Строение и классификация углеводов. Дисахариды - кристаллические углеводы, молекулы которых построены из соединённых между собой остатков двух молекул моносахаридов

Углеводами называют вещества с общей формулой C n (H 2 O) m , где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

  • моносахариды или простые сахара;
  • олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).
  • полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C 3), тетрозы (C 4), пентозы (C 5), гексозы (C 6), гептозы (C 7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются прежде всего альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH 3 . Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки.

Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов

Энергетическая . Глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания (1 г углеводов при окислении высвобождает 17,6 кДж энергии).

Структурная . Целлюлоза входит в состав клеточных оболочек растений; хитин является структурным компонентом покровов членистоногих и клеточных стенок грибов.

Некоторые олигосахариды входят в состав цитоплазматической мембраны клетки (в виде гликопротеидов и гликолипидов) и образуют гликокаликс.

Метаболическая . Пентозы участвуют в синтезе нуклеотидов (рибоза входит в состав нуклеотидов РНК, дезоксирибоза - в состав нуклеотидов ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозодифосфат является акцептором СO 2 в темновой фазе фотосинтеза).

Пентозы и гексозы участвуют в синтезе полисахаридов; в этой роли особенно важна глюкоза.

Углеводы - вещества состава СmН2nОn, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека.

Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844 г. К. Шмидтом. Общая формула углеводов, согласно сказанному, С m Н2 n О n . При вынесении «n» за скобки получается формула С m (Н 2 О) n , которая очень наглядно отражает название «угле-воды».

Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав не точно соответствующий формуле С m H 2n О n . Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название - глициды.

Большой класс углеводов разделяют на две группы: простые и сложные.

Простыми углеводами (моносахаридами и мономинозами) называют углеводы, которые не способны гидролизоваться с образованием более простых углеводов, у них число атомов углерода равно числу атомов кислорода С n Н 2n О n .

Сложными углеводами (полисахаридами или полиозами) называют такие углеводы, которые способны гидролизоваться с образованием простых углеводов и у них число атомов углерода не равно числу атомов кислорода С m Н 2n О n .

Классификацию углеводов можно изобразить следующей схемой:

МОНОСАХАРИДЫ, ДИСАХАРИДЫ С 12 Н 22 О 11 , тетрозы С 4 Н 8 О 4 , сахароза, элитроза, лактоза, треоза, мальтоза, пентозы С 5 Н 10 О 5 , целобиоза, арабиноза

ПОЛИСАХАРИДЫ

Ксилоза (С 5 Н 8 О 4) n рибоза пентозаны

ГЕКСОЗЫ

С 6 Н 12 О 6 (С 6 Н 10 О 5) n глюкоза целлюлоза манноза крахмал галактоза гликоген фруктоза

Важнейшими представителями простых углеводов являются глюкоза и фруктоза, они имеют одну молекулярную формулу С 6 Н 12 О 6 .

Глюкозу называют также виноградным сахаром, так как она содержится в большом количестве в виноградном соке. Кроме винограда глюкоза находится и в других сладких плодах и даже в разных частях растений. Распространена глюкоза и в животном мире: 0,1% ее находится в крови. Глюкоза разносится по всему телу и служит источником энергии для организма. Она также входит в состав сахарозы, лактозы, целлюлозы, крахмала.

В растительном мире широко распространена фруктоза или фруктовый (плодовый) сахар. Фруктоза содержится в сладких плодах, меде. Извлекая из цветов сладких плодов соки, пчелы приготавливают мед, который по химическому составу представляет собой в основном смесь глюкозы и фруктозы. Также фруктоза входит в состав сложных сахаров, например тростникового и свекловичного.

Моносахариды - это твердые вещества, способные кристаллизоваться. Они гигроскопичны, очень легко растворимы в воде, легко образуют сиропы, из которых выделить их в кристаллическом виде бывает очень трудно.

Растворы моносахаридов имеют нейтральную на лакмус реакцию и обладают сладковатым вкусом. Сладость моносахаридов различна: фруктоза в 3 раза слаще глюкозы.

В спирте моносахариды растворяются плохо, а в эфире вообще не растворимы.

Моносахариды, важнейшие представители простых углеводов, в природе находятся как в свободном состоянии, так и в виде своих ангидридов - сложных углеводов.

Все сложные углеводы можно рассматривать как ангидриды простых сахаров, получающиеся путем отнятия одной или нескольких молекул воды от двух или более молекул моносахарида.

К сложным углеводам относятся разнообразные по своим свойствам вещества и их делят по этой причине на две подгруппы.

1. Сахароподобные сложные углеводы или олигосахариды. Эти вещества обладают рядом свойств, сближающими их с простыми углеводами.

Сахароподобные углеводы легко растворимы в воде, сладки на вкус; эти сахара легко получаются в виде кристаллов.

При гидролизе сахароподобных полисахаридов из каждой молекулы полисахарида образуется небольшое количество молекул простого сахара - обычно 2, 3, или 4 молекулы. Отсюда произошло второе название сахароподобных полисахаридов - олигосахариды (от греческого олигос - немногий).

В зависимости от числа молекул моносахаридов, которые образуются при гидролизе каждой молекулы олигосахаридов, последние делятся на дисахариды, трисахариды и т.д.

Дисахариды - это сложные сахара, каждая молекула которых при гидролизе распадается на 2 молекулы моносахарида.

Способы синтеза дисахаридов известны, но практически их получают из природных источников.

Важнейший из дисахаридов - сахароза - очень распространен в природе. Это химическое название обычного сахара, называемого тростниковым или свекловичным.

Индусы еще за 300 лет до нашей эры умели получать тростниковый сахар из тростника. В наше время получают сахарозу из тростника, произрастающего в тропиках (на о. Куба и в других странах Центральной Америки).

В середине 18 века дисахарид был обнаружен и в сахарной свекле, а в середине 19 века был получен в производственных условиях.

В сахарной свекле содержится 12-15% сахарозы, по другим источникам 16-20% (сахарный тростник содержит 14-26% сахарозы).

Сахарную свеклу измельчают и извлекают из нее сахарозу горячей водой в специальных аппаратах-диффузорах. Полученный раствор обрабатывают известью для осаждения примесей, а перешедший частично в раствор избыточный гидролиз кальция осаждают пропусканием диоксида углерода. Далее после отделения осадка раствор упаривают в вакуум-аппаратах, получая мелкокристаллический песок-сырец. После его дополнительной очистки получают рафинированный (очищенный) сахар. В зависимости от условий кристаллизации он выделяется в виде мелких кристаллов или в виде компактных «сахарных голов», которые раскалывают или распиливают на куски. Быстрорастворимый сахар готовят прессованием мелкоизмельченного сахарного песка.

Тростниковый сахар применяется в медицине для изготовления порошков, сиропов, микстур и т.д.

Свекловичный сахар широко применяется в пищевой промышленности, кулинарии, приготовлении вин, пива и т.д.

Из молока получают молочный сахар - лактозу. В молоке лактоза содержится в довольно значительном количестве: в коровьем молоке 4-5,5% лактозы, женское молоко содержит 5,5-8,4% лактозы.

Лактоза отличается от других сахаров отсутствием гигроскопичности - она не отсыревает. Это свойство имеет большое значение: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующее лекарство, то берут молочный сахар. Если взять тростниковый или свекловичный сахар, то порошок быстро отсыреет и легко гидролизующее лекарственное вещество быстро разложится.

Значение лактозы очень велико, т.к. она является важным питательным веществом, особенно для растущих организмов человека и млекопитающих животных.

Солодовый сахар - это промежуточный продукт при гидролизе крахмала. По другому его называют еще мальтоза, т.к. солодовый сахар получается из крахмала при действии солода (по лат. солод - maltum).

Солодовый сахар широко распространен как в растительных, так и в животных организмах. Например, он образуется под влиянием ферментов пищеварительного канала, а также при многих технологических процессах бродильной промышленности: винокурения, пивоварении и т.д.

Важнейшие из полисахаридов - это крахмал, гликоген (животный крахмал), целлюлоза (клетчатка). Все эти три высшие полиозы состоят из остатков молекул глюкозы, различным образом соединенных друг с другом. Состав их выражается общей формулой (С 6 Н 12 О 6) n . Молекулярные массы природных полисахаридов составляют от нескольких тысяч до нескольких миллионов.

Крахмал - это первый видимый продукт фотосинтеза. При фотосинтезе крахмал образуется в растениях и откладывается в корнях, клубнях, семенах. Зерна риса, пшеницы, ржи и других злаков содержат 60-80% крахмала, клубни картофеля - 15-20%. Крахмальные зерна растений различаются по внешнему виду, что хорошо видно, когда их рассматриваешь под микроскопом. Внешний вид крахмала хорошо всем известен: это белое вещество, состоящее из мельчайших зерен, напоминающих муку, поэтому его второе название «картофельная мука».

Крахмал не растворим в холодной воде, в горячей набухает и постепенно растворяется, образуя вязкий раствор (клейстер).

При быстром нагревании крахмала происходит расщепление гигантской молекулы крахмала на мелкие молекулы полисахаридов, называемых декстринами. Декстрины имеют общую молекулярную формулу с крахмалом (С 6 Н 12 О 5) х, разница лишь в том, «х» в декстринах меньше «n» в крахмале.

Пищеварительные соки содержат несколько разных ферментов, которые при низкой температуре доводят гидролиз крахмала до глюкозы:

(С 6 Н 10 О 5) > (С 6 Н 10 О 5) х > С 12 Н 22 О 11 > С 6 Н 12 О 6

крахмал ряд декстрин мальтоза глюкоза

Еще быстрее декстринизация идет в присутствии кислоты:

(С 6 Н 10 О 5) n + n Н 2 О?????> n С 6 Н 12 О 6

Ферментативный гидролиз (разложение путем брожения) крахмала имеет промышленное значение в производстве этилового спирта из зерна и картофеля.

Процесс начинается с превращением крахмала в глюкозу, которую затем сбраживают. Используя специальные культуры дрожжей и изменяя условия, можно направить брожение и в сторону получения бутилового спирта, ацетона, молочной, лимонной и глюконовой кислот.

Подвергая крахмал гидролизу кислотами, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного некристаллизированного сиропа.

Наибольшее значение крахмал имеет в качестве пищевого продукта: в виде хлеба, картофеля, круп, являясь главным источником в нашем рационе питания.

Кроме того, чистый крахмал применяется в пищевой промышленности в производстве кондитерских и кулинарных изделий, колбас. Значительное количество крахмала употребляется для проклеивания тканей, бумаги, картона, производства канцелярского клея.

В аналитической химии крахмал служит индикатором в йодометрическом методе титрования. Для этих случаев лучше применять очищенную амилозу, т.к. ее растворы не загустевают, а образуемая с йодом окраска более интенсивна.

В медицине и фармации крахмал применяется для приготовления присыпок, паст (густых мазей), а также при производстве таблеток.

В животном мире роль «запасного крахмала» играет родственный крахмалу полисахарид - гликоген. Гликоген содержится во всех животных тканях.

Особенно много его в печени (до 20%) и в мышцах (4%).

Гликоген представляет собой белый аморфный порошок, хорошо растворимый даже в холодной воде. Молекула животного крахмала построена по типу молекул амилопектина, отличаясь лишь большей ветвистостью. Молекулярная масса гликогена исчисляется миллионами.

С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого в зависимости от происхождения гликогена (вида животного) и других условий.

Гликоген является резервным питательным веществом для организма.

Вывод

Я узнал много нового об углеводах, например то, что углеводов два класса простые и сложные. Интересна история появления названия углеводов. Я узнал что углеводы бывают разного вкуса. Я понял что без углеводов жизнь не возможна они присутствуют почти везде.

Для организма человека, равно как и остальных живых существ, необходима энергия. Без нее невозможно протекание никаких процессов. Ведь каждая биохимическая реакция, любой ферментативный процесс или этап метаболизма нуждается в энергетическом источнике.

Поэтому значение веществ, предоставляющих организму силы на жизнь, очень велико и важно. Какие же это вещества? Углеводы, белки, каждого из них различно, они относятся к совершенно разным классам химических соединений, но одна из их функций схожа - обеспечение организма необходимой энергией для жизнедеятельности. Рассмотрим одну группу из перечисленных веществ - углеводы.

Классификация углеводов

Состав и строение углеводов с момента их открытия определялись их названием. Ведь, по ранним источникам, считалось, что это такая группа соединений, в структуре которых присутствуют атомы углерода, связанные с молекулами воды.

Более тщательный анализ, а также накопленные сведения о разнообразии данных веществ позволили доказать, что не все представители имеют только такой состав. Однако этот признак по-прежнему один из тех, что определяет строение углеводов.

Современная классификация данной группы соединений выглядит следующим образом:

  1. Моносахариды (рибоза, фруктоза, глюкоза и так далее).
  2. Олигосахариды (биозы, триозы).
  3. Полисахариды (крахмал, целлюлоза).

Также все углеводы можно разделить на две следующие большие группы:

  • восстанавливающие;
  • невосстанавливающие.

Строение молекул углеводов каждой группы рассмотрим подробнее.

Моносахариды: характеристика

К данной категории относятся все простые углеводы, которые содержат альдегидную (альдозы) или кетонную (кетозы) группировку и не больше 10 атомов углерода в строении цепи. Если смотреть по количеству атомов в основной цепи, то моносахариды можно разделить на:

  • триозы (глицериновый альдегид);
  • тетрозы (эритрулоза, эритроза);
  • пентозы (рибоза и дезоксирибоза);
  • гексозы (глюкоза, фруктоза).

Все остальные представители имеют не столь важное значение для организма, как перечисленные.

