Ang pinakamalaking huling numero. Ang malalaking numero ay may malalaking pangalan

Noong ikaapat na baitang, interesado ako sa tanong na: "Ano ang tawag sa mga numerong higit sa isang bilyon? At bakit?". Simula noon, matagal ko nang hinahanap ang lahat ng impormasyon sa isyung ito at paunti-unti ko itong kinokolekta. Ngunit sa pagdating ng pag-access sa Internet, ang paghahanap ay pinabilis nang malaki. Ngayon ay ipinakita ko ang lahat ng impormasyong nahanap ko upang masagot ng iba ang tanong na: "Ano ang tawag sa malaki at napakalaking numero?".

Medyo kasaysayan

Ang timog at silangang Slavic na mga tao ay gumamit ng alpabetikong pagnunumero upang itala ang mga numero. Bukod dito, sa mga Ruso, hindi lahat ng mga titik ay gumaganap ng papel ng mga numero, ngunit ang mga nasa alpabetong Greek lamang. Sa itaas ng titik, na nagsasaad ng isang numero, isang espesyal na icon na "titlo" ang inilagay. Kasabay nito, ang mga numerical na halaga ng mga titik ay tumaas sa parehong pagkakasunud-sunod ng mga titik sa alpabetong Greek na sinundan (ang pagkakasunud-sunod ng mga titik ng Slavic na alpabeto ay medyo naiiba).

Sa Russia, ang Slavic numbering ay nakaligtas hanggang sa katapusan ng ika-17 siglo. Sa ilalim ni Peter I, nanaig ang tinatawag na "Arabic numbering", na ginagamit pa rin natin hanggang ngayon.

Nagkaroon din ng mga pagbabago sa mga pangalan ng mga numero. Halimbawa, hanggang sa ika-15 siglo, ang bilang na "dalawampu" ay itinalaga bilang "dalawang sampu" (dalawang sampu), ngunit pagkatapos ay binawasan ito para sa mas mabilis na pagbigkas. Hanggang sa ika-15 siglo, ang bilang na "apatnapu" ay tinutukoy ng salitang "apatnapu", at noong ika-15-16 na siglo ang salitang ito ay pinalitan ng salitang "apatnapu", na orihinal na nangangahulugang isang bag kung saan 40 ardilya o balat ng sable ay inilagay. Mayroong dalawang mga pagpipilian tungkol sa pinagmulan ng salitang "libo": mula sa lumang pangalan na "fat hundred" o mula sa isang pagbabago ng Latin na salitang centum - "isang daan".

Ang pangalan na "milyon" ay unang lumitaw sa Italya noong 1500 at nabuo sa pamamagitan ng pagdaragdag ng isang augmentative suffix sa bilang na "mille" - isang libo (ibig sabihin, ito ay nangangahulugang "malaking libo"), ito ay tumagos sa wikang Ruso mamaya, at bago iyon ang Ang parehong kahulugan sa Russian ay tinukoy ng bilang na "leodr". Ang salitang "bilyon" ay ginamit lamang mula sa panahon ng digmaang Franco-Prussian (1871), nang ang mga Pranses ay kailangang magbayad sa Alemanya ng indemnity na 5,000,000,000 francs. Tulad ng "milyon", ang salitang "bilyon" ay nagmula sa salitang-ugat na "libo" na may pagdaragdag ng isang Italian magnifying suffix. Sa Alemanya at Amerika, sa loob ng ilang panahon, ang salitang "bilyon" ay nangangahulugang bilang na 100,000,000; ito ay nagpapaliwanag kung bakit ang salitang bilyonaryo ay ginamit sa America bago ang sinuman sa mga mayayaman ay nagkaroon ng $1,000,000,000. Sa lumang (XVIII siglo) "Arithmetic" ng Magnitsky, mayroong isang talahanayan ng mga pangalan ng mga numero, na dinala sa "quadrillion" (10 ^ 24, ayon sa sistema sa pamamagitan ng 6 na numero). Perelman Ya.I. sa aklat na "Entertaining Arithmetic" ang mga pangalan ng malaking bilang ng panahong iyon ay ibinigay, medyo naiiba sa ngayon: septillon (10 ^ 42), octalion (10 ^ 48), nonalion (10 ^ 54), decalion (10 ^ 60) , endecalion (10 ^ 66), dodecalion (10 ^ 72) at nakasulat na "wala nang iba pang pangalan".

