Занесение под знак дифференциала онлайн. Метод подведения под знак дифференциала (устная замена переменной)

При решении некоторых типов интегралов выполняется преобразование, как говорят внесение под знак дифференциала . Это делается, чтобы получить интеграл табличного вида и легко его взять. Для этого применяется формула: $$ f"(x) dx = d(f(x)) $$

Хочется отметить такой важный нюанс, над которым задумываются студенты. Чем же отличается этот метод от способа замены переменной (подстановки)? Это то же самое, только в записях выглядит по-разному. И то и другое верно.

Формула

Если в подынтегральной функции прослеживается произведение двух функций, одна из которых является дифференциалом другой, тогда внесите под знак дифференциала нужную функцию. Выглядит это следующим образом:

$$ \int f(\varphi(x)) \varphi"(x) dx = \int f(\varphi(x)) d(\varphi(x))=\int f(u) du $$ $$ u=\varphi(x) $$

Подведение основных функций

Для того, чтобы успешно использовать такой способ решения, необходимо знать таблицы производных и интегрирования. Из них вытекают следующие формулы:

$ dx = d(x+c), c=const $ $ -\sin x dx=d(\cos x) $
$ dx=\frac{1}{a} d(ax) $ $ \cos x dx = d(\sin x) $
$ xdx=\frac{1}{2} d(x^2+a) $ $ \frac{dx}{x} = d(\ln x) $
$ -\frac{dx}{x^2}= d(\frac{1}{x}) $ $ \frac{dx}{\cos^2 x} = d(tg x) $
$$ \int f(kx+b)dx = \frac{1}{k} \int f(kx+b)d(kx+b) = \frac{1}{k} F(kx+b) + C $$

Примеры решений

Пример 1
Найти интеграл $$ \int \sin x \cos x dx $$
Решение

В данном примере можно занести под знак дифференциала любую из предложенных функций, хоть синус, хоть косинус. Для того, чтобы не путаться со сменой знаков удобнее занести $ \соs x $. Используя формулы имеем:

$$ \int \sin x \cos xdx = \int \sin x d(\sin x) = \frac{1}{2} \sin^2 x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \sin x \cos x dx = \frac{1}{2} \sin^2 x + C $$

Итак, в статье разобрали как решаются некоторые виды интегралов методом занесения под знак дифференциала. Вспомнили дифференциалы часто распространенных элементарных функций. Если не получается или не хватает времени решить задачи контрольных работ самостоятельно, то мы окажем Вам свою помощь в кратчайшие сроки. Достаточно заполнить форму заказа и мы свяжемся с Вами.

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом , где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала ;
– Собственно замена переменной .

По сути дела, это одно и то же, но оформление решения выглядит по-разному.

Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:

То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.

Пример 1

Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию под знак дифференциала:

Раскрывая дифференциал, легко проверить, что:

Фактически и – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?

Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ .

Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:

Теперь можно пользоваться табличной формулой :


Готово

Единственное отличие, у нас не буква «икс», а сложное выражение .

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила .

Пример 2

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .
Далее используем табличную формулу :

Проверка:


Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:

В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:

Строго говоря, решение должно выглядеть так:

Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой .
В данном случае напрашивается:
Вторая по популярности буква для замены – это буква .
В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:
Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место.
Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко:
Теперь по правилам пропорции выражаем нужный нам :

В итоге:
Таким образом:

А это уже самый что ни на есть табличный интеграл (таблица интегралов , естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .


Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:


Проведем замену:


Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче .

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Пример 6

Найти неопределенный интеграл.

Проведем замену: (другую замену здесь трудно придумать)

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл .

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении .

Пример 7

Найти неопределенный интеграл. Выполнить проверку.

Пример 8

Найти неопределенный интеграл.

Замена:
Осталось выяснить, во что превратится

Хорошо, мы выразили, но что делать с оставшимся в числителе «иксом»?!
Время от времени в ходе решения интегралов встречается следующий трюк: мы выразим из той же замены !

Пример 9

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 10

Найти неопределенный интеграл.

Наверняка некоторые обратили внимание, что в моей справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная : (функции , могут быть и не в произведении)

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за знаменатель, то велики шансы, что числитель превратится во что-нибудь хорошее.

Метод подведения под знак дифференциала редко приводится в литературе, поэтому вначале покажем, почему он выгоден.

Нередко в подынтегральной функции можно увидеть 2 фрагмента, один из которых похож на производную другого. Например,

а) в интеграле числительx похож на производную от :
;

б) интеграл
можно представить как
, где
;

в) функция
в интеграле
– это
.

Подобные интегралы часто предлагают находить, заменив новой переменной функцию, производная которой обнаружена. Так, для указанных интегралов

а) если
, то
, тогда
и
, откуда

б) поскольку
, то
, тогда
и
, поэтому

Более подробно метод замены изложен в § 4.

Однако вычисление 3-го интеграла при помощи замены уже связано с трудностями. Пусть, заметив, что
, мы заменили
.

Тогда
и
. Выразить
черезt можно так:

(
, поэтому
). Подставим:

В результате громоздких действий практически всё сократилось и получился простой табличный интеграл. Возникает вопрос, нельзя ли было прийти к нему быстрее, если почти ни одно выражение не понадобилось.

Действительно, есть более короткое решение:

тогда, заменив
, сразу получаем интеграл

Таким же образом можно было найти интегралы

Здесь действия показаны очень подробно, и половину из них можно пропустить. Особенно коротким сделает решение следующая

Таблица основных дифференциалов

;

;

;

;

;

;

;

;

;

;

.

Примеры подведения под знак дифференциала

3) ;

ПД1. Найдите интегралы

1) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

2) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

3) а)
; б)
; в)
; г)
; д)

е)
; ж)
; з)
; и)
; к)
;

4) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

5) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
.

§ 3. Интегралы от функций, содержащих квадратичное выражение

При интегрировании функций, содержащих выражение
, поможет формула
. Например,

б)
;

Полученную скобку удобно обозначить новой буквой и перейти к интегралу по этой переменной (дифференциалы новой и старой переменных совпадут).

Коэффициент перед квадратом лучше выносить за скобку:

,

а затем, если возможно, и за знак интеграла. Так,

Цель замены – перейти к интегралу без линейного слагаемого
, поскольку интегралы, содержащие только
, находятся проще, и часто – по таблице. При этом важно помнить, что
,
, и т.п.

А именно (см. § 2),

где a – любое число, и число
. Кроме того, при

где
.

Замечание 1. После замены часто появляются интегралы
,
или
. Их можно найти так:

аналогично во 2-м и в 3-м случае.

Однако интегралы вида
достаточно сложны. Воспользуйтесь готовыми формулами

(проверьте дифференцированием, что это действительно так).

КИ1. Найдите при помощи равенства
и замены
:

Пример 1 (для краткости
обозначено как
.

При поиске
и
учли, что
и
соответственно, и применили основное правило табличного интегрирования.

КИ2. Найдите интегралы, разложив каждый на сумму интегралов, один из которых – табличный, а другой аналогичен найденным в задании КИ1:

Пример 2. Найдём интеграл
, разложив на сумму двух:

Ответ: (модуль не нужен, поскольку всегда
).

Пример 3. Возьмём таким же образом интеграл
:

Рациональнее всего найти интегралы так:

где учли, что
;

Тогда , где
.

Ответ: .

Замечание 2. В дальнейшем часто придётся разбивать интеграл на 2 или 3 интеграла, в каждом из которых появляется константа (
, и т.д.). Для краткости будем подразумевать (но не указывать) константы в каждом отдельном вспомогательном интеграле (или указывать, но не сопровождать номером), а записывать будем лишь общую константуC в ответе. При этом всегда C – некая линейная комбинация .

КИ3. Получив в знаменателе полный квадрат и сделав замену, найдите

Пример 4.
Заметив, что

заменяем
, тогда
и.

Подставим в интеграл:

Пример 5.

Поскольку , можно сделать замену
, при которой
и
. Подставим:

Пример 6.

Здесь , заменяем
, откуда
и
. Подставим:

где
. Разобьём интеграл на два:

.

Так же, как в предыдущих примерах,

а 2-й интеграл – табличный:
.

Итак, , где
. Тем самым

Пример 7.

Теперь , замена
, поэтому
и
.

Переходим к интегралу от новой переменной:

где
.

Найдём отдельно

в)
(табличный интеграл).

Умножим 2-й результат на 7, 3-й на 10, соберём подобные слагаемые и вернёмся к старой переменной:

КИ4. Найдите интегралы от иррациональных функций:

Пример 8. Найдём
. Похожий интеграл без корня уже найден выше (пример 6), и достаточно на соответствующем шаге добавить корень:


,

где
. Разбиваем

и находим

б)
.

Таким образом, , где
.

Ответ: .

Пример 9.
Полный квадрат удобно получить так:

где
. Тогда

.

Заменим
. При этом
и
:

Действуем так же, как в примере 8:

Ответ: .

Замечание 3. Нельзя из-под корня выносить знак «–» или любой отрицательный общий множитель:
;, и т.д. В примере 9 показан единственно возможный правильный способ действий.

Пример 10. Посмотрим, что изменится, если в примере 9 поставить квадрат: найдём
. Теперь после тех же замен окажется, что

Как обычно,

и 2-й и 3-й интегралы находятся так же, как в примере 9:

;

.

Согласно указаниям на стр. 19, 1-й интеграл можно преобразовать так:

где снова
, а

Новый интеграл находят или тригонометрической подстановкой
, или повторным интегрированием по частям, взяв
и
. Воспользуемся готовой формулой
(стр. 19):

Умножим все интегралы на соответствующие им коэффициенты и соберём вместе:

в ответе приведём подобные слагаемые.

Сначала немного поговорим о постановке задачи в общем виде, а затем перейдём к примерам интегрирования подстановкой. Допустим, в нас есть некий интеграл $\int g(x) \; dx$. Однако в таблице интегралов нужной формулы нет, да и разбить заданный интеграл на несколько табличных не удаётся (т.е. непосредственное интегрирование отпадает). Однако задача будет решена, если нам удастся найти некую подстановку $u=\varphi(x)$, которая сведёт наш интеграл $\int g(x) \; dx$ к какому-либо табличному интегралу $\int f(u) \; du=F(u)+C$. После применения формулы $\int f(u) \; du=F(u)+C$ нам останется только вернуть обратно переменную $x$. Формально это можно записать так:

$$\int g(x) \; dx=|u=\varphi(x)|=\int f(u) \; du=F(u)+C=F(\varphi(x))+C.$$

Проблема в том, как выбрать такую подстановку $u$. Для этого понадобится знание, во-первых, таблицы производных и умение её применять для дифференцирования сложных функций , а во-вторых, таблицы неопределенных интегралов . Кроме того, нам будет крайне необходима формула, которую я запишу ниже. Если $y=f(x)$, то:

\begin{equation}dy=y"dx\end{equation}

Т.е. дифференциал некоторой функции равен производной этой функции, умноженной на дифференциал независимой переменной. Это правило очень важно, и именно оно позволит применять метод подстановки. Здесь же укажем пару частных случаев, которые получаются из формулы (1). Пусть $y=x+C$, где $C$ - некая константа (число, попросту говоря). Тогда, подставляя в формулу (1) вместо $y$ выражение $x+C$, получим следующее:

$$ d(x+C)=(x+C)" dx $$

Так как $(x+C)"=x"+C"=1+0=1$, то указанная выше формула станет такой:

$$ d(x+C)=(x+C)" dx=1\cdot dx=dx.$$

Запишем полученный результат отдельно, т.е.

\begin{equation}dx=d(x+C)\end{equation}

Полученная формула означает, что прибавление константы под дифференциалом не изменяет оный дифференциал, т.е. $dx=d(x+10)$, $dx=d(x-587)$ и так далее.

Рассмотрим еще один частный случай для формулы (1). Пусть $y=Cx$, где $C$, опять-таки, является некоторой константой. Найдем дифференциал этой функции, подставляя в формулу (1) выражение $Cx$ вместо $y$:

$$ d(Cx)=(Cx)"dx $$

Так как $(Cx)"=C\cdot (x)"=C\cdot 1=C$, то записанная выше формула $d(Cx)=(Cx)"dx$ станет такой: $d(Cx)=Cdx$. Если разделить обе части этой формулы на $C$ (при условии $C\neq 0$), то получим $\frac{d(Cx)}{C}=dx$. Этот результат можно переписать в несколько иной форме:

\begin{equation}dx=\frac{1}{C}\cdot d(Cx)\;\;\;(C\neq 0)\end{equation}

Полученная формула говорит о том, что умножение выражения под дифференциалом на некую ненулевую константу требует введения соответствующего множителя, компенсирующего такое домножение. Например, $dx=\frac{1}{5} d(5x)$, $dx=-\frac{1}{19} d(-19x)$.

В примерах №1 и №2 формулы (2) и (3) будут рассмотрены подробно.

Замечание относительно формул

В данной теме будут использоваться как формулы 1-3, так и формулы из таблицы неопределённых интегралов , которые тоже имеют свои номера. Чтобы не было путаницы, условимся о следующем: если в теме встречается текст "используем формулу №1", то означает он буквально следующее "используем формулу №1, расположенную на этой странице ". Если нам понадобится формула из таблицы интегралов, то это будем оговаривать каждый раз отдельно. Например, так: "используем формулу №1 из таблицы интегралов".

И ещё одно небольшое примечание

Перед началом работы с примерами рекомендуется ознакомиться с материалом, изложенным в предыдущих темах, посвящённых понятию неопределённого интеграла и . Изложение материала в этой теме опирается на сведения, указанные в упомянутых темах.

Пример №1

Найти $\int \frac{dx}{x+4}$.

Если мы обратимся к , то не сможем найти формулу, которая точно соответствует интегралу $\int \frac{dx}{x+4}$. Наиболее близка к этому интегралу формула №2 таблицы интегралов, т.е. $\int \frac{du}{u}=\ln|u|+C$. Проблема в следующем: формула $\int \frac{du}{u}=\ln|u|+C$ предполагает, что в интеграле $\int \frac{du}{u}$ выражения в знаменателе и под дифференциалом должны быть одинаковы (и там и там расположена одна буква $u$). В нашем случае в $\int \frac{dx}{x+4}$ под дифференциалом находится буква $x$, а в знаменателе - выражение $x+4$, т.е. налицо явное несоответствие табличной формуле. Попробуем "подогнать" наш интеграл под табличный. Что произойдёт, если под дифференциал вместо $x$ подставить $x+4$? Для ответа на этот вопрос применим , подставив в неё выражение $x+4$ вместо $y$:

$$ d(x+4)=(x+4)"dx $$

Так как $(x+4)"=x"+(4)"=1+0=1$, то равенство $ d(x+4)=(x+4)"dx $ станет таким:

$$ d(x+4)=1\cdot dx=dx $$

Итак, $dx=d(x+4)$. Честно говоря, этот же результат можно было получить, просто подставив в вместо константы $C$ число $4$. В дальнейшем мы так и будем делать, а на первый раз разобрали процедуру получения равенства $dx=d(x+4)$ подробно. Но что даёт нам равенство $dx=d(x+4)$?

А даёт оно нам следующий вывод: если $dx=d(x+4)$, то в интеграл $\int \frac{dx}{x+4}$ вместо $dx$ можно подставить $d(x+4)$, причём интеграл от этого не изменится:

$$ \int \frac{dx}{x+4}=\int \frac{d(x+4)}{x+4}$$

Сделали мы это преобразование лишь для того, чтобы полученный интеграл стал полностью соответствовать табличной формуле $\int \frac{du}{u}=\ln|u|+C$. Чтобы такое соответствие стало совсем явным, заменим выражение $x+4$ буквой $u$ (т.е. сделаем подстановку $u=x+4$):

$$ \int \frac{dx}{x+4}=\int \frac{d(x+4)}{x+4}=|u=x+4|=\int \frac{du}{u}=\ln|u|+C.$$

По сути, задача уже решена. Осталось лишь вернуть переменную $x$. Вспоминая, что $u=x+4$, получим: $\ln|u|+C=\ln|x+4|+C$. Полное решение без пояснений выглядит так:

$$ \int \frac{dx}{x+4}=\int \frac{d(x+4)}{x+4}=|u=x+4|=\int \frac{du}{u}=\ln|u|+C=\ln|x+4|+C.$$

Ответ : $\int \frac{dx}{x+4}=\ln|x+4|+C$.

Пример №2

Найти $\int e^{3x} dx$.

Если мы обратимся к таблице неопределённых интегралов , то не сможем найти формулу, которая точно соответствует интегралу $\int e^{3x} dx$. Наиболее близка к этому интегралу формула №4 из таблицы интегралов, т.е. $\int e^u du=e^u+C$. Проблема в следующем: формула $\int e^u du=e^u+C$ предполагает, что в интеграле $\int e^u du$ выражения в степени числа $e$ и под дифференциалом должны быть одинаковы (и там и там расположена одна буква $u$). В нашем случае в $\int e^{3x} dx$ под дифференциалом находится буква $x$, а в степени числа $e$ - выражение $3x$, т.е. налицо явное несоответствие табличной формуле. Попробуем "подогнать" наш интеграл под табличный. Что произойдёт, если под дифференциал вместо $x$ подставить $3x$? Для ответа на этот вопрос применим , подставив в неё выражение $3x$ вместо $y$:

$$ d(3x)=(3x)"dx $$

Так как $(3x)"=3\cdot (x)"=3\cdot 1=3$, то равенство $d(3x)=(3x)"dx$ станет таким:

$$ d(3x)=3dx $$

Разделив обе части полученного равенства на $3$, будем иметь: $\frac{d(3x)}{3}=dx$, т.е. $dx=\frac{1}{3}\cdot d(3x)$. Вообще-то, равенство $dx=\frac{1}{3}\cdot d(3x)$ можно было получить, просто подставив в вместо константы $C$ число $3$. В дальнейшем мы так и будем делать, а на первый раз разобрали процедуру получения равенства $dx=\frac{1}{3}\cdot d(3x)$ подробно.

