Магнитная сила постоянных магнитов. Постоянные магниты

Неодимовые магниты - это постоянные редкоземельные магниты, которые изготавливаются из сплавов на основе редкоземельных материалов,химическая формула Nd2Fe14B(неодим-железо-бор). Магниты из сплава NdFeBобладают наиболее высокими магнитными параметрами из всех постоянных магнитов, выпускаемых на сегодняшний день.

В настоящее время одно из самых перспективным направлением в производстве и продаже постоянных магнитов, является производство неодимовых магнитов. И эта популярность обусловлена следующим:

1) Магниты Nd2Fe14B обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм, ВН

2) магниты NdFeB имеют преимущество в цене перед магнитами из сплава SmCo из-за отсутствия в сплаве NdFeB дорогого кобальта.

3) Nd(неодим) в составе сплава NdFeB может частично заменяться на другие редкоземельные металлы, например, (Dy) Диспрозий - химический элемент, лантаноид.

4) Способность работать без потерь магнитных характеристик в температурном диапазоне - 60 ...+ 240 градусов Цельсия, с точкой Кюри +310 градусов.

5) Возможность производить магниты из данного сплава практически любых форм и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.)

К недостаткам можно отнести хрупкость и коррозионную стойкость, которую легко устранить, покрытием магнитов защитными слоями меди, цинка, никеля, хрома никель-медь-эпоксидная смола,никель-медь-никель и др.

Технология изготовления и производство неодимовых магнитов

1). Плавка магнитного материала. Исходные компоненты магнитного материала сплавляются в вакуумной индукционной печи. В этот момент задаются магнитные характеристики материала.

2). Дробление и измельчение. Частицы магнитного материала подвергаются дроблению и размолу.

3). Прессование в магнитном поле. Из полученного порошка, методами прессования в магнитном поле, делают заготовки. На этой стадии задается направление магнитного поля, происходит выстраивание доменов.

4). Спекание магнитов. Магнитные заготовки спекают при температуре 1000°С — 1100°С, они проходят термообработку в инертной среде.

5). Шлифовка. Изделия проходят механическую шлифовку.

6). Намагничивание в установке импульсного магнитного поля. Полученные неодимовые магниты, помещают в намагничивающую установку с индукцией магнитного поля ~ 3 - 4 Тл.

7). Нанесение коррозионно-устойчивого покрытия для предотвращения коррозии.

Неодимовые магниты Nd2Fe14B характеристики:

Магнитная индукция В. Это векторная величина, являющаяся силовой характеристикой магнитного поля “Сила магнита” Единицы измерения - Тесла (в системе СИ) или Гаусс (в системе СГСЕ), 1 Тесла = 10 000 Гаусс.

Остаточная магнитная индукция Br. Это намагниченность, которую имеет магнитный материал при напряжённости внешнего магнитного поля, равной нулю. Единицы измерения - Тесла (в системе СИ) или Гаусс (в системе СГСЕ). Определяет насколько сильное магнитное поле (плотность потока) может производить магнит.

Коэрцитивная магнитная сила Hc. Данная величина характеризует сопротивляемость магнита к размагничиванию. Это величина внешнего магнитного поля, требуемого для полного размагничивания неодимового магнита, намагниченного до состояния насыщения. Чем больше коэрцитивная сила, тем "прочнее" магнитный материал удерживает остаточную намагниченность. Единицы измерения - Ампер/метр (в системе СИ) или Эрстед (в системе СГСЕ)

Магнитная энергия (BH)max. Полная плотность энергии, максимальное энергетическое произведение.Единицы измерения - МГауссЭрстед (в системе СГСЕ).Определяет, насколько сильным является неодимовый магнит. Чем больше данная величина, тем более мощным является магнит.

Температурный коэффициент остаточной магнитной индукции Tc of Br. Единицы измерения - процент на градус Цельсия. Определяет, насколько сильно магнитная индукция изменяется от температуры. Величина -0.20 означает, что если температура увеличится на 100 градусов Цельсия, магнитная индукция уменьшится на 20%.

Максимальная рабочая температура Tmax. Определяет предел температуры, при которой мощный магнит временно теряет часть своих магнитных свойств. При снижении температуры неодимовый магнит полностью восстанавливает все магнитные свойства. Единицы измерения - градус Цельсия.