Mga prinsipyo ng pagpapangalan at ang listahan ng malalaking numero
Ang lahat ng mga pangalan ng malalaking numero ay itinayo sa isang medyo simpleng paraan: sa simula mayroong isang Latin na ordinal na numero, at sa dulo ang suffix -million ay idinagdag dito. Ang pagbubukod ay ang pangalang "milyon" na siyang pangalan ng bilang na libo (mille) at ang magnifying suffix -million. Mayroong dalawang pangunahing uri ng mga pangalan para sa malalaking numero sa mundo:
3x + 3 system (kung saan ang x ay isang Latin ordinal number) - ginagamit ang system na ito sa Russia, France, USA, Canada, Italy, Turkey, Brazil, Greece
at ang 6x system (kung saan ang x ay isang Latin ordinal number) - ang sistemang ito ang pinakakaraniwan sa mundo (halimbawa: Spain, Germany, Hungary, Portugal, Poland, Czech Republic, Sweden, Denmark, Finland). Dito, ang nawawalang intermediate na 6x + 3 ay nagtatapos sa suffix -bilyon (mula dito humiram kami ng isang bilyon, na tinatawag ding bilyon).

Ang pangkalahatang listahan ng mga numero na ginamit sa Russia ay ipinakita sa ibaba:

Numero Pangalan Latin numeral SI magnifier SI diminutive prefix Praktikal na halaga
10 1 sampu deka- magpasya Bilang ng mga daliri sa 2 kamay
10 2 daan hecto- centi- Tinatayang kalahati ng bilang ng lahat ng estado sa Earth
10 3 isang libo kilo- Milli- Tinatayang bilang ng mga araw sa loob ng 3 taon
10 6 milyon unus (ako) mega- micro- 5 beses ang bilang ng mga patak sa isang 10 litro na balde ng tubig
10 9 bilyon (bilyon) dalawa(II) giga- nano Tinatayang populasyon ng India
10 12 trilyon tres(III) tera- pico- 1/13 ng gross domestic product ng Russia sa rubles para sa 2003
10 15 quadrillion quattor(IV) peta- femto- 1/30 ng haba ng parsec sa metro
10 18 quintillion quinque (V) exa- atto- 1/18 ng bilang ng mga butil mula sa maalamat na parangal sa imbentor ng chess
10 21 sextillion kasarian (VI) zetta- zepto- 1/6 ng masa ng planetang Earth sa tonelada
10 24 septillion septem(VII) yotta- yocto- Bilang ng mga molekula sa 37.2 litro ng hangin
10 27 octillion octo(VIII) hindi- salaan- Kalahati ng masa ng Jupiter sa kilo
10 30 quintillion nobem(IX) dea- tredo- 1/5 ng lahat ng microorganism sa planeta
10 33 decillion decem(X) una- revo- Kalahati ng masa ng Araw sa gramo

Ang pagbigkas ng mga sumusunod na numero ay madalas na naiiba.
Numero Pangalan Latin numeral Praktikal na halaga
10 36 andecillion undecim (XI)
10 39 duodecillion duodecim(XII)
10 42 tredecillion tredecim(XIII) 1/100 ng bilang ng mga molekula ng hangin sa Earth
10 45 quattordecillion quattuordecim (XIV)
10 48 quindecillion quindecim (XV)
10 51 sexdecillion sedecim (XVI)
10 54 septemdecillion septendecim (XVII)
10 57 octodecillion Napakaraming elementong particle sa araw
10 60 novemdecillion
10 63 viintillion viginti (XX)
10 66 anvigintillion unus et viginti (XXI)
10 69 duovigintillion duo et viginti (XXII)
10 72 trevigintillion tres et viginti (XXIII)
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion Napakaraming elementarya na particle sa uniberso
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 trigintillion triginta (XXX)
10 96 antirigintillion
    ...
  • 10 100 - googol (ang numero ay naimbento ng 9 na taong gulang na pamangkin ng Amerikanong matematiko na si Edward Kasner)


  • 10 123 - quadragintillion (quadragaginta, XL)

  • 10 153 - quinquagintillion (quinquaginta, L)

  • 10 183 - sexagintillion (sexaginta, LX)

  • 10 213 - septuagintillion (septuaginta, LXX)

  • 10 243 - octogintillion (octoginta, LXXX)

  • 10 273 - nonagintillion (nonaginta, XC)

  • 10 303 - centillion (Centum, C)

Ang karagdagang mga pangalan ay maaaring makuha alinman sa pamamagitan ng direkta o baligtad na pagkakasunud-sunod ng mga Latin na numero (hindi alam kung paano tama):

  • 10 306 - ancentillion o centunillion

  • 10 309 - duocentillion o centduollion

  • 10 312 - trecentillion o centtrillion

  • 10 315 - quattorcentillion o centquadrillion

  • 10 402 - tretrigintacentillion o centtretrigintillion

Naniniwala ako na ang pangalawang spelling ang magiging pinakatama, dahil mas naaayon ito sa pagbuo ng mga numeral sa wikang Latin at iniiwasan ang mga kalabuan (halimbawa, sa numerong trecentillion, na sa unang spelling ay parehong 10903 at 10312).
Mga susunod na numero:
Ilang sangguniang pampanitikan:

  1. Perelman Ya.I. "Nakakaaliw na arithmetic". - M.: Triada-Litera, 1994, pp. 134-140

  2. Vygodsky M.Ya. "Handbook ng Elementarya Mathematics". - St. Petersburg, 1994, pp. 64-65

  3. "Encyclopedia ng kaalaman". - comp. SA AT. Korotkevich. - St. Petersburg: Owl, 2006, p. 257

  4. "Nakakaaliw tungkol sa pisika at matematika." - Kvant Library. isyu 50. - M.: Nauka, 1988, p. 50

Sa mga pangalan ng Arabic na numero, ang bawat digit ay kabilang sa kategorya nito, at bawat tatlong digit ay bumubuo ng isang klase. Kaya, ang huling digit sa isang numero ay nagpapahiwatig ng bilang ng mga yunit sa loob nito at tinatawag, nang naaayon, ang lugar ng mga yunit. Ang susunod, pangalawa mula sa dulo, ang digit ay nagpapahiwatig ng sampu (ang sampung digit), at ang ikatlong digit mula sa dulo ay nagpapahiwatig ng bilang ng daan-daan sa numero - ang daan-daang digit. Dagdag pa, ang mga digit ay inuulit sa parehong paraan sa bawat klase, na nagsasaad ng mga yunit, sampu at daan-daan sa mga klase ng libo, milyon, at iba pa. Kung ang numero ay maliit at hindi naglalaman ng sampu o daan-daang digit, kaugalian na kunin ang mga ito bilang zero. Pinagpangkat-pangkat ng mga klase ang mga numero sa tatlo, kadalasan sa mga computing device o mga talaan ay naglalagay ng tuldok o espasyo sa pagitan ng mga klase upang biswal na paghiwalayin ang mga ito. Ginagawa ito para mas madaling basahin ang malalaking numero. Ang bawat klase ay may sariling pangalan: ang unang tatlong digit ay ang klase ng mga yunit, na sinusundan ng klase ng libu-libo, pagkatapos ay milyon-milyon, bilyun-bilyon (o bilyun-bilyon), at iba pa.

Dahil ginagamit natin ang decimal system, ang pangunahing yunit ng dami ay ang sampu, o 10 1 . Alinsunod dito, sa pagtaas ng bilang ng mga digit sa isang numero, tumataas din ang bilang ng sampu ng 10 2, 10 3, 10 4, atbp. Alam ang bilang ng sampu, madali mong matutukoy ang klase at kategorya ng numero, halimbawa, ang 10 16 ay sampu ng quadrillions, at ang 3 × 10 16 ay tatlong sampu ng quadrillions. Ang agnas ng mga numero sa mga bahagi ng decimal ay nangyayari tulad ng sumusunod - ang bawat digit ay ipinapakita sa isang hiwalay na termino, na pinarami ng kinakailangang koepisyent na 10 n, kung saan ang n ay ang posisyon ng digit sa bilang mula kaliwa hanggang kanan.
Halimbawa: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Gayundin, ang kapangyarihan ng 10 ay ginagamit din sa pagsulat ng mga decimal: 10 (-1) ay 0.1 o isang ikasampu. Katulad ng nakaraang talata, ang isang decimal na numero ay maaari ding mabulok, kung saan ang n ay magsasaad ng posisyon ng digit mula sa kuwit mula kanan pakaliwa, halimbawa: 0.347629= 3x10 (-1) +4x10 (-2) +7x10 (-3) +6x10 (-4) +2x10 (-5) +9x10 (-6) )

Mga pangalan ng decimal na numero. Ang mga desimal na numero ay binabasa ng huling digit pagkatapos ng decimal point, halimbawa 0.325 - tatlong daan at dalawampu't limang libo, kung saan ang thousandths ay ang digit ng huling digit na 5.

Talaan ng mga pangalan ng malalaking numero, digit at klase

1st class unit 1st unit digit
2nd place sampu
3rd rank daan-daan
1 = 10 0
10 = 10 1
100 = 10 2
2nd class thousand 1st digit na unit ng libo
2nd digit na sampu-sampung libo
3rd rank daan-daang libo
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3rd grade milyon-milyon 1st digit na units milyon
2nd digit na sampu-sampung milyon
3rd digit na daan-daang milyon
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4th grade billions 1st digit na units bilyon
2nd digit na sampu-sampung bilyon
3rd digit na daan-daang bilyon
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5th grade trilyon 1st digit na trilyong unit
2nd digit na sampu-sampung trilyon
3rd digit na daang trilyon
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
Ika-6 na baitang quadrillions 1st digit na quadrillion units
2nd digit na sampu ng quadrillions
3rd digit na sampu ng quadrillions
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7th grade quintillions 1st digit na unit ng quintillions
2nd digit na sampu ng quintillions
3rd rank hundred quintillion
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8th grade sextillions 1st digit na sextillion unit
2nd digit na sampu ng sextillions
Ika-3 ranggo daang sextillions
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
ika-9 na baitang septillion 1st digit units ng septillion
2nd digit na sampu ng septillions
3rd rank hundred septillion
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10th class octillion 1st digit octillion units
2nd digit na ten octillion
3rd rank hundred octillion
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

Marami ang interesado sa mga tanong tungkol sa kung gaano karaming mga numero ang tinatawag at kung anong numero ang pinakamalaki sa mundo. Ang mga kawili-wiling tanong na ito ay tatalakayin sa artikulong ito.

Kwento

Ang timog at silangang Slavic na mga tao ay gumamit ng alphabetic numbering upang magsulat ng mga numero, at ang mga titik lamang na nasa alpabetong Greek. Sa itaas ng titik, na nagsasaad ng numero, naglagay sila ng espesyal na icon na "titlo". Ang mga numerong halaga ng mga titik ay tumaas sa parehong pagkakasunud-sunod kung saan ang mga titik ay sinundan sa alpabetong Greek (sa Slavic na alpabeto, ang pagkakasunud-sunod ng mga titik ay bahagyang naiiba). Sa Russia, ang Slavic numbering ay napanatili hanggang sa katapusan ng ika-17 siglo, at sa ilalim ni Peter I lumipat sila sa "Arabic numbering", na ginagamit pa rin natin ngayon.

Nagbago din ang mga pangalan ng mga numero. Kaya, hanggang sa ika-15 siglo, ang bilang na "dalawampu" ay itinalaga bilang "dalawang sampu" (dalawang sampu), at pagkatapos ay binawasan ito para sa mas mabilis na pagbigkas. Ang bilang na 40 hanggang sa ika-15 siglo ay tinawag na "apatnapu", pagkatapos ay pinalitan ito ng salitang "apatnapu", na orihinal na tumutukoy sa isang bag na naglalaman ng 40 ardilya o balat ng sable. Ang pangalang "milyon" ay lumitaw sa Italya noong 1500. Ito ay nabuo sa pamamagitan ng pagdaragdag ng augmentative suffix sa bilang na "mille" (thousand). Nang maglaon, ang pangalang ito ay dumating sa Russian.

Sa lumang (XVIII siglo) "Arithmetic" ng Magnitsky, mayroong isang talahanayan ng mga pangalan ng mga numero, na dinala sa "quadrillion" (10 ^ 24, ayon sa sistema sa pamamagitan ng 6 na numero). Perelman Ya.I. sa aklat na "Entertaining Arithmetic" ang mga pangalan ng malaking bilang ng panahong iyon ay ibinigay, medyo naiiba sa ngayon: septillon (10 ^ 42), octalion (10 ^ 48), nonalion (10 ^ 54), decalion (10 ^ 60) , endecalion (10 ^ 66), dodecalion (10 ^ 72) at nakasulat na "wala nang iba pang pangalan."

Mga paraan upang bumuo ng mga pangalan ng malalaking numero

Mayroong 2 pangunahing paraan upang pangalanan ang malalaking numero:

  • sistemang Amerikano, na ginagamit sa USA, Russia, France, Canada, Italy, Turkey, Greece, Brazil. Ang mga pangalan ng malalaking numero ay binuo nang simple: sa simula mayroong isang Latin na ordinal na numero, at ang suffix na "-million" ay idinagdag dito sa dulo. Ang pagbubukod ay ang bilang na "milyon", na siyang pangalan ng bilang isang libo (mille) at ang magnifying suffix na "-million". Ang bilang ng mga zero sa isang numero na nakasulat sa American system ay matatagpuan sa pamamagitan ng formula: 3x + 3, kung saan ang x ay isang Latin na ordinal na numero
  • sistemang Ingles pinakakaraniwan sa mundo, ginagamit ito sa Germany, Spain, Hungary, Poland, Czech Republic, Denmark, Sweden, Finland, Portugal. Ang mga pangalan ng mga numero ayon sa sistemang ito ay binuo tulad ng sumusunod: ang suffix na "-million" ay idinagdag sa Latin numeral, ang susunod na numero (1000 beses na mas malaki) ay ang parehong Latin numeral, ngunit ang suffix na "-bilyon" ay idinagdag. Ang bilang ng mga zero sa isang numero na nakasulat sa sistemang Ingles at nagtatapos sa suffix na "-million" ay makikita ng formula: 6x + 3, kung saan ang x ay isang Latin na ordinal na numero. Ang bilang ng mga zero sa mga numerong nagtatapos sa suffix na “-billion” ay makikita sa pamamagitan ng formula: 6x + 6, kung saan ang x ay isang Latin na ordinal na numero.

Mula sa sistemang Ingles, tanging ang salitang bilyon ang pumasa sa wikang Ruso, na mas tama pa ring tawagin ito sa paraan ng pagtawag dito ng mga Amerikano - bilyon (dahil ang sistemang Amerikano para sa pagbibigay ng pangalan sa mga numero ay ginagamit sa Ruso).

Bilang karagdagan sa mga numerong nakasulat sa American o English system gamit ang Latin prefix, ang mga non-systemic na numero ay kilala na may sariling mga pangalan nang walang Latin prefix.

Mga wastong pangalan para sa malalaking numero

Numero Latin numeral Pangalan Praktikal na halaga
10 1 10 sampu Bilang ng mga daliri sa 2 kamay
10 2 100 daan Tinatayang kalahati ng bilang ng lahat ng estado sa Earth
10 3 1000 isang libo Tinatayang bilang ng mga araw sa loob ng 3 taon
10 6 1000 000 unus (ako) milyon 5 beses na higit sa bilang ng mga patak sa isang 10-litro. timba ng tubig
10 9 1000 000 000 dalawa(II) bilyon (bilyon) Tinatayang populasyon ng India
10 12 1000 000 000 000 tres(III) trilyon
10 15 1000 000 000 000 000 quattor(IV) quadrillion 1/30 ng haba ng parsec sa metro
10 18 quinque (V) quintillion 1/18 ng bilang ng mga butil mula sa maalamat na parangal sa imbentor ng chess
10 21 kasarian (VI) sextillion 1/6 ng masa ng planetang Earth sa tonelada
10 24 septem(VII) septillion Bilang ng mga molekula sa 37.2 litro ng hangin
10 27 octo(VIII) octillion Kalahati ng masa ng Jupiter sa kilo
10 30 nobem(IX) quintillion 1/5 ng lahat ng microorganism sa planeta
10 33 decem(X) decillion Kalahati ng masa ng Araw sa gramo
  • Vigintillion (mula sa lat. viginti - dalawampu) - 10 63
  • Centillion (mula sa Latin centum - isang daan) - 10 303
  • Milleillion (mula sa Latin na mille - thousand) - 10 3003

Para sa mga numerong higit sa isang libo, ang mga Romano ay walang sariling mga pangalan (lahat ng mga pangalan ng mga numero sa ibaba ay pinagsama-sama).

Mga compound na pangalan para sa malalaking numero

Bilang karagdagan sa kanilang sariling mga pangalan, para sa mga numerong higit sa 10 33 maaari kang makakuha ng mga tambalang pangalan sa pamamagitan ng pagsasama-sama ng mga prefix.

Mga compound na pangalan para sa malalaking numero

Numero Latin numeral Pangalan Praktikal na halaga
10 36 undecim (XI) andecillion
10 39 duodecim(XII) duodecillion
10 42 tredecim(XIII) tredecillion 1/100 ng bilang ng mga molekula ng hangin sa Earth
10 45 quattuordecim (XIV) quattordecillion
10 48 quindecim (XV) quindecillion
10 51 sedecim (XVI) sexdecillion
10 54 septendecim (XVII) septemdecillion
10 57 octodecillion Napakaraming elementong particle sa araw
10 60 novemdecillion
10 63 viginti (XX) viintillion
10 66 unus et viginti (XXI) anvigintillion
10 69 duo et viginti (XXII) duovigintillion
10 72 tres et viginti (XXIII) trevigintillion
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion Napakaraming elementarya na particle sa uniberso
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 triginta (XXX) trigintillion
10 96 antirigintillion
  • 10 123 - quadragintillion
  • 10 153 - quinquagintillion
  • 10 183 - sexagintillion
  • 10 213 - septuagintillion
  • 10 243 - octogintillion
  • 10 273 - nonagintillion
  • 10 303 - sentilyon

Ang karagdagang mga pangalan ay maaaring makuha sa pamamagitan ng direkta o baligtad na pagkakasunud-sunod ng mga Latin na numero (hindi alam kung paano tama):

  • 10 306 - ancentillion o centunillion
  • 10 309 - duocentillion o centduollion
  • 10 312 - trecentillion o centtrillion
  • 10 315 - quattorcentillion o centquadrillion
  • 10 402 - tretrigintacentillion o centtretrigintillion

Ang pangalawang pagbabaybay ay higit na naaayon sa pagbuo ng mga numeral sa Latin at iniiwasan ang mga kalabuan (halimbawa, sa bilang na trecentillion, na sa unang pagbabaybay ay parehong 10903 at 10312).