Что нам дало полученное равенство $dx=\frac{1}{3}\cdot d(3x)$? Оно означает, что в интеграл $\int e^{3x} dx$ вместо $dx$ можно подставить $\frac{1}{3}\cdot d(3x)$, причём интеграл от этого не изменится:

$$ \int e^{3x} dx= \int e^{3x} \cdot\frac{1}{3} d(3x) $$

Вынесем константу $\frac{1}{3}$ за знак интеграла и заменим выражение $3x$ буквой $u$ (т.е. сделаем подстановку $u=3x$), после чего применим табличную формулу $\int e^u du=e^u+C$:

$$ \int e^{3x} dx= \int e^{3x} \cdot\frac{1}{3} d(3x)=\frac{1}{3}\cdot \int e^{3x} d(3x)=|u=3x|=\frac{1}{3}\cdot\int e^u du=\frac{1}{3}\cdot e^u+C.$$

Как и в предыдущем примере, нужно вернуть обратно исходную переменную $x$. Так как $u=3x$, то $\frac{1}{3}\cdot e^u+C=\frac{1}{3}\cdot e^{3x}+C$. Полное решение без комментариев выглядит так:

$$ \int e^{3x} dx= \int e^{3x} \cdot\frac{1}{3} d(3x)=\frac{1}{3}\cdot \int e^{3x} d(3x)=|u=3x|=\frac{1}{3}\cdot\int e^u du=\frac{1}{3}\cdot e^u+C=\frac{1}{3}\cdot e^{3x}+C.$$

Ответ : $ \int e^{3x} dx= \frac{1}{3}\cdot e^{3x}+C$.

Пример №3

Найти $\int (3x+2)^2 dx$.

Для нахождения данного интеграла применим два способа. Первый способ состоит в раскрытии скобок и непосредственном интегрировании . Второй способ заключается в применении метода подстановки.

Первый способ

Так как $(3x+2)^2=9x^2+12x+4$, то $\int (3x+2)^2 dx=\int (9x^2+12x+4)dx$. Представляя интеграл $\int (9x^2+12x+4)dx$ в виде суммы трёх интегралов и вынося константы за знаки соответствующих интегралов, получим:

$$ \int (9x^2+12x+4)dx=\int 9x^2 dx+\int 12x dx+\int 4 dx=9\cdot \int x^2 dx+12\cdot \int x dx+4\cdot \int 1 dx $$

Чтобы найти $\int x^2 dx$ подставим $u=x$ и $\alpha=2$ в формулу №1 таблицы интегралов: $\int x^2 dx=\frac{x^{2+1}}{2+1}+C=\frac{x^3}{3}+C$. Аналогично, подставляя $u=x$ и $\alpha=1$ в ту же формулу из таблицы, будем иметь: $\int x^1 dx=\frac{x^{1+1}}{1+1}+C=\frac{x^2}{2}+C$. Так как $\int 1 dx=x+C$, то:

$$ 9\cdot \int x^2 dx+12\cdot \int x dx+4\cdot \int 1 dx=9\cdot\frac{x^3}{3}+12\cdot \frac{x^2}{2}+4\cdot x+C=3x^3+6x^2+4x+C. $$

$$ \int (9x^2+12x+4)dx=\int 9x^2 dx+\int 12x dx+\int 4 dx=9\cdot \int x^2 dx+12\cdot \int x dx+4\cdot \int 1 dx=\\ =9\cdot\frac{x^3}{3}+12\cdot \frac{x^2}{2}+4\cdot x+C=3x^3+6x^2+4x+C. $$

Второй способ

Скобки раскрывать не будем. Попробуем сделать так, чтобы под дифференциалом вместо $x$ появилось выражение $3x+2$. Это позволит ввести новую переменную и применить табличную формулу. Нам нужно, чтобы под дифференциалом возник множитель $3$, посему подставляя в значение $C=3$, получим $d(x)=\frac{1}{3}d(3x)$. Кроме того, под дифференциалом не хватает слагаемого $2$. Согласно прибавление константы под знаком дифференциала не меняет оный дифференциал, т.е. $\frac{1}{3}d(3x)=\frac{1}{3}d(3x+2)$. Из условий $d(x)=\frac{1}{3}d(3x)$ и $\frac{1}{3}d(3x)=\frac{1}{3}d(3x+2)$ имеем: $dx=\frac{1}{3}d(3x+2)$.

Отмечу, что равенство $dx=\frac{1}{3}d(3x+2)$ можно получить и иным способом:

$$ d(3x+2)=(3x+2)"dx=((3x)"+(2)")dx=(3\cdot x"+0)dx=3\cdot 1 dx=3dx;\\ dx=\frac{1}{3}d(3x+2). $$

Используем полученное равенство $dx=\frac{1}{3}d(3x+2)$, подставив в интеграл $\int (3x+2)^2 dx$ выражение $\frac{1}{3}d(3x+2)$ вместо $dx$. Константу $\frac{1}{3}$ вынесем за знак получившегося интеграла:

$$ \int (3x+2)^2 dx=\int (3x+2)^2 \cdot \frac{1}{3}d(3x+2)=\frac{1}{3}\cdot \int (3x+2)^2 d(3x+2). $$

Дальнейшее решение состоит в осуществлении подстановки $u=3x+2$ и применении формулы №1 из таблицы интегралов:

$$ \frac{1}{3}\cdot \int (3x+2)^2 d(3x+2)=|u=3x+2|=\frac{1}{3}\cdot \int u^2 du=\frac{1}{3}\cdot \frac{u^{2+1}}{2+1}+C=\frac{u^3}{9}+C. $$

Возвращая вместо $u$ выражение $3x+2$, получим:

$$ \frac{u^3}{9}+C=\frac{(3x+2)^3}{9}+C. $$

Полное решение без пояснений таково:

$$ \int (3x+2)^2 dx=\frac{1}{3}\cdot \int (3x+2)^2 d(3x+2)=|u=3x+2|=\\ =\frac{1}{3}\cdot \int u^2 du=\frac{u^3}{9}+C=\frac{(3x+2)^3}{9}+C. $$

Предвижу пару вопросов, поэтому попробую сформулировать их дать ответы.

Вопрос №1

Что-то тут не сходится. Когда мы решали первым способом, что получили, что $\int (9x^2+12x+4)dx=3x^3+6x^2+4x+C$. При решении вторым путём, ответ стал таким: $\int (3x+2)^2 dx=\frac{(3x+2)^3}{9}+C$. Однако перейти от второго ответа к первому не получается! Если раскрыть скобки, то получаем следующее:

$$ \frac{(3x+2)^3}{9}+C=\frac{27x^3+54x^2+36x+8}{9}+C=\frac{27x^3}{9}+\frac{54x^2}{9}+\frac{36x}{9}+\frac{8}{9}+C=3x^3+6x^2+4x+\frac{8}{9}+C. $$

Ответы не совпадают! Откуда взялась лишняя дробь $\frac{8}{9}$?

Этот вопрос говорит о том, что Вам стоит обратиться к предыдущим темам. Почитать тему про понятие неопределённого интеграла (уделив особое внимание вопросу №2 в конце страницы) и непосредственному интегрированию (стоит обратить внимание на вопрос №4). В указанных темах этот вопрос освещается подробно. Если уж совсем коротко, то интегральная константа $C$ может быть представлена в разных формах. Например, в нашем случае переобозначив $C_1=C+\frac{8}{9}$, получим:

$$ 3x^3+6x^2+4x+\frac{8}{9}+C=3x^3+6x^2+4x+C_1. $$

Посему никакого противоречия нет, ответ может быть записан как в форме $3x^3+6x^2+4x+C$, так и в виде $\frac{(3x+2)^3}{9}+C$.

Вопрос №2

Зачем было решать вторым способом? Это же лишнее усложнение! Зачем применять кучу лишних формул, чтобы найти ответ, который первым способом получается в пару действий? Всего-то и нужно было, что скобки раскрыть, применив школьную формулу.

