Измерение сил векторные правила сложения сил. Сложение сил

Как правило, движение точечного тела с ускорением в ИСО происходит при действии нескольких тел. Например, пусть тележка движется с ускорением по реальной горизонтальной дороге. На нее оказывает действие человек, который толкает тележку, и дорога, которая тормозит движение тележки. Изучая движение тела при действии на него нескольких тел, Ньютон пришел к двум выводам:

1. Действия, которые оказывают на точечное тело другие тела, не зависят друг от друга.
2. Силы, характеризующие эти действия, можно складывать.

Сформулируем правила сложения сил, действующих на точечное тело вдоль одной прямой.

1. Если на точечное тело действуют две силы F 1 и F 2 , направленные в одну сторону (рис. 73), то их действие равно действию одной силы F. При этом:

2. Если на точечное тело действуют две силы F 1 и F 2 , направленные в противоположные стороны (рис. 74, а, б), то их действие равно действию силы F, которая:

Если на точечное тело действуют три силы (или больше), то вначале нужно сложить две из них. Потом к полученной в результате силе прибавить третью силу и т. д.

Из правила 2 можно сделать очень важный вывод: если на точечное тело действуют только две равные по модулю, но противоположно направленные силы, то общее действие этих сил равно нулю (рис. 75). В этом случае говорят, что силы F 1 и F 2 компенсируют (уравновешивают) друг друга. Понятно, что тогда ускорение этого тела в инерциальной системе отсчета будет равно нулю и его скорость будет постоянной. Это значит, что тело будет покоиться в данной ИСО или двигаться равномерно прямолинейно.

Верно и обратное утверждение:
если тело в инерциальной системе отсчета движется равномерно прямолинейно или покоится, то либо на тело не действуют никакие другие тела, либо сумма действующих на тело сил равна нулю.

Отметим, что в этом случае экспериментально невозможно определить, какое из этих двух условий выполняется: равна ли нулю сумма всех действующих на точечное тело сил, или на него вообще ничто не действует.

Точно так же экспериментально невозможно различить, действуют ли на точечное тело одна сила F, или на это тело действуют несколько сил, сумма которых равна F.

Используем правила сложения сил для выработки рецепта измерения силы.

Прежде всего введем эталон силы. Для этого выберем конкретную пружину. Растянем ее на определенную величину и прикрепим к телу. Будем считать, что в этом случае на тело со стороны пружины действует сила, модуль которой равен единице (рис. 76). В результате тело приобретет ускорение в ИСО.

Чтобы этого не произошло, присоединим к этому телу вторую пружину с противоположной стороны, как показано на рис. 77. При этом вторую пружину растянем таким образом, чтобы ее действие уравновесило (скомпенсировало) действие первой (эталонной) пружины. Тогда тело, на которое одновременно действуют обе пружины, будет оставаться в покое. Следовательно, модуль силы, с которой действует на тело вторая пружина, будет в точности равен модулю силы единичной величины. Зафиксируем растяжение второй пружины. растянутая до такой длины, она тоже станет эталоном силы. Таким образом, можно получить сколько угодно эталонов силы.

Создадим силу, модуль которой равен, например, половине единицы силы. Для этого уравновесим действие на тело эталонной пружины двумя одинаковыми пружинами, растянутыми на одну и ту же длину (рис. 78). При этом модуль силы, с которой действует на тело любая из двух одинаковых пружин, будет равен модулю половины единицы силы.

Аналогичным образом можно создать силу, модуль которой в заданное число раз (например, в 3, 10 и т. д.) меньше модуля единицы силы.

Так мы можем создать набор пружин, которые при известных растяжениях действуют с разными силами. Теперь для нас не составит труда измерить модуль любой неизвестной силы. Для этого будет достаточно уравновесить ее действие действием соответствующего набора пружин. Пример такого измерения показан на рис. 79. Измеренная таким способом сила, во-первых, равна по модулю сумме модулей сил, создаваемых набором пружин, и, во-вторых, направлена в сторону, противоположную направлению их действия.

Итоги

Правила сложения сил, действующих на тело вдоль одной прямой.

1. Если на точечное тело действуют две силы F 1 и F 2 , направленные в одну сторону, то их действие равно действию одной силы F. При этом:
– сила F направлена в ту же сторону, что и силы F 1 и F 2 ;
– модуль силы F равен сумме модулей сил F 1 и F 2 .

2. Если на точечное тело действуют две силы F 1 и F 2 , направленные в противоположные стороны, то их действие равно действию силы F, которая:
– направлена в сторону большей по модулю силы;
– имеет модуль, равный разности модулей большей и меньшей сил.

Если сумма всех сил, действующих на точечное тело, равна нулю, то говорят, что эти силы уравновешивают (компенсируют) друг друга. В этом случае тело в ИСО движется равномерно прямолинейно или покоится, т. е. не изменяет своего механического состояния.

Для измерения неизвестной силы ее действие надо уравновесить (скомпенсировать) действием набора эталонных пружин.

Вопросы

  1. Сформулируйте правила сложения сил, действующих вдоль одной прямой.
  2. В каком случае говорят, что силы уравновешивают друг друга?

Упражнения

1. Определите, чему равна и куда направлена сумма двух действующих на точечное тело сил, если первая сила направлена в положительном направлении оси X, а вторая – в противоположном направлении. Модули сил, измеренные в эталонных единицах, равны: |F 1 | = 3, |F 2 | = 5.

2. Определите, чему равна и куда направлена сумма трех действующих на точечное тело сил, если первая сила направлена в положительном направлении оси X, а вторая и третья – в противоположном направлении. Модули сил, измеренные в эталонных единицах, равны: |F 1 | = 30, |F 2 | =5, |F 3 | = 15.

3. Найдите, чему равна и куда направлена сила F, действующая на точечное тело, если сумма трех действующих на это тело сил F, F 1 и F 2 равна нулю. При этом F 1 направлена в положительном направлении оси Х, а F 2 – в противоположном направлении. Модули сил, измеренные в эталонных единицах, равны: |F 1 | = 30, |F 2 | = 5.

4. Лежащий на дороге камень (рис. 80) неподвижен в системе отсчета, связанной с Землей. Ответьте на вопросы:
а) чему равна сумма сил, действующих на камень?
б) изменяется ли со временем скорость (равно ли нулю ускорение) камня в системе отсчета, связанной:
– с прямолинейно равномерно едущим по дороге автобусом;
– с ускоряющимся относительно дороги автомобилем;
– с шишкой, которая свободно падает с дерева с ускорением g?
в) какие из этих систем отсчета являются инерциальными, а какие – неинерциальными?

Сила. Сложение сил

Любые изменения в природе происходят в результате взаимодействия между телами. Мяч лежит на земле, не начнет двигаться, если не толкнуть ногой, пружина не будет растягиваться, если к ней прикрепить грузик т.д.. При взаимодействии тела с другими телами скорость его движения изменяется. В физике часто не указывают, какое тело и как действует на данное тело, а говорят, что «на тело действует сила».

Сила - это физическая величина, которая количественно характеризует действие одного тела на другое, в результате которой тело изменяет свою скорость. Сила является векторной величиной. То есть, кроме числового значения, сила направление. Сила обозначается буквой F и в Системе Интернациональной измеряется в ньютонах. 1 ньютон - это сила, которая телу массой 1 кг, находящегося в состоянии покоя, предоставляет за 1 секунду скорость 1 метр в секунду при отсутствии трения. Измерить силу можно с помощью специального устройства - динамометра.

В зависимости от характера взаимодействия в механике различают три вида сил:

  • силу тяжести,
  • силу упругости,
  • силу трения.

Как правило, на тело действует не одна, а несколько сил. В таком случае рассматривают равнодействующую сил. Равнодействующей сил называют такую силу, которая действует так же, как несколько сил, одновременно действующих на тело. Пользуясь результатами опытов, можно сделать вывод: равнодействующая сил, направленных вдоль одной прямой в одну сторону, направлена в ту же сторону, а ее значение равно сумме значений этих сил. Равнодействующая двух сил, направленных вдоль одной прямой в противоположные стороны, направлена в сторону большей силы и равна разности значений этих сил.

При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые бы возникли под действием каждой силы в отдельности. Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов.

Векторная сумма всех сил, одновременно действующих на тело, называется равнодействующей силой .

Прямая, проходящая через вектор силы, называется линией действия силы. Если силы приложены к разным точкам тела и действуют не параллельно друг другу, то равнодействующая приложена к точке пересечения линий действия сил. Если силы действуют параллельно друг другу, то точки приложения результирующей силы нет, а линия ее действия определяется формулой: (см. рисунок).

Момент силы. Условие равновесия рычага

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, находится в состоянии равновесия.

Существует два вида механического движения – поступательное движение и вращение .

Если траектории движения всех точек тела одинаковы, то движение поступательное . Если траектории всех точек тела – дуги концентрических окружностей (окружностей с одним центром – точкой вращения), то движение вращательное.

Равновесие невращающихся тел : невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тела, имеющего неподвижную ось вращения

Если линия действия силы, приложенной к телу, проходит через ось вращения тела, то эта сила уравновешивается силой упругости со стороны оси вращения.

Если линия действия силы не пересекает ось вращения, то эта сила не может быть уравновешена силой упругости со стороны оси вращения, и тело поворачивается вокруг оси.

