы с вершиной в точке V (3; –2) и фокусом в точке F (1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p /2 = 3 – 1 = 2, p = 4. Значит, искомое уравнение

(y + 2) 2 = –2 · 4(x – 3) или (y + 2) 2 = = –8(x – 3).

Задания для самостоятельного решения

I уровень

1.1. Определите параметры параболы и построить ее:

1) y 2 = 2x ; 2) y 2 = –3x ;

3) x 2 = 6y ; 4) x 2 = –y .

1.2. Напишите уравнение параболы с вершиной в начале координат, если известно, что:

1) парабола расположена в левой полуплоскости симметрично относительно оси Ox и p = 4;

2) парабола расположена симметрично относительно оси Oy и проходит через точку M (4; –2).

3) директриса задана уравнением 3y + 4 = 0.

1.3. Составьте уравнение кривой, все точки которой равноудалены от точки (2; 0) и прямой x = –2.

II уровень

2.1. Определить тип и параметры кривой.

Гипербола – это множество точек плоскости, разница расстояний которых от двух заданных точек, фокусов, есть постоянная величина и равна .

Аналогично эллипсу фокусы размещаем в точках , (см. рис. 1).

Рис. 1

Видно из рисунка, что могут быть случаи и title="Rendered by QuickLaTeX.com" height="15" width="57" style="vertical-align: -4px;">, тогда согласно определению

Известно, что в треугольнике разница двух сторон меньше третьей стороны, поэтому, например, с у нас получается:

Поднесём к квадрату обе части и после дальнейших преобразований найдём:

где . Уравнение гиперболы (1) – это каноническое уравнение гиперболы.

Гипербола симметрична относительно координатных осей, поэтому, как и для эллипса, достаточно построить её график в первой четверти, где:

Область значения для первой четверти .

При у нас есть одна из вершин гиперболы . Вторая вершина . Если , тогда из (1) – действительных корней нет. Говорят, что и – мнимые вершины гиперболы. Из соотношением получается, что при достаточно больших значениях есть место ближайшего равенства title="Rendered by QuickLaTeX.com" height="24" width="264" style="vertical-align: -6px;">. Поэтому прямая есть линией, расстояние между которой и соответствующей точкой гиперболы направляется к нулю при .

Форма и характеристики гиперболы

Исследуем уравнение (1) форму и расположение гиперболы.

  1. Переменные и входят в уравнение (1) в парных степенях. Поэтому, если точка принадлежит гиперболе, тогда и точки также принадлежат гиперболе. Значит, фигура симметрична относительно осей и , и точки , которая называется центром гиперболы.
  2. Найдём точки пересечения с осями координат. Подставив в уравнение (1) получим, что гипербола пересекает ось в точках . Положив получим уравнение , у которого нет решений. Значит, гипербола не пересекает ось . Точки называются вершинами гиперболы. Отрезок = и называется действительной осью гиперболы, а отрезок – мнимой осью гиперболы. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Прямоугольник, созданный осями и называется главным прямоугольником гиперболы.
  3. С уравнения (1) получается, что , то есть . Это означает, что все точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и левая от прямой (левая ветвь гиперболы).
  4. Возьмём на гиперболе точку в первой четверти, то есть , а поэтому . Так как 0" title="Rendered by QuickLaTeX.com" height="28" width="139" style="vertical-align: -12px;">, при title="Rendered by QuickLaTeX.com" height="11" width="46" style="vertical-align: 0px;">, тогда функция монотонно возрастает при title="Rendered by QuickLaTeX.com" height="11" width="46" style="vertical-align: 0px;">. Аналогично, так как при title="Rendered by QuickLaTeX.com" height="11" width="46" style="vertical-align: 0px;">, тогда функция выпуклая вверх при title="Rendered by QuickLaTeX.com" height="11" width="46" style="vertical-align: 0px;">.

Асимптоты гиперболы

Есть две асимптоты гиперболы. Найдём асимптоту к ветви гиперболы в первой четверти, а потом воспользуемся симметрией. Рассмотрим точку в первой четверти, то есть . В этом случае , , тогда асимптота имеет вид: , где

Значит, прямая – это асимптота функции . Поэтому в силу симметрии асимптотами гиперболы есть прямые .

За установленными характеристиками построим ветвь гиперболы, которая находится в первой четверти и воспользуемся симметрией:

Рис. 2

В случае, когда , то есть гипербола описывается уравнением . В этой гиперболе асимптоты, которые и есть биссектрисами координатных углов .

Примеры задач на построение гиперболы

Пример 1

Задача

Найти оси, вершины, фокусы, ексцентриситет и уравнения асимптот гиперболы. Построить гиперболу и её асимптоты.

Решение

Сведём уравнение гиперболы к каноническому виду:

Сравнивая данное уравнение с каноническим (1) находим , , . Вершины , фокусы и Задача

Даны фокусы гиперболы и её асимптота . Написать уравнение гиперболы:

Решение

Записав уравнение асимптоты в виде находим отношение полуосей гиперболы . По условию задачи следует, что . Поэтому Задачу свели к решению системы уравнений:

Подставляя во второе уравнение системы, у нас получится:

откуда . Теперь находим .

Следовательно, у гиперболы получается такое уравнение:

Ответ

.

Гипербола и её каноническое уравнение обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру