В разница между током напряжением. Чем отличается ток от напряжения

Как только мы начинаем изучать по школьной программе физику, практически сразу же нам учителя начинают говорить о том, что между током и напряжением очень большая разница, и ее знание крайне нам понадобиться в дальнейшей жизни. И все же, сейчас об отличиях между двумя понятиями зачастую не может рассказать даже взрослый человек. А ведь знать эту разницу нужно каждому, потому как с током и напряжением мы имеем дело в повседневной жизни, например, включая телевизор или зарядное устройство телефона в розетку.

Током называется процесс, когда под воздействием электрического поля начинается упорядоченное движение заряженных частиц. Частицами могут выступать самые разные элементы, все зависит от конкретного случая. Если мы говорим о проводниках, то частицами в данной ситуации являются электроны. Изучая электричество, люди стали понимать, что возможности тока позволяют использовать его в самых разных областях, включая медицину. Ведь электрические заряды помогают реанимировать больных, восстанавливать работу сердца. Кроме того, ток применяют в лечении таких сложных заболеваний, как эпилепсия или болезнь Паркинсона. В быту же электрический ток просто незаменим, ведь с его помощью в наших квартирах и домах горит свет, работают электроприборы.
Напряжение – понятие куда более сложное, нежели ток. Единичные положительные заряды перемещаются из разных точек: из низкого потенциала в высокий. И напряжением называется энергия, затрачиваемая на это перемещение. Для простоты понимания часто приводят пример с течением воды между двумя банками: ток – это сам поток воды, а напряжение показывает разницу уровней в двух банках. Соответственно, течение будет до тех пор, пока уровни не сравнятся.

В чем отличие тока от напряжения

Наверное, основную разницу между током и напряжением можно было заметить уже из определения. Но для удобства мы приведем два основных различия между рассматриваемыми понятиями с более подробным описанием:
Ток – это количество электричества, в то время как напряжением называют меру потенциальной энергии. Иными словами, оба этих понятия сильно зависят друг от друга, но при этом являются очень разными. I (сила тока) = U (напряжение) / R (сопротивление). Это главная формула, по которой можно вычислить зависимость силы тока от напряжения. На сопротивление влияет целый ряд факторов, включая материал, из которого сделан проводник, температура, внешние условия.
Разница в получении. Воздействие на электрические заряды в разных приборах (например, батареях или генераторах) создает напряжение. А ток получается путем прикладывания напряжения между точками схемы.

Выводы:

Разница между током и напряжением заключается в определении, но при этом оба понятия сильно зависят друг от друга.
Они получаются в результате разных процессов.

Напряжение и ток - это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы . Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение U, иногда Е). Напряжение между двумя точкми - это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой. Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах, милливольтах или микровольтах (см. разд. «Приставки для образования кратных и дольных единиц измерения», напечатанный мелким шрифтом). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно электронов.) Напряжение, измеряемое в нановольтах или в мегавольтах, встречается редко; вы убедитесь в этом, прочитав всю книгу.

Мы даем имена триггеров напряжения генераторов, например: батареи и батареи. Другие приборы, такие как холодильник, стиральная машина , утюг, блендер, не имеют такой кнопки, которая позволяет регулировать напряжение. В случае, если одно из этих устройств включено при напряжении, превышающем напряжение, указанное изготовителем, оно горит почти сразу.

Если он подключен к напряжению ниже указанного, или устройство не работает или работает плохо. Мощность - это электрическая величина, которая указывает на потребление электрической энергии прибора в каждый момент времени его работы. Например, если лампа имеет мощность 100 Вт, это означает, что она потребляет 100 джоулей электроэнергии каждую секунду. Большинство электроприборов имеют только значение мощности, но есть некоторые, которые приносят больше чем одно значение, такое как электрический душ.

Ток (условное обозначение). Ток - это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах, микроамперах

Наноамперах и иногда в пикоамперах. Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

В этом случае он обычно имеет значение для летней позиции, а другой - для зимы. Летом, когда вода меньше нагревается, значение ниже. Зимой, когда вода более нагревается, значение мощности больше, а следовательно, и потребление электрической энергии также больше.

Он измеряется в кВтч, что означает килограмм ватт-час. Этот килограмм равен килограмму, километр и означает 000 раз. Уже ватт-час представляет собой меру электрической энергии. Хотя это может показаться вам странным. Этот ватт-час является единицей энергии. Помните, что ватт - это единица силы и час единицы времени. Таким образом, ватт-час представляет собой продукт мощности по времени и 1 кВт-час составляет 000 ватт-час. На этом этапе мы можем взять некоторые бусины света, которые будут обсуждаться со студентами.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-нибудь элемент схемы.