Ну, во-первых, не такое уж это и усложнение. Когда вы разберётесь в методе подстановки, то решения подобных примеров станете делать в одну строчку: $\int (3x+2)^2 dx=\frac{1}{3}\cdot \int (3x+2)^2 d(3x+2)=\frac{(3x+2)^3}{9}+C$. Однако давайте взглянем на этот пример по-иному. Представьте, что нужно вычислить не $\int (3x+2)^2 dx$, а $\int (3x+2)^{200} dx$. При решении вторым способом придётся лишь чуток подправить степени и ответ будет готов:

$$ \int (3x+2)^{200} dx=\frac{1}{3}\cdot \int (3x+2)^{200} d(3x+2)=|u=3x+2|=\\ =\frac{1}{3}\cdot \int u^{200} du=\frac{u^{201}}{603}+C=\frac{(3x+2)^{201}}{603}+C. $$

А теперь представьте, что этот же интеграл $\int (3x+2)^{200} dx$ требуется взять первым способом. Для начала нужно будет раскрыть скобку $(3x+2)^{200}$, получив при этом сумму в двести одно слагаемое! А потом каждое слагаемое ещё и проинтегрировать придётся. Поэтому вывод тут такой: для больших степеней метод непосредственного интегрирования не годится. Второй способ, несмотря на кажущуюся сложность, более практичен.

Пример №4

Найти $\int \sin2x dx$.

Решение этого примера проведём тремя различными способами.

Первый способ

Заглянем в таблицу интегралов . Ниболее близка к нашему примеру формула №5 из этой таблицы, т.е. $\int \sin u du=-\cos u+C$. Чтобы подогнать интеграл $\int \sin2x dx$ под вид $\int \sin u du$, воспользуемся , внеся множитель $2$ под знак дифференциала. Собственно, мы это делали уже в примере №2, так что обойдёмся без подробных комментариев:

$$ \int \sin 2x dx=\left|dx=\frac{1}{2}\cdot d(2x) \right|=\int \sin 2x \cdot\frac{1}{2}d(2x)=\\ =\frac{1}{2} \int \sin 2x d(2x)=|u=2x|=\frac{1}{2} \int \sin u du=-\frac{1}{2}\cos u+C=-\frac{1}{2}\cos 2x+C. $$

Ответ : $\int \sin2x dx=-\frac{1}{2}\cos 2x+C$.

Второй способ

Для решения вторым способом применим простую тригонометрическую формулу: $\sin 2x=2\sin x\cos x$. Подставим вместо $\sin 2x$ выражение $2 \sin x \cos x$, при этом константу $2$ вынесем за знак интеграла:

Какова цель такого преобразования? В таблице интеграла $\int \sin x\cos x dx$ нет, но мы можем немного препобразовать $\int \sin x\cos x dx$, чтобы он стал больше походить на табличный. Для этого найдем $d(\cos x)$, используя . Подставим в упомянутую формулу $\cos x$ вместо $y$:

$$ d(\cos x)=(\cos x)"dx=-\sin x dx. $$

Так как $d(\cos x)=-\sin x dx$, то $\sin x dx=-d(\cos x)$. Так как $\sin x dx=-d(\cos x)$, то мы можем в $\int \sin x\cos x dx$ вместо $\sin x dx$ подставить $-d(\cos x)$. Значение интеграла при этом не изменится:

$$ 2\cdot\int \sin x\cos x dx=2\cdot\int \cos x \cdot (-d(\cos x))=-2\int\cos x d(\cos x) $$

Говоря иными словами, мы внесли под дифференциал $\cos x$. Теперь, сделав подстановку $u=\cos x$, мы сможем применить формулу №1 из таблицы интегралов:

$$ -2\int\cos x d(\cos x)=|u=\cos x|=-2\int u du=-2\cdot \frac{u^2}{2}+C=-u^2+C=-\cos^2x+C. $$

Ответ получен. Вообще, можно не вводить букву $u$. Когда вы приобретёте достаточный навык в решении подобного рода интегралов, то необходимость в дополнительных обозначениях отпадёт. Полное решение без пояснений таково:

$$ \int \sin 2x dx=2\cdot\int \sin x\cos x dx=|\sin x dx=-d(\cos x)|=-2\int\cos x d(\cos x)=|u=\cos x|=\\ =-2\int u du=-2\cdot \frac{u^2}{2}+C=-u^2+C=-\cos^2x+C. $$

Ответ : $\int \sin2x dx=-\cos^2x+C$.