Температура Кюри Tcur . Определяет предел температуры, при которой неодимовый магнит полностью размагничивается. При снижении температуры магнит не восстанавливает магнитные свойства. Если нагревается в пределах от Tmax до Tcur, при снижении температуры магнитные свойства восстанавливаются частично. Единицы измерения - градус Цельсия.

Класс

Остаточная магнитная индукция, милли Тесла (Кило Гаусс)

Коэрцитивная сила, Кило Ампер/метр (Кило Эрстед)

Магнитная энергия, кило Джоуль/м3 (Мега Гаусс-Эрстед)

Рабочая температура, градус Цельсия

N35

1170-1220 (11,7-12,2)

≥955 (≥12)

263-287 (33-36)

80

N38

1220-1250 (12,2-12,5)

≥955 (≥12)

287-310 (36-39)

80

N40

1250-1280 (12,5-12,8)

≥955 (≥12)

302-326 (38-41)

80

N42

1280-1320 (12,8-13,2)

≥955 (≥12)

318-342 (40-43)

80

N45

1320-1380 (13,2-13,8)

≥955 (≥12)

342-366 (43-46)

80

N48

1380-1420 (13,8-14,2)

≥876 (≥12)

366-390 (46-49)

80

N50

1400-1450 (14,0-14,5)

≥876 (≥11)

382-406 (48-51)

60

N52

1430-1480 (14,3-14,8)

≥876 (≥11)

398-422 (50-53)

60

33M

1130-1170 (11,3-11,7)

≥1114 (≥14)

247-263 (31-33)

100

35M

1170-1220 (11,7-12,2)

≥1114 (≥14)

263-287 (33-36)

100

38M

1220-1250 (12,2-12,5)

≥1114 (≥14)

287-310 (36-39)

100

40M

1250-1280 (12,5-12,8)

≥1114 (≥14)

302-326 (38-41)

100

42M

1280-1320 (12,8-13,2)

≥1114 (≥14)

318-342 (40-43)

100

45M

1320-1380 (13,2-13,8)

≥1114 (≥14)

342-366 (43-46)

100

48M

1380-1420 (13,8-14,3)

≥1114 (≥14)

366-390 (46-49)

100

50M

1400-1450 (14,0-14,5)

≥1114 (≥14)

382-406 (48-51)

100

30H

1080-1130 (10,8-11,3)

≥1353 (≥17)

223-247 (28-31)

120

33H

1130-1170 (11,3-11,7)

≥1353 (≥17)

247-271 (31-34)

120

35H

1170-1220 (11,7-12,2)

≥1353 (≥17)

263-287 (33-36)

120

38H

1220-1250 (12,2-12,5)

≥1353 (≥17)

287-310 (36-39)

120

40H

1250-1280 (12,5-12,8)

≥1353 (≥17)

302-326 (38-41)

120

42H

1280-1320 (12,8-13,2)

≥1353 (≥17)

318-342 (40-43)

120

45H

1320-1380 (13,2-13,8)

≥1353 (≥17)

326-358 (43-46)

120

48H

1380-1420 (13,8-14,3)

≥1353 (≥17)

366-390 (46-49)

120

30SH

1080-1130 (10,8-11,3)

≥1592 (≥20)

233-247 (28-31)

150

33SH

1130-1170 (11,3-11,7)

≥1592 (≥20)

247-271 (31-34)

150

35SH

1170-1220 (11,7-12,2)

≥1592 (≥20)

263-287 (33-36)

150

38SH

1220-1250 (12,2-12,5)

≥1592 (≥20)

287-310 (36-39)

150

40SH

1240-1280 (12,4-12,8)

≥1592 (≥20)

302-326 (38-41)

150

42SH

1280-1320 (12,8-13,2)

≥1592 (≥20)

318-342 (40-43)

150

45SH

1320-1380 (13,2-13,8)

≥1592 (≥20)

342-366 (43-46)

150

28UH

1020-1080 (10,2-10,8)

≥1990 (≥25)

207-231 (26-29)

180

30UH

1080-1130 (10,8-11,3)

≥1990 (≥25)

223-247 (28-31)

180

33UH

1130-1170 (11,3-11,7)

≥1990 (≥25)

247-271 (31-34)

180

35UH

1180-1220 (11,7-12,2)

≥1990 (≥25)

263-287 (33-36)

180

38UH

1220-1250 (12,2-12,5)

≥1990 (≥25)

287-310 (36-39)

180

40UH

1240-1280 (12,4-12,8)

≥1990 (≥25)

302-326 (38-41)

180

28EH

1040-1090 (10,4-10,9)

≥2388 (≥30)

207-231 (26-29)

200

30EH

1080-1130 (10,8-11,3)

≥2388 (≥30)

233-247 (28-31)

200

33EH

1130-1170 (11,3-11,7)

≥2388 (≥30)

247-271 (31-34)

200

35EH

1170-1220 (11,7-12,2)

≥2388 (≥30)

263-287 (33-36)

200

38EH

1220-1250 (12,2-12,5)

≥2388 (≥30)

287-310 (36-39)

200

Для того, что бы понять, насколько один магнит мощнее другого, необходимо значение остаточной магнитной индукции одного магнита разделить на значение остаточной магнитной индукции другого магнита.

Пример: неодимовый магнит N38 с В=1220 мТ и магнит N50 с В=1400 мТ, делим их магнитные индукции и получаем 1400/1220 = 1,14, т.е. магнит N50 «мощнее» магнита N38 на 14%, при условии, что линейные размеры магнитов одинаковые.

Цифры, обозначающие класс магнитов 30, 33, 35 ,38, 40, 42 и т.д., указывают на Магнитную Энергию, отвечающая за мощность магнитов (чем выше класс, тем сильнее магнит неодимовый), или «усилие на отрыв», т.е. сила, которую необходимо приложить к магниту, чтобы его оторвать от поверхности, к которой он примагничивается.

Наш магазин предлагает по выгодным ценам и удобным условиям.

Типы магнитов

Существует множество типов магнитов. Рассмотрим их особенности.

Природные магниты (магнитный железняк) образуются при остывании расплавленной лавы, содержащей железо или его окислы, которое намагничивается магнитным полем Земли. Расплавленная лава не обладает магнитными свойствами. Но когда она остывает, крошечные расплавленные частицы железа поворачиваются так, что они приобретают строгую направленность на магнитные полюса Земли и сохраняют ее в затвердевшем железе.

Мы не знаем, как Земля превратилась в магнит, но можем предположить, что магнитное поле Земли создается вращающимся слоем расплавленного железа, находящимся внутри планеты, которая тоже вращается. Найденная в природе магнитная руда содержит, в первую очередь, железо и кислород. Она встречается в изобилии. Искусственные магниты создаются людьми для многих целей, включая лечение и сложные физические эксперименты. Эти магниты имеют различные формы, их параметры могут изменяться в широких пределах.

Тысячелетиями магниты оставались одной из загадок природы. Только природные магниты были доступны долгое время, они использовались в компасах. В XIX веке были изобретены электрические батареи, и это привело к открытию взаимодействия между электрическим током и магнитным полем. Одно открытие вело к следующему.

Наконец окончательно подтвердилось, что два параллельных проводника, по которым пропускали электрический ток, взаимно притягиваются при одинаковом направлении токов, но взаимно отталкиваются, если направления токов будут противоположны.

Оказалось, что если электрический ток пропускать по свернутому в кольцо проводнику, то магнитные поля, созданные каждым его сегментом, суммируются и образуют общее магнитное поле, наиболее мощное в центре кольца. Эти кольца были названы электромагнитами. Затем выяснилось, что можно значительно усилить магнитное поле, если поместить железный сердечник в центр кольца. Сердечник приобретал магнитные свойства в момент включения тока и длительно сохранял их после его выключения. Это открытие оказалось очень важным. Появилась возможность изготавливать искусственные магниты. Открытие вызвало изменение стратегии научных исследований, ускорило применение магнитных приборов в различных целях.

Открытие электромагнитов позволило изготавливать постоянные магниты из сплавов, добавляя различные металлы в железную основу, нагревая смесь до температуры плавления, а затем разливая ее в различные формы. Магниты подвергались предварительному намагничиванию, пока они были в расплавленном состоянии, но позже, остывая и твердея, они теряли магнитные свойства. Поэтому перед продажей их повторно намагничивали при комнатной температуре.

Изготовленные на заводах магниты создают намного более мощное поле, чем природные. Во всех искусственных магнитах железо служит основным исходным материалом. Вокруг ядра атома железа движутся 26 электронов, ориентация орбит некоторых из них может изменяться. Под действием внешнего магнитного поля эти электроны в каждом атоме начинают двигаться по орбитам, одинаково ориентированным по направлению поля в пространстве. Теперь каждый атом создает собственное магнитное поле, поля соседних атомов усиливают друг друга. Когда этот процесс охватывает значительное количество электронов и атомов, железо или сплав на его основе приобретают свойство, которое мы называем магнетизмом.

Независимо от размера, все магниты имеют два полюса: северный и южный. Если большой магнит разделить на части, то каждая из этих частей превратится в самостоятельный магнит с полюсами на концах. Магнитное поле наиболее интенсивно на полюсах, но слабее всего в точке, равноудаленной от полюсов.

Разноименные полюса притягивают друг друга, одноименные – отталкивают. Это свидетельствует о различной природе двух полюсов, а также об их различном терапевтическом эффекте. Основой магнитотерапии являются свойства магнитных полюсов.

Как было установлено, эти полюса по-разному влияют на живые организмы.

Для лечебных целей интенсивность магнитного поля оказалась менее важной, чем правильный выбор полярности. Но как же измеряют параметры магнитов?

Магнит создает вращающую и притягивающую силу, которая действует на некоторые электроны в атомах железа. Эти электроны удерживаются ядрами атомов, они не могут свободно перемещаться. Поэтому весь кусок железа двигается по направлению к магниту. В честь немецкого математика Карла Фридриха Гаусса единица силы притяжения называется гаусс. В этих единицах измеряется сила на поверхности магнита.

Из книги Мистерии Евразии автора Дугин Александр Гельевич

Из книги Чудо исцеления шепотом автора Матушка Стефания

Типы заговоров По осуществлению магические заговоры могут быть как разовыми, так и серийными.Разовый заговор – это магический заговор, который применяется только один раз для достижения и осуществления своей цели.Серийный заговор – это магический заговор, который

Из книги Том 3. Домология автора Вронский Сергей Алексеевич

3.2.6. Смешанные типы Пограничная область Телец/Овен.Изменённый главный принцип: усиление своеволия и своенравия. Повышенный потенциал воли, увеличение энергии.Овен заметно ограничивает способность Тельца приспосабливаться другим людям, вещам, обстоятельствам, но такие

Из книги Красота вашего подсознания. Программируй себя на успех и позитив автора Ангелайт

3.3.6. Смешанные типы Пограничная область Близнецы/ТелецИзменённый главный принцип: больше спокойствия и стабильности, меньше суеты. Этот тип Близнецов более уравновешенный, так как стихия Земли, как правило, действует на стихию Воздуха успокаивающе. Если при этом в знаке

Из книги Энциклопедия хиромантии: Ваша судьба как на ладони автора Макеев А. В.

3.4.6. Смешанные типы Пограничная областьРак/БлизнецыИзменённый главный принцип: усиление раздражительности, возбудимость, нервозность, беспокойство.Этот смешанный тип содержит в себе элементы стихий Воды и Воздуха, что даёт быструю смену чувств и настроений.

Из книги Магия воды. Чудесные исцеления автора Филатова Светлана Владимировна

3.5.6. Смешанные типы Пограничная область Лев/РакИзменённый главный принцип: «приглушённый огонь».Сила воли и энергия такого Льва гораздо меньше, а степень активности, динамика, страсти приглушены и совсем не так ярки, как у «чистого» Льва. Уже не тот размах, не те масштабы,

Из книги Русь эзотерическая автора Манскова Ольга Витальевна

3.6.6. Смешанные типы. Пограничная область Дева/ЛевИзменённый главный принцип: активизация мира чувств.При таком положении Асцендента превосходство интеллекта и расчётливости уже ослаблено. Заметно проявляет себя Львиная суть. Вообще это смешение достаточно

Из книги Жизнь без границ. Концентрация. Медитация автора Жикаренцев Владимир Васильевич

Типы программ Цель программирования подсознания мы обозначили в самом начале – проработка матриц. Нам важно освободить себя от неосознаваемых импульсов нашего подсознания, которые могут принести нам самим вред. Если мы не будем понимать, какое воздействие оказывает на

Из книги Лечебная сила магнита. Секреты индийских мудрецов автора Моханти Ранжит

Типы рук Хиромантия непосредственно связана с расположением звезд планет, поскольку этот способ предсказания будущего основывался на астрологическом принципе, согласно которому, микрокосм человека определяется прежде всего небесными светилами, а его будущее зависит

Из книги Большая книга тайных знаний. Нумерология. Графология. Хиромантия. Астрология. Гадания автора Шварц Теодор

Типы воды Изучением природных вод и их взаимодействия с литосферой и атмосферой занимается гидрология. Предмет исследования данной науки – все известные виды гидросферы, в том числе подземные и почвенные. В гидрологии выделяются 3 главных направления – океанология,

Из книги автора

Глава 17. Отлучение от Магнитов Скоро ожидался вновь большой и общий Магнит, о чём Эльмирой было объявлено всем, кто находился в палаточном городке и у костра. С призывом, чтобы никто из присутствующих далеко не уходил. Многие тут же разбрелись по ближайшим окрестностям -

Из книги автора

ТИПЫ ХАРАКТЕРОВ В свете вышесказанного надо кое-что добавить к информации о типах характеров, которые мы рассматривали в книге «Путь к Свободе. Взгляд в Себя». Напоминаю, что типы характеров человека – это тот поезд, в который вы сели при рождении и в котором будете ехать

Из книги автора

Типы постоянных магнитов Разработано множество типов искусственных магнитов. Впервые людьми были изготовлены постоянные магниты из ковкого железа. По мощности они значительно превосходили природные. Но чистое железо не может длительно сохранять магнитные

Из книги автора

Выбор магнитов Существуют магниты любых форм, размеров и мощностей. Они могут быть круглыми, кольцевыми, серповидными и длинными.Круглые (дисковые) магниты имеют форму таблетки, у которых одна поверхность окрашена в белый цвет (южный полюс), а другая – в желтый (северный

Из книги автора

Виды магнитов и их использование Для лечения используют маломощные и средне-мощные магниты.Обычно более мощными дисковыми магнитами воздействуют на ладони, подошвы ног и конечности. Маломощные керамические магниты используют только на голове, лице, грудной клетке и

Что такое постоянный магнит

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом. Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же - как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит - это тело, обладающее своим собственным .

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита - магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.


Характеристики размагничивающего участка материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») - это , необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы - Ампер/метр. А , как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов - порядка 1 Тесла.

Виды и свойства постоянных магнитов

Ферритовые

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне - от -30°C до +270°C.


Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в . В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Альнико (алюминий-никель-кобальт)

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы - до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Самариевые

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом - то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла - кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая и мощными подъемными машинами.


Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов - хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.


Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля. Для примера проведем расчет силы взаимодействия двух постоянных магнитов.

Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы IΔl и просуммировать , действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера - это и будут силы взаимодействия между двумя магнитами.

Еще в древние времена люди обнаружили уникальные свойства определенных камней - притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье.

Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство.

Полем электромагнита можно управлять с помощью электрического тока. Как это происходит ? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность.

Типы постоянных магнитов

Ферритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250 о С.

Альнико - магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550 о С. Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли.

Самариевые магнитные сплавы - это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии.

Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет.

Использование неодимовых магнитов

Стоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед полей других сплавов и не подвержен размагничиванию.

Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике.

Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100 о С. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава.

Применение ферритовых магнитов

Ферриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое - ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах.

Назначение феррита - защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение.

Магнитотерапия

Нередко применяется процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток.

Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается.

Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения.

Чтобы понять, как увеличить силу магнита, нужно разобраться в процессе намагничивания. Это произойдет, если магнит расположить во внешнем магнитном поле противоположной стороной к исходной. Увеличение же мощности электромагнита происходит тогда, когда увеличивается подача тока или умножаются витки обмотки.


Увеличить силу магнита можно с помощью стандартного набора необходимого оборудования: клея, набора магнитов (нужны именно постоянные), источника тока и изолированного провода. Они понадобятся для осуществления тех способов увеличения силы магнита, которые представлены ниже.

Усиление с помощью более мощного магнита

Этот способ заключается в использовании более мощного магнита для усиления исходного. Для осуществления надо поместить один магнит во внешнее магнитное поле другого, обладающего большей мощностью. Также с этой же целью применяют электромагниты. После удержания магнита в поле другого, произойдет усиление, но специфика заключается в непредсказуемости результатов, поскольку для каждого элемента такая процедура будет работать индивидуально.