Говорить «напряжение в резисторе» нельзя - это неграмотно. Однако часто говорят о напряжении в какой-либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», т. е. такой точкой схемы, потенциал которой всем известен. Скоро вы привыкните к такому способу измерения напряжения.

Электрический ток представляет собой величину, значение которой зависит от мощности устройства, а также от напряжения, при котором оно срабатывает. Например, 100-ваттная лампа, рассчитанная на напряжение 110 вольт, при подключении требует большего электрического тока, чем один с мощностью 60 Вт и тем же напряжением. Вот почему лампа мощностью 100 Вт ярче, чем лампочка мощностью 60 Вт.

Существует два типа электрического тока: постоянный ток , который подается от батарей и переменного тока , который подается от электростанций к домам, отраслям и т.д. Переменный ток имеет значение, которое изменяется в пределах диапазона во время работы того же электрического устройства .

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т.п. Ток мы получаем, прикладывая напряжение между точками схемы.

Здесь, пожалуй, может возникнуть вопрос, а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени. Мы будем прибегать к показаниям осциллографов, а также вольтметров для характеристики сигналов. Для начала советуем посмотреть приложение А, в котором идет речь об осциллографе, и разд. «Универсальные измерительные приборы», напечатанный мелким шрифтом.

В этом случае он относится к характеристике переменного электрического тока, полученного на электрогенерирующих установках. В Бразилии частота переменного тока составляет 60 герц, то есть 60 циклов в секунду. Есть такие страны, как Португалия и Парагвай, где частота составляет 50 герц.

Понимание немного о душах

И на лето. В каком положении ток больше?

  • Какое энергетическое преобразование выполняет душ?
  • Где он находится?
  • Когда вода становится горячей?
  • Резистор разделен на две секции.
  • Какое положение и для зимней позиции?
В летнем положении нагрев воды ниже и соответствует более низкой мощности душа. В зимнем положении нагрев выше и соответствует более высокой мощности.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в свое время мы обсудим этот вопрос. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять по-разному.

Связи зимой и летом соответствуют одному и тому же напряжению, к разным мощностям. Толщина раневой проволоки - резистор - обычно называемый «сопротивление» - это то же самое. Связи зимой и летом получают с использованием разных длин резисторов. В летнее время для подключения используется большая часть этого же провода, а зимнее соединение выполняется с использованием небольшой части провода, в летней позиции используется более крупная секция.

В зимнем соединении ток в резисторе должен быть выше, чем в летнем положении, что позволяет увеличить мощность и, следовательно, нагрев. Когда напряжение, материал и толщина поддерживаются постоянными, мы можем сделать следующее соотношение, согласно следующей таблице.

Запомните несклько простых правил, касающихся тока и напряжения.

1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.

Если у нас есть лампа мощностью 100 Вт с напряжением 110 В, мы имеем мощность Р и ту же лампу в напряжении 220 В, какую мощность в этом случае? Ниже приведены примеры действий со студентами в классе. В этих действиях учащиеся будут изучать, как работать с мультиметром, производить измерения напряжений, токов и т.д.

Необходимые материалы: мультиметр, батареи и провода. Если у учителя есть резисторы, доступные для использования, можно настроить небольшие схемы и изучить больше контента. Рисунок 2 - Вставьте батареи, как показано на рисунке ниже. В этой сборке мы смогли измерить разность потенциалов между двумя лампами.

2. При параллельном соединении элементов (рис. 1.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

Рисунок 3 - Здесь мы будем измерять разность потенциалов сокета. Рисунок 4 - Значение, полученное со ссылкой на рисунок 3. Из экспериментов студентам удалось построить график напряжения в зависимости от тока, достаточно трех измерений, чтобы увидеть поведение графика.

Учитель может обсудить угловой коэффициент линии и мощности. Напряжение, ток, Ом и мощность. Напряжение можно сравнить с зданием, тем выше, чем выше будет напряжение в здании, тем ниже будет последнее, тем меньше напряжение. В электронике сходство часто используется аналогично этому, просто объясняя тему, которая без этих трюков будет трудно понять «на лету». Как вы можете видеть на рисунке, каждый этаж стоит 10 вольт. Первое здание состоит из плоскости, поэтому оно стоит 10 В, второе состоит из 4 и третьего на 3.

3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) (заряд/время). Если напряжение U измерено в вольтах, а ток I - в амперах, то мощность P будет выражена в ваттах. Мощность величиной 1 ватт - это работа в 1 джоуль, совершенная за 1 с.

Напряжения, о которых идет речь, относятся к первому этажу, но если другие ссылки сделаны, все меняется. Если все рассмотрено 2-м зданием, первое -30 В второе 0 и третий -10В. Чтобы лучше понять концепцию, просто подумайте о том, как смотреть на здания, о которых идет речь.