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы. Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тело находится в равновесии, если выполняется условие:

, где d 1 иd 2 – кратчайшие расстояния от линий действия силF 1 иF 2. Расстояниеdназываетсяплечом силы , а произведение модуля силы на плечо –моментом силы :

.

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, – отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии 1 м от оси вращения. Эту единицу называют ньютон-метром .

Общее условие равновесия тела :тело находится в равновесии, если равны нулю геометрическая сумма всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения .

При выполнении этого условия тело необязательно находится в покое. Оно может двигаться равномерно и прямолинейно или вращаться.

Статика изучает условия равновесия материальной точки и абсолютного твердого тела.

Абсолютно твердое тело - тело, размеры и форму которого можно считать неизменными.

Под условиями равновесия понимают условия, при которых тело при наличии внешнего воздействия может находиться в покое относительно инерциальной системы отсчета; двигаться поступательно, равномерно и прямолинейно; равномерно вращаться относительно оси, проходящей через центр масс.

Сила. Сложение сил

Основные физические величины, используемые в статике, - сила и момент силы. Сила как величина векторная характеризуется модулем, направлением в пространстве и точкой приложения.

Результат действия силы на материальную точку зависит только от ее модуля и направления. Твердое же тело имеет определенные размеры. Поэтому одинаковые по модулю и направлению силы вызывают различные движения твердого тела в зависимости от точки приложения.

Точку приложения силы можно переносить только вдоль прямой, вдоль которой эта сила действует. Об этом необходимо всегда помнить при осуществлении различных операций над силами.

Сила \(~\vec R\), которая производит на тело такое же действие, как и несколько одновременно действующих на него сил, называется равнодействующей . Она равна геометрической сумме этих сил\[~\vec R = \sum^n_{i=1} \vec F_i\].

Сложить силы - это значит найти их равнодействующую.

Если к телу приложено две силы в одной точке, то равнодействующую находят по правилу параллелограмма (рис. 1). Модуль равнодействующей двух сил можно определить по теореме косинусов

\(~R = \sqrt{F^2_1 + F^2_2 + 2F_1F_2 \cos \alpha}\)

или при α = 90°- по теореме Пифагора.

Если непараллельные силы приложены в разных точках тела, то для нахождения их равнодействующей эти силы \(~\vec F_1\) и \(~\vec F_2\) переносят в точку О пересечения прямых, вдоль которых они действуют (рис. 2), а затем производят их векторное сложение по правилу параллелограмма. Точкой приложения равнодействующей силы может быть любая точка прямой, вдоль которой она действует.

Сложение сил производят, используя правило сложения векторов. Или так называемое правило параллелограмма. Так как сила изображается в виде вектора, то есть это отрезок, длинна которого показывает числовое значение силы, а направление указывает направление действия силы. То складывают силы, то есть вектора, с помощью геометрического суммирования векторов.

С другой стороны сложение сил это нахождение равнодействующей нескольких сил. То есть когда на тело действует несколько разных сил. Разных как по величине, так и по направлению. Необходимо найти результирующую силу, которая буде действовать на тело в целом. В этом случае можно силы складывать попарно использую правило параллелограмма. Сначала складываем две силы. К их равнодействующей прибавляем еще одну. И так до тех пор, пока не сложатся все силы.

Рисунок 1 - Правило параллелограмма.


Правило параллелограмма можно описать так. Для двух сил выходящих из одной точки, и имеющих между собой угол отличный от нуля или 180 градусов. Можно построить параллелограмм. Путем переноса начала одного вектора в конец другого. Диагональ этого параллелограмма и будет равнодействующей этих сил.

Но также можно использовать и правило многоугольника сил. В этом случае выбирается начальная точка. Из этой точки выходит первый вектор силы действующей на тело, далее к его концу добавляется следующий вектор, методом параллельного переноса. И так далее до тех пор, пока не будет получен многоугольник сил. В конце концов, равнодействующей всех сил в такой системе будет вектор, проведенный из начальной точки в конец последнего вектора.

Рисунок 2 - Многоугольник сил.


В случае если тело движется под действием нескольких сил приложенных к разным точкам тела. Можно считать, что оно движется под действием равнодействующей силы приложенной к центру масс данного тела.

Наряду со сложением сил, для упрощения расчетов движения, применяется и метод разложения сил. Как видно из названия, суть метода заключается в том, что одну силу, действующую на тело, раскладывают на составляющие силы. В этом случае составляющие силы оказывают на тело такое же воздействие, как и изначальная сила.

Разложение сил также производится по правилу параллелограмма. Они должны выходить из одной точки. Из той же точки, из которой выходит разлагаемая сила. Как правило, разлагаемую силу представляют в виде проекций на перпендикулярные оси. К примеру, как сила тяжести и сила трения, действующие на брусок, лежащий на наклонной плоскости.

Рисунок 3 - Брусок на наклонной плоскости.