  • 10 603 - decentillion
  • 10 903 - trecentillion
  • 10 1203 - quadringentillion
  • 10 1503 - quingentillion
  • 10 1803 - sescentillion
  • 10 2103 - septingentillion
  • 10 2403 - octingentillion
  • 10 2703 - nongentillion
  • 10 3003 - milyon
  • 10 6003 - duomillion
  • 10 9003 - tremillion
  • 10 15003 - quinquemillion
  • 10 308760 -ion
  • 10 3000003 - miamimiliaillion
  • 10 6000003 - duomyamimiliaillion

napakarami– 10,000. Ang pangalan ay hindi na ginagamit at halos hindi na ginagamit. Gayunpaman, ang salitang "myriad" ay malawakang ginagamit, na nangangahulugang hindi isang tiyak na numero, ngunit isang hindi mabilang, hindi mabilang na hanay ng isang bagay.

googol ( Ingles . googol) — 10 100 . Ang American mathematician na si Edward Kasner ay unang sumulat tungkol sa numerong ito noong 1938 sa journal na Scripta Mathematica sa artikulong "New Names in Mathematics". Ayon sa kanya, iminungkahi ng kanyang 9 na taong gulang na pamangkin na si Milton Sirotta na tawagan ang numero sa ganitong paraan. Ang numerong ito ay naging kaalaman ng publiko salamat sa Google search engine, na ipinangalan sa kanya.

Asankheyya(mula sa Chinese asentzi - hindi mabilang) - 10 1 4 0. Ang numerong ito ay matatagpuan sa sikat na Buddhist treatise na Jaina Sutra (100 BC). Ito ay pinaniniwalaan na ang bilang na ito ay katumbas ng bilang ng mga cosmic cycle na kinakailangan upang makakuha ng nirvana.

Googolplex ( Ingles . Googolplex) — 10^10^100. Ang numerong ito ay naimbento rin ni Edward Kasner at ng kanyang pamangkin, ibig sabihin ay may googol na mga zero.

Numero ng skewes (Numero ng Skewes Ang Sk 1) ay nangangahulugang e sa kapangyarihan ng e sa kapangyarihan ng e sa kapangyarihan ng 79, ibig sabihin, e^e^e^79. Ang numerong ito ay iminungkahi ni Skewes noong 1933 (Skewes. J. London Math. Soc. 8, 277-283, 1933.) sa pagpapatunay ng haka-haka ni Riemann tungkol sa mga prime number. Nang maglaon, binawasan ni Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x"). Math. Comput. 48, 323-328, 1987) ang numero ni Skuse sa e^e^27/4, na tinatayang katumbas ng 8.185 10^370. Gayunpaman, ang numerong ito ay hindi isang integer, kaya hindi ito kasama sa talahanayan ng malalaking numero.

Pangalawang Skewes Number (Sk2) katumbas ng 10^10^10^10^3, na 10^10^10^1000. Ang numerong ito ay ipinakilala ni J. Skuse sa parehong artikulo upang tukuyin ang bilang kung saan wasto ang Riemann hypothesis.

Para sa mga napakalaking numero, hindi maginhawang gumamit ng mga kapangyarihan, kaya mayroong ilang mga paraan upang magsulat ng mga numero - ang mga notasyon ng Knuth, Conway, Steinhouse, atbp.

Iminungkahi ni Hugo Steinhaus ang pagsulat ng malalaking numero sa loob ng mga geometric na hugis (tatsulok, parisukat at bilog).

Ang mathematician na si Leo Moser ay nagtapos ng notasyon ni Steinhaus, na nagmumungkahi na pagkatapos ng mga parisukat, hindi gumuhit ng mga bilog, ngunit mga pentagon, pagkatapos ay mga heksagono, at iba pa. Iminungkahi din ni Moser ang isang pormal na notasyon para sa mga polygon na ito, upang maisulat ang mga numero nang hindi gumuhit ng mga kumplikadong pattern.

Ang Steinhouse ay nakabuo ng dalawang bagong napakalaking numero: Mega at Megiston. Sa Moser notation, ang mga ito ay isinulat tulad ng sumusunod: Mega – 2, Megiston– 10. Iminungkahi din ni Leo Moser na tawagan ang isang polygon na may bilang ng mga panig na katumbas ng mega – megagon, at iminungkahi din ang numerong "2 sa Megagon" - 2. Ang huling numero ay kilala bilang Numero ni Moser o parang lang Moser.