Особенности строения молекул

По своему строению монозы могут быть представлены как в виде цепочки, так и в форме циклического углевода. Как это происходит? Все дело в том, что центральный атом углерода в соединении является ассиметрическим центром, вокруг которого молекула в растворе способна вращаться. Так формируются оптические изомеры моносахаридов L- и D-формы. При этом формулу глюкозы, записанную в виде прямой цепочки, можно мысленно ухватить за альдегидную группировку (или кетонную) и свернуть в клубок. Получится соответствующая циклическая формула.

Углеводов ряда моноз достаточно простое: ряд углеродных атомов, образующих цепь или цикл, от каждого из которых по разные или по одну сторону располагаются гидроксильные группировки и атомы водорода. Если все одноименные структуры по одну сторону, то тогда формируется D-изомер, если по разные с чередованием друг друга - тогда L-изомер. Если записать общую формулу самого распространенного представителя моносахаридов глюкозы в молекулярном виде, то она будет иметь вид: С 6 Н 12 О 6 . Причем эта запись отражает строение и фруктозы тоже. Ведь химически эти две монозы - структурные изомеры. Глюкоза - альдегидоспирт, фруктоза - кетоспирт.

Строение и свойства углеводов ряда моносахаридов тесно взаимосвязаны. Ведь из-за наличия альдегидной и кетонной группировки в составе структуры они относятся к альдегидо- и кетоноспиртам, что и определяет их химическую природу и реакции, в которые они способны вступать.

Так, глюкоза проявляет следующие химические свойства:

1. Реакции, обусловленные наличием карбонильной группы:

  • окисление - реакция "серебряного зеркала";
  • со свежеосажденным (II) - альдоновая кислота;
  • сильные окислители способны сформировать двухосновные кислоты (альдаровые), преобразуя не только альдегидную, но и одну гидроксильную группировку;
  • восстановление - преобразуется в многоатомные спирты.

2. В молекуле присутствуют и гидроксильные группы, что отражает строение. Свойства углеводов, на которые влияют данные группировки:

  • способность к алкилированию - образованию простых эфиров;
  • ацилирование - формирование ;
  • качественная реакция на гидроксид меди (II).

3. Узкоспецифические свойства глюкозы:

  • маслянокислое;
  • спиртовое;
  • молочнокислое брожение.

Выполняемые функции в организме

Строение и функции углеводов ряда моноз тесно связаны. Последние заключаются, прежде всего, в участии в биохимических реакциях живых организмов. Какую же роль играют моносахариды в этом?

  1. Основа для производства олиго- и полисахаридов.
  2. Пентозы (рибоза и дезоксирибоза) - важнейшие молекулы, участвующие в образовании АТФ, РНК, ДНК. А они, в свою очередь, главные поставщики наследственного материала, энергии и белка.
  3. Концентрационное содержание глюкозы в крови человека - верный показатель осмотического давления и его изменений.

Олигосахариды: строение

Строение углеводов данной группы сводится к наличию двух (диозы) или трех (триозы) молекул моносахаридов в составе. Существуют и те, в составе которых 4, 5 и более структур (до 10), однако самыми распространенными являются дисахариды. То есть при гидролизе такие соединения распадаются с образованием глюкозы, фруктозы, пентозы и так далее. Какие соединения относятся к этой категории? Типичный пример - (обычный тростниковый (основной компонент молока), мальтоза, лактулоза, изомальтоза.

Химическое строение углеводов этого ряда обладает следующими особенностями:

  1. Общая формула молекулярного вида: С 12 Н 22 О 11.
  2. Два одинаковых или разных остатка монозы в структуре дисахарида соединяются между собой при помощи гликозидного мостика. От характера этого соединения будет зависеть восстанавливающая способность сахара.
  3. Восстанавливающие дисахариды. Строение углеводов данного типа заключается в образовании гликозидного мостика между гидроксилом альдегидной и гидроксильной группы разных молекул моноз. Сюда относятся: мальтоза, лактоза и так далее.
  4. Невосстанавливающие - типичный пример сахароза - когда мостик формируется между гидроксилами только соответствующих групп, без участия альдегидной структуры.

Таким образом, строение углеводов кратко можно представить в виде молекулярной формулы. Если же необходима подробная развернутая структура, то изобразить ее можно с помощью графических проекций Фишера или формул Хеуорса. А конкретно два циклических мономера (монозы) либо разные, либо одинаковые (зависит от олигосахарида), соединенные между собой гликозидным мостиком. При построении следует учитывать восстанавливающую способность для правильного отображения связи.

