Вольфрам: история открытия, основные особенности и область применения. Вольфрам: применение, свойства и химические характеристики

Вольфрам - самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент - углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

Смотрите так же:

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам - блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55·10−9 Ом·м, при 2700 °C - 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных - 0,1, основных - 0,7, средних - 1,2, кислых - 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO 3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200-1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO 3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO 4 * mMnWO 4 - соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO 4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49-50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам - важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки - ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. (Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS 2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe 2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

КЛАССИФИКАЦИЯ

Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.38.1

Вольфрам относится к тугоплавким металлам, которые сравнительно мало распространены в земной коре. Так, содержание в земной коре (в %) вольфрама примерно 10 -5 , рения 10 -7 , молибдена 3.10 -4 , ниобия 10 -3 , тантала 2.10 -4 и ванадия 1,5.10 -2 .

Тугоплавкие металлы являются переходными элементами и располагаются в IV, V, VI и VII группах (подгруппа А) периодической системы элементов. С увеличением атомного номера возрастает температура плавления тугоплавких металлов в каждой из подгрупп.

Элементы VA и VIA групп (ванадий, ниобий, тантал, хром, молибден и вольфрам) являются тугоплавкими металлами с объемно-центрированной кубической решеткой в отличие от других тугоплавких металлов, имеющих гранецентрированную и гексагональную плотно упакованную структуру.

Известно, что главным фактором, определяющим кристаллическую структуру и физические свойства металлов и сплавов, является природа их межатомных связей. Тугоплавкие металлы характеризуются высокой прочностью межатомной связи и, как следствие, высокой температурой плавления, повышенной механической прочностью и значительным электрическим сопротивлением.

Возможность исследования металлов методом электронной микроскопии позволяет изучать структурные особенности атомного масштаба, выявляет взаимосвязи между механическими свойствами и дислокациями, дефектами упаковки и др. Полученные данные показывают, что характерные физические свойства, отличающие тугоплавкие металлы от обычных, определяются электронной структурой их атомов. Электроны могут в различной степени переходить от одного атома к другому, при этом вид перехода отвечает определенному типу межатомной связи. Особенность электронного строения определяет высокий уровень межатомных сил (связей), высокую температуру плавления, прочность металлов и их взаимодействие с другими элементами и примесями внедрения. У вольфрама химически активная оболочка по энергетическому уровню включает электроны 5 d и 6 s.

Из тугоплавких металлов наибольшую плотность имеет вольфрам - 19,3 г/см 3 . Хотя при использовании в конструкциях ^большую плотность вольфрама можно рассматривать как отрицательный показатель, все же повышенная прочность при высоких температурах позволяет снизить массу изделий из вольфрама за счет уменьшения их размеров.

Плотность тугоплавких металлов в большой степени зависит от их состояния. Например, плотность спеченного штабика вольфрама колеблется в пределах 17,0-18,0 г/см 3 , а плотность кованого штабика со степенью деформации 75% составляет 18,6-19,2 г/см 3 . То же наблюдается и у молибдена: спеченный штабик имеет плотность 9,2-9,8 г/см 3 , кованый со степенью деформации 75% -9,7-10,2 г/см 3 и литой 10,2 г/см 3 .

Некоторые физические свойства вольфрама, тантала, молибдена и ниобия для сравнения приведены в табл. 1. Теплопроводность вольфрама составляет менее половины теплопроводности меди, но она намного выше, чем у железа или никеля.

Тугоплавкие металлы групп VA, VIA, VIIА периодической системы элементов по сравнению с другими элементами имеют меньший коэффициент линейного расширения. Наименьший коэффициент линейного расширения имеет вольфрам, что указывает на высокую стабильность его атомной решетки и является уникальным свойством этого металла.

Вольфрам имеет теплопроводность примерно в 3 раза меньшую, чем электропроводность отожженной меди, но она выше, чем у железа, платины и фосфоритной бронзы.

Для металлургии большое значение имеет плотность металла в жидком состоянии, так как эта характеристика определяет скорость движения по каналам, процесс удаления газообразных и неметаллических включений и влияет на образование усадочной раковины и пористости в слитках. У вольфрама эта величина выше, чем у других тугоплавких металлов. Однако другая физическая характеристика - поверхностное натяжение жидких тугоплавких металлов при температуре плавления - отличается меньше (см. табл. 1). Знание этой физической характеристики необходимо при таких процессах, как нанесение защитных покрытий, при пропитке, плавку и литье.