Если вы смотрите на здание 3, вы увидите, что первое здание с 20 этажами пропущено до -20 вольт, второе здание с этажом более 10 В и третье, где вы смотрите на 0 вольт. Чем больше электроны пройдут через секунду, тем больше ток, протекающий через проводник. Природа тока возникает из характеристики, которая имеет два тела при контакте, в которых они пытаются принять равный электрический заряд, чтобы устранить уровень энергии, этот сдвиг электрона называется «током». Ток выражен в Ампере, имя, полученное от имени его первооткрывателя, французского физика Андре-Мари Ампера.

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

Этот закон связывает напряжение и ток с другим параметром, называемым «сопротивлением». Это может Желаемое сказать что ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Формула закона ом и его выводов таковы. С этими формулами, полученными из закона ом, можно решать различные типы проблем. На первом рисунке можно рассчитать ток, циркулирующий в простой схеме, образованной колбой, батареей и проводником.

Лампочка имеет нить, которая имеет некоторое сопротивление. В этой другой фигуре изображено получение напряжения, зная ток и сопротивление лампы накаливания. В другом все еще изображено, как рассчитать сопротивление нити накала, зная напряжение батареи и ток, циркулирующий в цепи.

В дальнейшем при изучении периодически изменяющихся токов и напряжений нам придется обобщить простое выражение для того, чтобы определять среднее значение мощности. В таком виде оно справедливо для определения мгновенного значения мощности.

Кстати, запомните, что не нужно называть ток силой тока - это неграмотно. Нельзя также называть резистор сопротивлением. О резисторах речь пойдет в следующем разделе.

В электронике есть компоненты, называемые «резисторами», которые обладают некоторым сопротивлением определенной величины. Их можно найти в магазине электроники или переработчиках для телевизоров-ремонтников, однако в Интернете они могут покупать их повсюду или извлекать их из устаревших или устаревших приборов. Боковая фигура демонстрирует устойчивость к металлам.

Сименс назван в честь физика Вернера фон Сименса. При использовании горячей воды электрического водонагревателя или приготовления или нагрева пищи на электрической плите, это неосознанно использует эффект джоулей, в котором сопротивление является частью этих типов приборов или пользователей.

Как только мы начинаем изучать по школьной программе физику, практически сразу же нам учителя начинают говорить о том, что между током и напряжением очень большая разница, и ее знание крайне нам понадобиться в дальнейшей жизни. И все же, сейчас об отличиях между двумя понятиями зачастую не может рассказать даже взрослый человек. А ведь знать эту разницу нужно каждому, потому как с током и напряжением мы имеем дело в повседневной жизни, например, включая телевизор или зарядное устройство телефона в розетку.

Определение

Током называется процесс, когда под воздействием электрического поля начинается упорядоченное движение заряженных частиц. Частицами могут выступать самые разные элементы, все зависит от конкретного случая. Если мы говорим о проводниках, то частицами в данной ситуации являются электроны. Изучая электричество, люди стали понимать, что возможности тока позволяют использовать его в самых разных областях, включая медицину. Ведь электрические заряды помогают реанимировать больных, восстанавливать работу сердца. Кроме того, ток применяют в лечении таких сложных заболеваний, как эпилепсия или болезнь Паркинсона. В быту же электрический ток просто незаменим, ведь с его помощью в наших квартирах и домах горит свет, работают электроприборы.

Напряжение – понятие куда более сложное, нежели ток. Единичные положительные заряды перемещаются из разных точек: из низкого потенциала в высокий. И напряжением называется энергия, затрачиваемая на это перемещение. Для простоты понимания часто приводят пример с течением воды между двумя банками: ток – это сам поток воды, а напряжение показывает разницу уровней в двух банках. Соответственно, течение будет до тех пор, пока уровни не сравнятся.

Отличие

Наверное, основную разницу между током и напряжением можно было заметить уже из определения. Но для удобства мы приведем два основных различия между рассматриваемыми понятиями с более подробным описанием:

  1. Ток – это количество электричества, в то время как напряжением называют меру потенциальной энергии. Иными словами, оба этих понятия сильно зависят друг от друга, но при этом являются очень разными. I (сила тока) = U (напряжение) / R (сопротивление). Это главная формула, по которой можно вычислить зависимость силы тока от напряжения. На сопротивление влияет целый ряд факторов, включая материал, из которого сделан проводник, температура, внешние условия.
  2. Разница в получении. Воздействие на электрические заряды в разных приборах (например, батареях или генераторах) создает напряжение. А ток получается путем прикладывания напряжения между точками схемы.

Что такое напряжение, и сила тока ?

Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.

Итак, что же такое напряжение?