Примеры молекул дисахаридов

Если задание стоит в форме: "Отметьте особенности строения углеводов", то для дисахаридов лучше всего сначала указать, из каких остатков моноз он состоит. Самые распространенные типы такие:

  • сахароза - построена из альфа-глюкозы и бетта-фруктозы;
  • мальтоза - из остатков глюкозы;
  • целлобиоза - состоит из двух остатков бетта-глюкозы D-формы;
  • лактоза - галактоза + глюкоза;
  • лактулоза - галактоза + фруктоза и так далее.

Затем по имеющимся остаткам следует составлять структурную формулу с четким прописыванием типа гликозидного мостика.

Значение для живых организмов

Очень велика и роль дисахаридов, важно не только строение. Функции углеводов и жиров в целом схожи. В основе лежит энергетическая составляющая. Тем не менее для некоторых отдельных дисахаридов следует указать их особое значение.

  1. Сахароза - главный источник глюкозы в организме человека.
  2. Лактоза содержится в грудном молоке млекопитающих, в том числе в женском до 8 %.
  3. Лактулоза получается в лаборатории для использования в медицинских целях, а также добавляется в производстве молочных продуктов.

Любой дисахарид, трисахарид и так далее в организме человека и других существ подвергается моментальному гидролизу с образованием моноз. Именно эта особенность и лежит в основе использования этого класса углеводов человеком в сыром, неизменном виде (свекловичный или тростниковый сахар).

Полисахариды: особенности молекул

Функции, состав и строение углеводов данного ряда имеют большое значение для организмов живых существ, а также для хозяйственной деятельности человека. Во-первых, следует разобраться, какие же углеводы относятся к полисахаридам.

Их достаточно много:

  • крахмал;
  • гликоген;
  • муреин;
  • глюкоманнан;
  • целлюлоза;
  • декстрин;
  • галактоманнан;
  • муромин;
  • амилоза;
  • хитин.

Это не полный список, а только самые значимые для животных и растений. Если выполнять задание "Отметьте особенности строения углеводов ряда полисахаридов", то в первую очередь следует обратить внимание на их пространственную структуру. Это очень объемные, гигантские молекулы, состоящие из сотен мономерных звеньев, сшитых между собой гликозидными химическими связями. Зачастую строение молекул углеводов полисахаридов представляет собой слоистые композиции.

Существует определенная классификация таких молекул.

  1. Гомополисахариды - состоят из одинаковых многократно повторяющихся звеньев моносахаридов. В зависимости от монозы могут быть гексозами, пентозами и так далее (глюканы, маннаны, галактаны).
  2. Гетерополисахариды - образованы разными мономерными звеньями.

К соединениям с линейной пространственной структурой следует относить, например, целлюлозу. Разветвленное строение имеет большинство полисахаридов - крахмал, гликоген, хитин и так далее.

Роль в организме живых существ

Строение и функции углеводов этой группы тесно связаны с жизнедеятельностью всех существ. Так, например, растения в виде запасного питательного вещества накапливают в разных частях побега или корня крахмал. Основной источник энергии для животных - опять же полисахариды, при расщеплении которых образуется достаточно много энергии.

Углеводы в играют очень значимую роль. Из хитина состоит покров многих насекомых и ракообразных, муреин - компонент клеточной стенки бактерий, целлюлоза - основа растений.

Запасное питательное вещество животного происхождения - это молекулы гликогена, или, как его чаще называют, животного жира. Он запасается в отдельных частях организма и выполняет не только энергетическую, но и защитную функцию от механических воздействий.

Для большинства организмов имеет большое значение строение углеводов. Биология каждого животного и растения такова, что требует постоянного источника энергии, неиссякаемого. А это могут дать только они, причем больше всего именно в форме полисахаридов. Так, полное расщепление 1 г углевода в результате метаболических процессов приводит к высвобождению 4,1 ккал энергии! Это максимум, больше не дает ни одно соединение. Именно поэтому углеводы обязательно должны присутствовать в рационе любого человека и животного. Растения же заботятся о себе сами: в процессе фотосинтеза они формируют внутри себя крахмал и запасают его.

Общие свойства углеводов

Строение жиров, белков и углеводов в целом похоже. Ведь все они являются макромолекулами. Даже некоторые их функции имеют общую природу. Следует обобщить роль и значение всех углеводов в жизни биомассы планеты.