Важным литейным свойством металла является жидкотекучесть. Если для всех металлов эта величина определяется при заливке жидкого металла в спиральную форму при температуре заливки выше температуры плавления на 100-200° С, то жидкотекучесть вольфрама получена экстраполяцией эмпирической зависимости этой величины от теплоты плавления.

Вольфрам устойчив в различных газовых средах, кислотах и некоторых расплавленных металлах. При комнатной температуре вольфрам не взаимодействует с соляной, серной и фосфорной кислотами, не подвергается воздействию растворенной азотной кислоты и в меньшей степени, чем молибден, реагирует на смесь азотной и фтористоводородной кислот. Вольфрам обладает высокой коррозионной стойкостью в среде некоторых щелочей, например в среде гидроокиси натрия и калия, в которых проявляет стойкость до температуры 550° С. При действии расплавленного натрия он устойчив до 900° С, ртути - до 600°С, галлия до 800 и висмута до 980° С. Скорость коррозии в этих жидких металлах не превышает 0,025 мм/год. При температуре 400-490° С вольфрам начинает окисляться в среде воздуха и в кислороде. Слабая реакция происходит при нагреве до 100°С в соляной,азотной и плавиковой кислотах. В смеси плавиковой и азотной кислот идет быстрое растворение вольфрама. Взаимодействие с газовыми средами начинается при температурах (°С): с хлором 250, с фтором 20. В углекислом газе вольфрам окисляется при 1200° С, в аммиаке реакция не происходит.

Закономерность окисления тугоплавких металлов определяется в основном температурой. Вольфрам до 800-1000° С имеет параболическую закономерность окисления, а свыше 1000° С - линейную.

Высокая коррозионная стойкость в жидкометаллических средах (натрий, калий, литий, ртуть) позволяет применять вольфрам и его сплавы в энергетических установках.

Прочностные свойства вольфрама зависят от состояния материала и температуры. Для кованых прутков вольфрама предел прочности после рекристаллизации меняется в зависимости от температуры испытаний от 141 кгс/мм 2 при 20° С до 15,5 кгс/мм 2 при 1370° С. Полученный методом порошковой металлургии вольфрам при изменении температуры от 1370 до 2205° С имеет? b = 22,5?6,3 кгс/мм 2 . Прочность вольфрама особенно увеличивается в процессе холодной деформации. Проволока диаметром 0,025 мм имеет предел прочности 427 кгс/мм 2 .

Твердость деформированного технически чистого вольфрама HВ 488, отожженного НВ 286. При этом такая высокая твердость сохраняется вплоть до температур, близких к точке плавления, и в значительной степени зависит от чистоты металла.

Модуль упругости приближенно связан с атомным объемом температуры плавления

где T пл - абсолютная температура плавления; V aТ - атомный объем; К - константа.

Отличительной особенностью вольфрама среди металлов является также высокая объемная деформация, которая определяется из выражения

где Е - модуль упругости первого рода, кгс/мм 2 ; ?-коэффициент поперечной деформации.

Табл. 3 иллюстрирует изменение объемной деформации для стали, чугуна и вольфрама, рассчитанной по приведенному выше выражению.

Пластичность технически чистого вольфрама при 20 е С составляет менее 1 % и растет после зонной электронно-лучевой очистки от примесей, а также при легировании его добавкой 2% окиси тория. С увеличением температуры пластичность повышается.

Большая энергия межатомных связей металлов групп IV, V, VIA определяет их высокую прочность при комнатной и повышенных температурах. Механические свойства тугоплавких металлов существенно зависят от их чистоты, способов получения, механической и термической обработки, вида полуфабрикатов и других факторов. Большая часть сведений о механических свойствах тугоплавких металлов, опубликованных в литературе, получена на недостаточно чистых металлах, так как плавку в условиях вакуума начали применять сравнительно недавно.

На рис. 1 показана зависимость температуры плавления тугоплавких металлов от положения в периодической системе элементов.

Сравнение механических свойств вольфрама после дуговой плавки и вольфрама, полученного методом порошковой металлургии, показывает, что хотя их предел прочности отличается незначительно, однако более пластичным оказывается вольфрам дуговой плавки.

Твердость по Бринеллю вольфрама в виде спеченного штабика составляет НВ 200-250, а прокатанного нагартованного листа НВ 450-500, твердость молибдена равна соответственно НВ 150- 160 и НВ 240-250.

Легирование вольфрама проводят с целью повышения его пластичности, для этого используют прежде всего элементы замещения. Все больше внимания уделяют попыткам повысить пластичность металлов группы VIA добавками небольших количеств элементов групп VII и VIII. Повышение пластичности объясняют тем, что при легировании переходных металлов добавками в сплаве создается неоднородная электронная плотность вследствие локализации электронов легирующих элементов. При этом атом легирующего элемента изменяет силы межатомной связи в прилегающем объеме растворителя; протяженность такого объема должна зависеть от электронной структуры легирующего и легируемого металлов.

Трудность создания вольфрамовых сплавов состоит в том, что пока не удается при повышении прочности обеспечить необходимую пластичность. Механические свойства вольфрамовых сплавов, легированных молибденом, танталом, ниобием и окисью тория (при кратковременных испытаниях), приведены в табл. 4.

Легирование вольфрама молибденом позволяет получать сплавы, которые по своим прочностным свойствам превосходят нелегированный вольфрам вплоть до температур 2200° С (см. табл. 4). При повышении содержания тантала с 1,6 до 3,6% при температуре 1650°С прочность увеличивается в 2,5 раза. Это сопровождается уменьшением удлинения в 2 раза.

Разработаны и осваиваются дисперсионно упрочненные и сложнолегированные сплавы на основе вольфрама, которые содержат молибден, ниобий, гафний, цирконий, углерод. Например, следующие составы: W - 3% Mo - 1 % Nb; W - 3% Mo - 0,1% Hf; W - 3% Mo - 0,05% Zr; W - 0,07% Zr - 0,004% B; W - 25% Mo - 0,11 % Zr - 0,05% C.

Сплав W - 0,48% Zr-0,048% С имеет? b = 55,2 кгс/мм 2 при 1650° С и 43,8 кгс/мм 2 при 1925° С.

Высокие механические свойства имеют вольфрамовые сплавы, содержащие тысячные доли процента бора, десятые доли процента циркония, и гафния и около 1,5% ниобия. Прочность этих сплавов на разрыв при высоких температурах составляет 54,6 кгс/мм 2 при 1650° С, 23,8 кгс/мм 2 при 2200° С и 4,6 кгс/мм 2 при 2760° С. Однако температура перехода (около 500° С) таких сплавов из пластического состояния в хрупкое достаточно высока.

В литературе имеются сведения о сплавах вольфрама с 0,01 и 0,1% С, которые характеризуются пределом прочности, превышающим в 2-3 раза предел прочности рекристаллизованного вольфрама.

Рении существенно повышает жаропрочность сплавов вольфрама (табл. 5).


Очень давно и в широких масштабах применяется вольфрам и его сплавы в электротехнической и электровакуумной технике. Вольфрам и его сплавы являются основным материалом для изготовления нитей накаливания, электродов, катодов и других элементов конструкций мощных электровакуумных приборов. Высокая эмиссионная способность и светоотдача в накаленном состоянии, низкая упругость пара делают вольфрам одним из важнейших материалов для этой отрасли. В электровакуумных приборах для изготовления деталей, работающих при низких температурах, не проходящих предварительную обработку при Температуре выше 300° С, применяют чистый (без присадок) вольфрам.

Присадки различных элементов существенно изменяют свойства вольфрама. Это дает возможность создавать сплавы вольфрама с необходимыми характеристиками. Например, для деталей электровакуумных приборов, которые требуют применения непровисающего вольфрама при температурах до 2900° С и с высокой температурой первичной рекристаллизации, используют сплавы с кремнещелочными или алюминиевыми присадками. Кремнещелочные и ториевые присадки повышают темпера-туру рекристаллизации и увеличивают прочность вольфрама при высоких температурах, что позволяет изготовлять детали, работающие при температуре до 2100° С в условиях повышенных механических нагрузок.