Усиление с помощью добавления других магнитов

Известно, что каждый магнит имеет два полюса, причем каждый притягивает противоположный знак других магнитов, а соответствующий – не притягивает, лишь отталкивает. Как увеличить мощность магнита, используя клей и дополнительные магниты. Здесь предполагается добавление других магнитов с целью увеличения итоговой мощности. Ведь, чем больше магнитов, тем, соответственно, будет больше сила. Единственное, что нужно учесть, - это присоединение магнитов одноименными полюсами. В процессе они будут отталкиваться, согласно законам физики. Но задача состоит в склеивании, несмотря на сложности в физическом плане. Лучше использовать клей, который предназначен для склеивания металлов.

Метод усиления с использованием точки Кюри

В науке есть понятие точки Кюри. Усиление или ослабление магнита можно произвести, нагревая или охлаждая его относительно самой этой точки. Так, нагревание выше точки Кюри или сильное охлаждение (гораздо ниже нее) приведет к размагничиванию.

Надо заметить, что свойства магнита при нагревании и охлаждении относительно точки Кюри имеют скачкообразное свойство, то есть, добившись правильной температуры можно усилить его мощность.

Метод №1

Если возник вопрос, как сделать магнит сильнее, если его сила регулируется электрическим током, то сделать это можно с помощью увеличения тока, который подается на обмотку. Здесь идет пропорциональное увеличение мощности электромагнита и подачи тока. Главное, ⸺ постепенная подача, чтобы не допустить перегорания.

Метод №2

Для осуществления этого метода надо увеличить количество витков, но длина должна оставаться неизменной. То есть, можно сделать один-два дополнительных ряда провода, чтобы общее количество витков стало больше.

В этом разделе рассмотрены способы, как увеличить силу магнита в домашних условиях, для экспериментов можно заказать на сайте МирМагнитов .

Усиление обычного магнита

Множество вопросов возникает, когда обычные магниты перестают выполнять свои прямые функции. Это часто происходит из-за того, что бытовые магниты таковыми не являются, ведь, по сути, они намагниченные металлические части, которые теряют свойства с течением времени. Усилить мощность таких деталей или вернуть им свойства, которые были изначально, невозможно.

Надо заметить, что прикреплять к ним магниты, даже более мощные, не имеет смысла, поскольку, при их соединении обратными полюсами, внешнее поле становится гораздо слабее или вообще нейтрализуется.

Это можно проверить с помощью обычной бытовой занавески-москитки, которая должна закрываться посередине при помощи магнитов. Если на слабые исходные магниты сверху прикрепить более мощные, то в результате штора вообще потеряет свойства соединения с помощью притяжения, потому что противоположные полюса нейтрализуют внешние поля друг друга на каждой из сторон.

Эксперименты с неодимовыми магнитами

Неомагнит довольно популярен, его состав: неодим, бор, железо. Такой магнит обладает высокой мощностью и отличается стойкостью к размагничиванию.

Как усилить неодим? Неодим очень подвержен коррозии, то есть быстро ржавеет, поэтому неодимовые магниты покрывают никелем, чтобы повысить срок службы. Также они напоминают керамику, их легко разбить или расколоть.

Но пытаться увеличивать его мощность искусственным способом нет смысла, потому что это постоянный магнит, он имеет определенный для себя уровень силы. Поэтому, если вам необходимо иметь более мощный неодим, лучше приобрести его, учитывая нужную силу нового.


Заключение: в статье рассмотрена тема, как увеличить силу магнита, в том числе, как увеличить мощность неодимового магнита. Получается, что существует несколько способов увеличить свойства магнита. Потому что бывает просто намагниченный металл, увеличить силу которого невозможно.

Наиболее простые способы: с помощью клея и других магнитиков (они должны быть приклеены идентичными полюсами), а также – более мощного, во внешнем поле которого должен находится исходный магнит.

Рассмотрены способы увеличения силы электромагнита, которые заключаются в дополнительной обмотке проводами или усилении поступления тока. Единственное, что нужно учитывать - это силу поступления тока в целях безопасности и сохранности аппарата.

Обычные и неодимовые магниты не способны поддаваться на увеличение собственной мощности.