  1. Состав и строение углеводов подразумевают использование их в качестве строительного материала для оболочки растительных клеток, мембраны животных и бактериальных, а также образования внутриклеточных органелл.
  2. Защитная функция. Характерна для растительных организмов и проявляется в формировании у них шипов, колючек и так далее.
  3. Пластическая роль - образование жизненно важных молекул (ДНК, РНК, АТФ и других).
  4. Рецепторная функция. Полисахариды и олигосахариды - активные участники транспортных переносов через клеточную мембрану, "стражи", улавливающие воздействия.
  5. Энергетическая роль самая значимая. Предоставляет максимум энергии для всех внутриклеточных процессов, а также работы всего организма в целом.
  6. Регуляция осмотического давления - глюкоза осуществляет такой контроль.
  7. Некоторые полисахариды становятся запасным питательным веществом, источником энергии для животных существ.

Таким образом, очевидно, что строение жиров, белков и углеводов, их функции и роль в организмах живых систем имеют решающее и определяющее значение. Данные молекулы - создатели жизни, они же ее сохраняют и поддерживают.

Углеводы с другими высокомолекулярными соединениями

Также известна роль углеводов не в чистом виде, а в сочетании с другими молекулами. К таким можно отнести такие самые распространенные, как:

  • гликозаминогликаны или мукополисахариды;
  • гликопротеины.

Строение и свойства углеводов такого вида достаточно сложное, ведь в комплекс соединяются самые разные функциональные группы. Основная роль молекул этого типа - участие во многих жизненных процессах организмов. Представителями являются: гиалуроновая кислота, хондроитинсульфат, гепаран, кератан-сульфат и другие.

Также существуют комплексы полисахаридов с другими биологически активными молекулами. Например, гликопротеиды или липополисахариды. Их существование имеет важное значение при формировании иммунологических реакций организма, так как они входят в состав клеток лимфатической системы.

Основной источник энергии человека — углеводы. Около 60% энергии организм получает за счет углеводов, оставшуюся часть — за счет белков и жиров. Богаты углеводами преимущественно растительные продукты.

В зависимости от сложности строения, растворимости, быстроты усвоения углеводы пищевых продуктов делятся на: простые и сложные. Простые углеводы быстро всасываются в кровь и усваиваются организмом, а также легко растворяются в жидкости. Они сладкие на вкус и относятся к сахарам.

Когда нам надо много энергии и быстро – используется глюкоза (углеводы)! Если нам надо прыгнуть или пробежать быстро, то такое действие осуществляется за счет анаэробного гликолиза (распада молекулы глюкозы на пировиноградную и молочную кислоту).

Классификация углеводов.

Углеводы делят на 3 категории: моно и дисахариды, олигосахариды, полисахариды.

1) Сахара (содержат 1-2 мономера глюкозы):

Моносахариды – простые соединения: глюкоза, фруктоза, галактоза.

Дисахариды – более сложные соединения: сахароза (сахар, декстроза), лактоза (молочный сахар – углевод животного происхождения), мальтоза (солодовый сахар).

2) Олигосахариды (содержат 3-9 мономеров глюкозы). К ним относят мальтодекстрин (продукт неполного ферментативного расщепления крахмала).

3) Полисахариды (содержат более 9 мономеров): растительный крахмал, гликоген («животный» крахмал, содержится в мясе и печени).

Не крахмальные или пищевые волокна также относят к полисахаридам. Их разделяют на:

1) растворимые в воде (перевариваемые в ЖКТ) – пектины, камеди и слизи,

2) нерастворимые в воде (не перевариваемые в ЖКТ) – целлюлоза или клетчатка, гемицеллюлоза.

Углеводы в продуктах.

Продукты, богатые источниками пищевых волокон: фрукты, овощи, ягоды, зерновые, отруби, бобовые, орехи.

Продукты, в которых содержатся источники «крахмальных» полисахаридов: крупы, картофель, макароны, мучные изделия из муки высшего сорта.

Продукты – источники «сахаров»: сахар, мед, шоколад, мармелад, сухофрукты.

Клетчатка и ее роль в организме человека.

Клетчатка - компоненты пищи, не перевариваемые пищеварительными ферментами организма человека, но перерабатываемые полезной микрофлорой кишечника.

Клетчатка (в узком смысле) - целлюлоза, устойчивый крахмал, полисахарид, дающий при полном гидролизе глюкозу; входит в состав большинства растительных организмов, являясь основой клеточных стенок.

Проще говоря, когда вы слышите слово “клетчатка”, представьте себе растения, а именно овощи, фрукты, цельные зерна.

Чем же так полезна клетчатка?

1) Увеличение объема пищи и периода ее приема

2) Торможение опорожнения желудка

3) Снижение времени контакта слизистой оболочки кишки с токсинами, канцерогенами, желчными кислотами

4) Стимуляция процессов желчеотделения

5) Торможение гидролиза крахмала

6) Снижение уровня сахара в крови после приема пищи

7) Снижение энергетической ценности пищи

8) Очистка кишечника и нормализация состава кишечной микрофлоры

9) Повышение содержания воды в кале

10) Снижает риск сердечно-сосудистых заболеваний.