Катоды электронных и газоразрядных приборов, крючки и пружины генераторных ламп с целью повышения эмиссионных свойств изготовляют из вольфрама с присадкой окиси тория (например, марок ВТ-7, ВТ-10, ВТ-15, с содержанием окиси тория соответственно 7, 10 и 15%).

Высокотемпературные термопары изготовляют из сплавов вольфрама с рением. Вольфрам без присадок, в котором допускается повышенное содержание примесей, применяют при изготовлении холодных деталей электровакуумных приборов (вводы в стекло, траверсы). Электроды импульсных ламп и холодные катоды газоразрядных ламп рекомендуется делать из сплава вольфрама с никелем и барием.

Для работы при температурах выше 1700° С следует применять сплавы ВВ-2 (вольфрамониобиевые). Интересно отметить, что при кратковременных испытаниях сплавы с содержанием ниобия от 0,5 до 2% имеют предел прочности при 1650°С в 2-2,5 раза выше нелегированного вольфрама. Наиболее прочным является сплав вольфрама с 15% молибдена. Сплавы W-Re-Th O 2 обладают хорошей обрабатываемостью по сравнению со сплавами W - Re; добавление двуокиси тория делает возможной такую обработку, как точение, фрезерование, сверление.

Легирование вольфрама рением повышает его пластичность, прочностные же свойства с ростом температуры становятся примерно одинаковыми. Добавки в сплавы вольфрама мелкодисперсных окислов повышают их пластичность. Кроме того, эти добавки значительно улучшают обрабатываемость резанием.

Сплавы вольфрама с рением (W - 3% Re; W - 5% Re; W - 25% Re) применяют для измерения и контроля температуры до 2480° С при производстве стали и в других видах техники. Увеличивается применение сплавов вольфрама с рением при изготовлении антикатодов в рентгеновских трубках. Молибденовые антикатоды, покрытые этим сплавом, работают под большой нагрузкой и имеют более длительный срок службы.

Высокая чувствительность вольфрамовых электродов к изменению концентрации водородных ионов позволяет применять их для потенциометрического титрования. Такие электроды используют для контроля воды и различных растворов. Они просты по конструкции и имеют малую величину электрического сопротивления, что делает перспективным их применение в качестве микроэлектродов при исследовании кислотостойкости приэлектродного слоя в электрохимических процессах.

Недостатками вольфрама являются его низкая пластичность (?<1%), большая плотность, высокое поперечное сечение захвата тепловых нейтронов, плохая свариваемость, низкая ока-линостойкость и плохая обрабатываемость резанием. Однако легирование его различными элементами позволяет улучшить эти характеристики.

Ряд деталей для электротехнической промышленности и сопловые вкладыши двигателей изготовляют из вольфрама, пропитанного медью или серебром. Взаимодействие тугоплавкой твердой фазы (вольфрама) с пропитывающим металлом (медью или серебром) такое, что взаимная растворимость металлов практически отсутствует. Краевые углы смачивания вольфрама жидкой медью и серебром достаточно малы по причине большой поверхностной энергии вольфрама, и этот факт улучшает проникновение серебра или меди. Вольфрам, пропитанный серебром или медью, производили первоначально двумя методами: полным погружением заготовки из вольфрама в расплавленный металл или частичным погружением подвешенной заготовки из вольфрама. Есть также методы пропитки с использованием гидростатического давления жидкости или вакуумного всасывания.

Изготовление из вольфрама электротехнических контактов, пропитанных серебром или медью, осуществляют следующим образом. Сначала производят прессование порошка вольфрама и его спекание при определенных технологических режимах. Затем полученную заготовку пропитывают. В зависимости от полученной пористости заготовки меняется доля пропитывающего вещества. Так, содержание меди в вольфраме может меняться от 30 до 13% при изменении удельного давления прессования от 2 до 20 тс/см 2 . Технология получения пропитанных материалов довольно проста, экономична, и качество таких контактов выше, так как один из компонентов дает материалу высокую твердость, эрозионную стойкость, большую температуру плавления, а другой повышает электропроводность.

Хорошие результаты получают при применении пропитанного вольфрама медью или серебром для изготовления сопловых вкладышей твердотопливных двигателей. Повышение таких свойств пропитанного вольфрама, как теплопроводность и электропроводность, коэффициента термического расширения, значительно увеличивает долговечность двигателя. Кроме того, испарение пропитывающего металла из вольфрама во время работы двигателя имеет положительное значение, снижая тепловые потоки и уменьшая эрозионное воздействие продуктов сгорания.