Третий способ

Для решения третьим способом применим ту же тригонометрическую формулу: $\sin 2x=2\sin x\cos x$. Подставим вместо $\sin 2x$ выражение $2 \sin x \cos x$, при этом константу $2$ вынесем за знак интеграла:

$$ \int \sin 2x dx=\int 2 \sin x\cos x dx=2\cdot\int \sin x\cos x dx $$

Найдем $d(\sin x)$, используя . Подставим в упомянутую формулу $\sin x$ вместо $y$:

$$ d(\sin x)=(\sin x)"dx=\cos x dx. $$

Итак, $d(\sin x)=\cos x dx$. Из полученного равенства следует, что мы можем в $\int \sin x\cos x dx$ вместо $\cos x dx$ подставить $d(\sin x)$. Значение интеграла при этом не изменится:

$$ 2\cdot\int \sin x\cos x dx=2\cdot\int \sin x \cdot d(\sin x) $$

Говоря иными словами, мы внесли под дифференциал $\sin x$. Теперь, сделав подстановку $u=\sin x$, мы сможем применить формулу №1 из таблицы интегралов:

$$ 2\int\sin x d(\sin x)=|u=\sin x|=2\int u du=2\cdot \frac{u^2}{2}+C=u^2+C=\sin^2x+C. $$

Ответ получен. Полное решение без пояснений имеет вид:

$$ \int \sin 2x dx=2\cdot\int \sin x\cos x dx=|\cos x dx=d(\sin x)|=2\cdot\int \sin x \cdot d(\sin x)=|u=\sin x|=\\ =2\int u du=2\cdot \frac{u^2}{2}+C=u^2+C=\sin^2x+C. $$

Ответ : $\int \sin2x dx=\sin^2x+C$.

Возможно, что после прочтения этого примера, особенно трёх различных (на первый взгляд) ответов, возникнет вопрос. Рассмотрим его.

Вопрос №3

Погодите. Ответы должны совпадать, но они отличаются! В примере №3 различие было всего-то в константе $\frac{8}{9}$, но здесь даже внешне ответы не похожи: $-\frac{1}{2}\cos 2x+C$, $-\cos^2x+C$, $\sin^2x+C$. Неужели всё дело опять в интегральной константе $C$?

Да, дело именно в этой константе. Давайте сведём все ответы к одной форме, после чего это различие в константах станет совсем явным. Начнём с $-\frac{1}{2}\cos 2x+C$. Используем простое тригонометрическое равенство: $\cos 2x=1-2\sin^2 x$. Тогда выражение $-\frac{1}{2}\cos 2x+C$ станет таким:

$$ -\frac{1}{2}\cos 2x+C=-\frac{1}{2}\cdot(1-2\sin^2 x)+C=-\frac{1}{2}+\frac{1}{2}\cdot 2\sin^2x+C=\sin^2 x+C-\frac{1}{2}. $$

Теперь поработаем со вторым ответом, т.е. $-\cos^2x+C$. Так как $\cos^2 x=1-\sin^2x$, то:

$$ -\cos^2x+C=-(1-\sin^2x)+C=-1+\sin^2x+C=\sin^2x+C-1 $$

Три ответа, которые мы получили в примере №4, стали такими: $\sin^2 x+C-\frac{1}{2}$, $\sin^2x+C-1$, $\sin^2x+C$. Полагаю, теперь видно, что отличаются они друг от друга лишь некоторым числом. Т.е. дело опять оказалось в интегральной константе. Как видите, небольшое различие в интегральной константе способно, в принципе, сильно изменить внешний вид ответа, - но от этого ответ не перестанет быть правильным. К чему я веду: если в сборнике задач вы увидите ответ, не совпадающий с вашим, то это вовсе не означает, что ваш ответ неверен. Возможно, что вы просто пришли к ответу иным способом, чем предполагал автор задачи. А убедиться в правильности ответа поможет проверка, основанная на определении неопределённого интеграла . Например, если интеграл $\int \sin2x dx=-\frac{1}{2}\cos 2x+C$ найден верно, то должно выполняться равенство $\left(-\frac{1}{2}\cos 2x+C\right)"=\sin 2x$. Вот и проверим, правда ли, что производная от $\left(-\frac{1}{2}\cos 2x+C\right)$ равна подынтегральной функции $\sin 2x$:

$$ \left(-\frac{1}{2}\cos 2x+C\right)"=\left(-\frac{1}{2}\cos 2x\right)"+C"=-\frac{1}{2}\cdot(\cos 2x)"+0=\\ =-\frac{1}{2}\cdot (-\sin 2x)\cdot (2x)"=-\frac{1}{2}\cdot (-\sin 2x)\cdot 2=\sin 2x. $$

Проверка пройдена успешно. Равенство $\left(-\frac{1}{2}\cos 2x+C\right)"=\sin 2x$ выполнено, поэтому формула $\int \sin2x dx=-\frac{1}{2}\cos 2x+C$ верна. В примере №5 также осуществим проверку результата, дабы убедиться в его правильности. Наличие проверки не является обязательным, хотя в некоторых типовых расчётах и контрольных работах требование проверять результат присутствует.