Гликемический индекс углеводов.

Гликемический индекс (ГИ) – это показатель влияния углеводов после их употребления на уровень сахара в крови (его повышение) и степени доступности для гидролитических ферментов.

Гликемический индекс является отражением сравнения реакции организма на продукт с реакцией организма на чистую глюкозу, у которой гликемический индекс равен 100. Гликемические индексы всех остальных продуктов сравниваются с гликемическим индексом глюкозы, в зависимости от того, как быстро они усваиваются.

ГИ продукта зависит от нескольких факторов - вида углеводов и количества клетчатки, которые он содержит, способа термической обработки, содержания белков и жиров.

По величине ГИ углеводы делятся на углеводы с высоким и низким ГИ. Таким образом, гликемический индекс более 50 принят за «высокий», менее 50 – за «низкий». Высокий ГИ имеют: сахара, олигосахариды, «крахмальные» растительные полисахариды. Низкий ГИ имеют: пищевые волокна – большинство пектинов (фрукты), нерастворимые в воде (клетчатка).

Сложность строения углевода НЕ ВЛИЯЕТ НА ЕГО СКОРОСТЬ превращения в глюкозу (и скорость усвоения организмом)!!!

ГИ – способность углевода поднимать уровень сахара в крови. Это количественный показатель, а не скоростной!

ГИ зависит от времени и способа приготовления продукта.

Например, картофель сырой – ГИ65, картофель жареный – ГИ95.

Чем больше обработка углевода, тем больше он поднимает уровень сахара (больше ГИ). Чем больше клетчатки в углеводе, тем меньше он поднимает уровень сахара (меньше ГИ).

Например: белые булочки – ГИ90, белый хлеб – ГИ70, батон – ГИ50, хлеб из отрубей – ГИ30.

Структура потребления углеводов.

— 65-70% — «крахмальные» полисахариды;

— 25-30% — «пищевые волокна»;

— 5-10% — «сахара».

Суточная потребность в углеводах составляет: 4-5 гр./кг массы тела или 300-500 гр./сутки и зависит от энергозатрат организма.

При избытке в рационе углеводов с высоким ГИ (особенно «легко усваиваемых») происходит превращение углеводов в жиры, что способствует развитию ожирения, сахарного диабета, сердечно-сосудистых и других заболеваний.

При сгорании 1 гр. углеводов образуется энергия равнозначная 4 ккал.

Про я уже писал ранее и для создания полной, углеводной картины можете с ней также ознакомиться. Ну а если вы решились разобрать для чего человеку белок, какие функции выполняет белок, каши, крупы, узнать рекомендации по питанию, тогда жмите и я с удовольствием вам расскажу.


По способности к гидролизу углеводы делятся на простые - моносахариды и сложные - полисахариды. Моносахариды не гидролизуются с образованием более простых углеводов. Способные к гидролизу полисахариды можно рассматривать как продукты поликонденсации моносахаридов. Полисахариды являются высокомолекулярными соединениями, макромолекулы которых содержат сотни и тысячи моносахаридных остатков. Среди них выделяют группу олигосахаридов, имеющих относительно небольшую молекулярную массу и содержащих от 2 до 10 моносахаридных остатков.

Простые углеводы

К ним относят глюкозу, галактозу и фруктозу (моносахариды), а также сахарозу, лактозу и мальтозу (дисахариды).
Глюкоза – главный поставщик энергии для мозга. Она содержится в плодах и ягодах и необходима для снабжения энергией и образования в печени гликогена.

Фруктоза почти не требует для своего усвоения гормона инсулина, что позволяет использовать ее при сахарном диабете, но в умеренных количествах.

Галактоза в продуктах в свободном виде не встречается. Получается при расщеплении лактозы.

Сахароза содержится в сахаре и сладостях. При попадании в организм расщепляется на более составляющие: глюкозу и фруктозу.

Лактоза – углевод, содержащийся в молочных продуктах. При врожденном или приобретенном дефиците фермента лактазы в кишечнике нарушается расщепление лактозы на глюкозу и галактозу, что известно как непереносимость молочных продуктов. В кисломолочных продуктах лактозы меньше, чем в молоке, так как при сквашивании молока из лактозы образуется молочная кислота.

Мальтоза – промежуточный продукт расщепления крахмала пищеварительными ферментами. В дальнейшем мальтоза расщепляется до глюкозы. В свободном виде она содержится в меде, солоде (отсюда второе название – солодовый сахар) и пиве.

Сложные углеводы

К ним относят крахмал и гликоген (перевариваемы углеводы), а также клетчатку, пектины и гемицеллюлозу.