Порошок вольфрама применяют при изготовлении пористых материалов для деталей электростатического ионного двигателя. Применение вольфрама для этих целей позволяет улучшить его основные характеристики.

Теплоэрозионные свойства сопел, изготовленных из вольфрама, упрочненного дисперсными окислами ZrO2, MgO2, V2O3, НfO 2 , повышаются по сравнению с соплами из спеченного вольфрама. После соответствующей подготовки на поверхность вольфрама для снижения высокотемпературной коррозии наносят гальванические покрытия, например покрытие никелем, которое выполняют в электролите, содержащем 300 г/л сернокислого натрия, 37,5 г/л борной кислоты при плотности тока 0,5-11 А/дм 2 , температуре 65° С и рН = 4.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5-18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68-86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» - очень твердый сплав, содержащий 80-87% вольфрама, 6-15% кобальта, 5-7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история.

Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Т пл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий - редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением - 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913-1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20-30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906-1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5-25 кг/мм 2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60-70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85-95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200-1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.

Природа-мать обогатила человечество полезными химическими элементами. Некоторые из них скрыты в ее недрах и содержатся в относительно малом количестве, но их значение очень существенно. Одним из таких является вольфрам. Применение его обусловлено особыми свойствами.

История происхождения

XVIII век - век открытия таблицы Менделеева - стал основополагающим и в истории этого металла.

Ранее принималось существование некоего вещества, входящего в состав минеральных пород, которое мешало выплавке из них нужных металлов. К примеру, получение олова было затруднено, если в руде содержался такой элемент. Разность температур плавления и химические реакции приводили к образованию шлаковой пены, что уменьшало количество оловянного выхода.

В VIII веке металл был последовательно открыт шведским ученым Шееле и испанцами братьями Элюар. Произошло это вследствие химических экспериментов по окислению минеральных пород - шеелита и вольфрамита.

Зарегистрирован в периодической системе элементов в соответствии с атомным номером 74. Редкий тугоплавкий металл с атомной массой 183,84 - это вольфрам. Применение его обусловлено необычными свойствами, открытыми уже в течение XX века.

Где искать?

По количеству в недрах земли он является «малонаселяющим» и занимает 28-е место. Является компонентом около 22 различных минералов, однако существенное значение для его добычи имеют только 4 из них: шеелит (содержит около 80 % триоксида), вольфрамит, ферберит и гюбнерит (имеют в составе по 75-77 % каждый). В составе руд чаще всего содержатся примеси, в некоторых случаях производится параллельное «извлечение» таких металлов, как молибден, олово, тантал и проч. Наибольшие залежи находятся в Китае, Казахстане, Канаде, США, также есть в России, Португалии, Узбекистане.

Как получают?

В связи с особыми свойствами, а также малым содержанием в породах, технология получения чистого вольфрама достаточно сложная.

  1. Магнитная сепарация, электростатическая сепарация или флотация с целью обогащения руды до 50-60 % концентрации
  2. Выделение 99 % окиси путем химических реакций со щелочными или кислотными реагентами и поэтапного очищения получаемого осадка.
  3. Восстановление металла с помощью углерода или водорода, выход соответствующего металлического порошка.
  4. Изготовление слитков или порошковых спеченных брикетов.

Одним из важных этапов получения металлургической продукции является порошковая металлургия. Она основана на смешивании порошкообразных тугоплавких металлов, их прессовании и последующем спекании. Таким образом получают большое количество технологически важных сплавов, в том числе применение которому найдено в основном в промышленном производстве режущих инструментов повышенной мощности и стойкости.

Физические и химические свойства

Вольфрам - тугоплавкий и тяжелый металл серебристого цвета с объёмно-центрированной кристаллической решеткой.

  • Температура плавления - 3422 ˚С.
  • Температура кипения - 5555 ˚С.
  • Плотность - 19,25 г/см 3 .

Является хорошим проводником электрического тока. Не магнитится. Некоторые минералы (например, шеелит) люминесцентные.