Попросту говоря напряжение - разница потенциала между двумя точками электрической цепи , измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.

Земля(Масса, Ноль) - это точка электрической схемы с потенциалом 0 Вольт . Однако стоит заметить, что напряжение не всегда измеряется относительно земли. Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы. То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.

Из понятия напряжение вытекает следующее понятие - электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками. Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения - невозможен ток, то есть между точками с равным потенциалом ток отсутствует.

На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:

Где I - Сила тока в Амперах,U - Напряжение в Вольтах,R - Сопротивление в Омах.

Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:

Если у Вас ещё остались вопросы, задавайте их в комментариях. Лишь благодаря Вашим вопросам Мы сможем улучшить материал представленный на данном сайте!

На этом всё, в следующем уроке поговорим о сопротивлении.

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

Неспособность воочию видеть электрический ток и поток зарядов всегда была проблемой для тех, кто пытается воспринимать основные электрические понятия. Два основных компонента исследований сила тока и напряжение, как правило, неверно истолкованы теми, кто пытается разобраться в теме. Эта статья поможет вам понять разницу между ними.

Основные понятия электричества вращаются вокруг одного атомного компонента ― электрона. Неустойчивые атомы, имеют либо дефицит, либо дополнительные электроны в своей валентной зоне. Лишние электроны с одного нестабильного атома стремятся в валентную зону атома имеющего дефицит электронов.

С помощью внешнего электрохимического источника, можно создать движение электронов. Любые две клеммы могут быть использованы для подключения этого источника заряда и создания двух контактов один с положительным потенциалом, а другой с отрицательным.

Разница потенциалов между двумя такими точками, одна из которых выступает в качестве источника, а другая приемника электронов, называется напряжением. Единицей измерения напряжения является вольт, и его символ «.


Поток электронов в проводнике, вызывает током. Направление тока идет от положительного полюса к отрицательному. Но электрические заряды, т. е. электроны, на самом деле путешествуют от отрицательного к положительному потенциалу источника. Количество электрического заряда, протекающего через единицу площади поперечного сечения проводника, называется силой тока. Сила тока измеряется в амперах, и имеет символ «.

Предохранители

Предохранитель используется в электрической цепи и электромонтажных работах , чтобы прервать поток чрезмерного тока через его компоненты. Производители электрических предохранителей указывают характеристики с помощью двух параметров - напряжения и силы тока. Критерии выбора предохранителя зависят от номинального напряжения цепи, в которой он будет работать.

Текущие характеристики предохранителя не зависят от вида, протекающего через него тока - переменного или постоянного. Это зависит только от величины тока в момент расплавления плавкой проволоки. Хотя толщина провода и тип используемой металлической проволоки является фактором, непосредственно связанным с текущей характеристикой оборудования. Это происходит потому, что теплота, выделяемая плавкой проволокой, является функцией квадрата тока, протекающего через проводник, умноженного на сопротивление и время протекания тока.

Влияние аккумуляторов на силу тока и напряжение


Аккумуляторы (батареи) как правило оцениваются по силе тока (амперам) который они могут поставлять непрерывно в течение одного часа. Поэтому характеристики аккумуляторов указаны в ампер-часах. Срок службы батареи зависит от подключенной через нее нагрузки. Тяжелые нагрузки, как правило, сокращают срок службы батареи, в то время как легкие нагрузки увеличивают ее срок службы.


Если аккумуляторы соединены в последовательном сочетании в электрической цепи, сети питания, напряжение в цепи будет увеличиваться, а сила тока в цепи останется на том же уровне.


Параллельное соединение источников напряжения используется для увеличения тока без увеличения напряжения.

Аналогия с потоком воды


Рассмотрим два резервуара соединенных прозрачной трубкой, вода в них держится на одинаковой высоте от земли. В трубке потока воды нет.


Теперь, если мы изменим положение одного из резервуаров, чтобы создать разность потенциалов, мы заметим, что вода поступает по трубке из контейнера с большим потенциалом в контейнер с более низким потенциалом. Вместо изменения уровня водоемов, мы можем также использовать водяные насосы для той же цели. Клапаны могут использоваться для регулирования количества протекающей в трубе воды из одного резервуара в другой.

Можно провести аналогию между этой ситуацией и простой электрической цепью. Водяной насос используется для создания давления воды в потоке, назовем это «напряжением». Вода ведет себя как заряженные электроны. Поток воды аналогичен движению электронов, и количество воды, протекающей через единицу площади поперечного сечения трубы аналогично «силе тока». Резервуар более высокого потенциала является "источником питания", и количество содержащейся в нем воды, является «емкостью аккумулятора». Любой кран устанавливаемый вдоль трубы можно рассматривать в качестве «нагрузки». электромонтажные работы