Крахмал – в питании составляет до 80% всех углеводов. Его основные источники: хлеб и хлебобулочные изделия, крупы, бобовые, рис и картофель. Крахмал, относительно медленно переваривается, расщепляясь до глюкозы.

Гликоген, его еще называют «животный крахмал», - полисахарид, который состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10% и в мышечной ткани – 0,3-1%).

Клетчатка – это сложный углевод, входящий в состав оболочек растительных клеток. В организме клетчатка практически не переваривается, лишь незначительная часть может подвергнуться под влиянием находящихся в кишечнике микроорганизмов.

Клетчатку, вместе с пектинами, лигнинами и гемицеллюлозой, называют или балластными веществами. Они улучшают работу пищеварительной системы, являясь профилактикой многих заболеваний. Пектины и гемицеллюлоза обладают гигроскопичными свойствами, что позволяет им сорбировать и увлекать с собой избыток холестерина, аммиак, желчные пигменты и другие вредные вещества. Еще одним важным достоинством пищевых волокон является их помощь в профилактике ожирения. Не обладая высокой энергетической ценностью, овощи из-за большого количества пищевых волокон способствуют раннему чувству насыщения.

В большом количестве пищевые волокна содержится в хлебе грубого помола, отрубях, овощах и фруктах.

Моносахариды (монозы)

Являются гетерофункциональными соединениями. В их молекулах одновременно содержатся карбонильная (альдегидная или кетонная) и несколько гидроксильных групп, т. е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. Для них характерно наличие неразветвленной углеродной цепи.

Методом рентгеноструктурного анализа установлено, что из двух кресловидных конформаций пиранозного цикла в D-глюкопиранозе осуществляется та, в которой все большие по объему заместители, например первичноспиртовая и гидроксильная группы, занимают экваториальные положения. При этом полуацетальная группа у бета-аномера находится в экваториальном, у альфа-аномера в аксиальном положениях. Таким образом, у бета-аномера все заместители находятся в более выгодном экваториальном положении, в связи с чем он преобладает в смеси таутомеров D-глюкозы. Аномеры образуются не в равных количествах, а с преобладанием термодинамически более устойчивого диастереомера. Предпочтительность образования того или другого аномера во многом определяется их конформационным строением. Конформационное строение D-глюкопиранозы проливает свет на уникальность этого моносахарида. Бета-D-глюкопираноза - моносахарид с полным экваториальным расположением заместителей. Обусловленная этим высокая термодинамическая устойчивость - основная причина широкой распространенности ее в природе. У лактопиранозы ОН-группа при С-4 находится в аксиальном положении. Соотношение альфа- и бета-аномеров приблизительно такое же, как у глюкопиранозы.

Гликозиды

При взаимодействии моносахаридов с гидроксилсодержащими соединениями (спиртами, фенолами и др.) в условиях кислотного катализа образуются производные циклической формы только по гликозидной ОН-группе - циклические ацетали, называемые гликозидами. Удобным способом получения гликозидов является пропускание газообразного хлороводорода (катализатор) через раствор моносахарида в спиртах, например этаноле, метаноле и т. д. При этом соответственно получаются этил- или метилгликозиды. В названии гликозидов указываются сначала наименование введенного радикала, затем конфигурация аномерного центра и название углеводного остатка с суффиксом -озид. Как и все ацетали, гликозиды легко гидролизуются разбавленными кислотами, но проявляют устойчивость к гидролизу в слабощелочной среде. для гидролитического расщепления гликозидов широко при меняется ферментативный гидролиз, преимущество которого заключается в его специфичности. Например, фермент альфа-глюкозидаза из дрожжей расщепляет только альфа-глюкозидную связь; бета-глюкозидаза из миндаля - только бета-глюкозидную связь. На этом основании ферментативный гидролиз часто применяется в целях установления конфигурации аномерного атома углерода. Гидролиз гликозидов лежит в основе гидролитического расщепления полисахаридов, осуществляемого в организме, а также используется во многих промышленных процессах. Молекулу гликозида формально можно представить состоящей из двух частей: углеводной и агликоновой. В роли гидроксидсодержащих агликонов могут выступать и сами моносахариды. Гликозиды, образованные с ОН-содержащими агликонами, называют О-гликозидами. В свою очередь, гликозиды, образованные с NН-содержащими агликонами (например, аминами), называют N-гликозидами. К ним принадлежат нуклеозиды, имеющие важное значение в химии нуклеиновых кислот. Известны примеры S-гликозидов (тиогликозидов), например содержащийся в горчице синигрин, при гидролизе которого получают горчичное масло (действующее вещество горчичников).