Стоек к влиянию кислот, агрессивных веществ в среде высоких температур, коррозии и старению. Деактивации влияния отрицательных примесей в сталях, улучшению ее жаропрочности, коррозионной стойкости и надежности также способствует вольфрам. Применение таких железоуглеродистых сплавов оправдано их технологичностью и износостойкостью.

Механические и технологические свойства

Вольфрам - твердый, прочный металл. Его твердость составляет 488 НВ, предел прочности - 1130-1375 МПа. В холодном состоянии не пластичен. При температуре 1600 ˚С повышается пластичность до состояния абсолютной податливости к обработке давлением: ковке, прокатке, волочению. Известно, что 1 кг этого металла позволяет изготавливать нить общей длиной до 3 км.

Обработка резанием затруднена в силу чрезмерной твердости и хрупкости. Для сверления, точения, фрезерования используются твердосплавные вольфрамокобальтовые материалы, изготовленные методом порошковой металлургии. Реже, при низких скоростях и особых условиях, применяются инструменты из быстрорежущей легированной вольфрамсодержащей стали. Стандартные принципы резки неприменимы, так как оборудование чрезвычайно быстро изнашивается, а обрабатываемый вольфрам растрескивается. Применяются следующие технологии:

  1. Химическая обработка и пропитка поверхностного слоя, в том числе использование с этой целью серебра.
  2. Нагрев поверхности с помощью печей, газового пламени, электрического тока силой 0,2 А. Допустимая температура, при которой происходит некоторое повышение пластичности и, соответственно, улучшается резка, - 300-450 ˚С.
  3. Резание вольфрама с применением легкоплавких веществ.

Заточку и шлифование целесообразно проводить с помощью алмазных и реже - корундовых.

Сварка данного тугоплавкого металла производится в основном под действием электрической дуги, вольфрамовых или угольных электродов в среде инертных газов или жидких защит. Также возможно применение контактной сварки.

Этот особенный химический элемент обладает характеристиками, которые отличают его в общей массе. Так, к примеру, характеризуясь высокой теплостойкостью и износостойкостью, он повышает качество и режущие свойства легированных вольфрамсодержащих сталей, а высокая температура плавления позволяет изготавливать нити накала для лампочек и электроды для сварки.

Применение

Редкость, необычность и важность обуславливают широкое использование в современной технике металла под названием Tungsten - вольфрам. Свойства и применение оправдывают высокую стоимость и востребованность. Высокие показатели температуры плавления, твердости, прочности, жаростойкости и стойкости к химическим воздействиям и коррозии, износостойкости и резальных особенностей - вот основные его козыри. Варианты использования:

  1. Нити накаливания.
  2. с целью получения быстрорежущих, износостойких, жаростойких и жаропрочных железоуглеродистых сплавов, находящих применение для производства сверл и других инструментов, пуансонов, пружин и рессор, рельс.
  3. Изготовление «порошковых» твердых сплавов, применяемых в основном в качестве особо износостойких режущих, буровых или прессовочных инструментов.
  4. Электроды для аргонодуговой и контактной сварки.
  5. Изготовление деталей для рентгеновской и радиотехники, различных технических ламп.
  6. Специальные светящиеся краски.
  7. Проволока и детали для химической промышленности.
  8. Различная практичная мелочевка, к примеру, мормышки для рыбалки.

Приобретают популярность различные сплавы, в состав которых входит вольфрам. Область применения таких материалов порой удивляет - начиная от тяжелого машиностроения и заканчивая легкой промышленностью, где изготавливаются ткани с особыми свойствами (например, огнестойкие).

Универсальных материалов не существует. Каждый известный элемент и созданные сплавы отличаются своей уникальностью и необходимостью для определенных сфер жизни и промышленности. Однако некоторые из них обладают особыми свойствами, делающими ранее неосуществимые процессы возможными. Одним из таких металлов является вольфрам. Применение его недостаточно широко, как у стали, но каждый из вариантов предельно полезен и необходим человечеству.

Мировое производство вольфрама – примерно 30 тыс. т в год. Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.

Вольфрам – непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам – сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин. Псевдосплавы вольфрама с медью и серебром – превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5–18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68–86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» – очень твердый сплав, содержащий 80–87% вольфрама, 6–15% кобальта, 5–7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Незаменимость вольфрама в производстве электроламп объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.