May mga numerong mas malaki kaysa kay Moser. Ang pinakamalaking bilang na ginamit sa isang mathematical proof ay numero Graham(Numero ni Graham). Ito ay unang ginamit noong 1977 sa patunay ng isang pagtatantya sa teorya ng Ramsey. Ang numerong ito ay nauugnay sa bichromatic hypercubes at hindi maaaring ipahayag nang walang espesyal na 64-level na sistema ng mga espesyal na simbolo ng matematika na ipinakilala ni Knuth noong 1976. Si Donald Knuth (na sumulat ng The Art of Programming at lumikha ng editor ng TeX) ay dumating sa konsepto ng superpower, na iminungkahi niyang isulat gamit ang mga arrow na nakaturo:

Sa pangkalahatan

Iminungkahi ni Graham ang mga G-number:

Ang numerong G 63 ay tinatawag na numero ng Graham, kadalasang simpleng tinutukoy bilang G. Ang numerong ito ay ang pinakamalaking kilalang numero sa mundo at nakalista sa Guinness Book of Records.

Naisip mo na ba kung gaano karaming mga zero ang mayroon sa isang milyon? Ito ay isang medyo simpleng tanong. Paano ang isang bilyon o isang trilyon? Isa na sinusundan ng siyam na zero (1000000000) - ano ang pangalan ng numero?

Isang maikling listahan ng mga numero at ang kanilang quantitative designation

  • Sampu (1 zero).
  • Isang daan (2 zero).
  • Libo (3 zero).
  • Sampung libo (4 na zero).
  • Isang daang libo (5 zero).
  • Milyon (6 na zero).
  • Bilyon (9 na zero).
  • Trilyon (12 zero).
  • Quadrillion (15 zero).
  • Quintillion (18 zero).
  • Sextillion (21 zero).
  • Septillion (24 zeros).
  • Oktalion (27 zero).
  • Nonalion (30 zero).
  • Dekalyon (33 zero).

Pagpapangkat ng mga zero

1000000000 - ano ang pangalan ng numero na mayroong 9 na zero? Ito ay isang bilyon. Para sa kaginhawahan, ang malalaking numero ay pinagsama-sama sa tatlong set, na pinaghihiwalay sa isa't isa ng espasyo o mga bantas tulad ng kuwit o tuldok.

Ginagawa ito para mas madaling basahin at maunawaan ang quantitative value. Halimbawa, ano ang pangalan ng numerong 1000000000? Sa form na ito, ito ay nagkakahalaga ng isang maliit na naprechis, bilangin. At kung sumulat ka ng 1,000,000,000, pagkatapos ay agad na ang gawain ay nagiging mas madali sa paningin, kaya kailangan mong bilangin hindi mga zero, ngunit triples ng mga zero.

Mga numerong may napakaraming zero

Sa pinakasikat ay milyon at bilyon (1000000000). Ano ang tawag sa numerong may 100 zero? Ito ang numero ng googol, na tinatawag din ni Milton Sirotta. Iyan ay isang napakalaking bilang. Sa tingin mo ba ito ay isang malaking numero? At paano ang isang googolplex, isang sinusundan ng isang googol ng mga zero? Ang figure na ito ay napakalaki na mahirap na magkaroon ng kahulugan para dito. Sa katunayan, hindi na kailangan ang gayong mga higante, maliban sa bilangin ang bilang ng mga atomo sa walang katapusang Uniberso.

Malaki ba ang 1 bilyon?

Mayroong dalawang sukat ng pagsukat - maikli at mahaba. Sa buong mundo sa agham at pananalapi, ang 1 bilyon ay 1,000 milyon. Ito ay nasa maikling sukat. Ayon sa kanya, ito ay isang numero na may 9 na mga zero.

Mayroon ding isang mahabang sukat, na ginagamit sa ilang mga bansa sa Europa, kabilang ang France, at dating ginamit sa UK (hanggang 1971), kung saan ang isang bilyon ay 1 milyong milyon, iyon ay, isa at 12 zero. Ang gradasyong ito ay tinatawag ding long-term scale. Ang maikling sukat ay nangingibabaw na ngayon sa mga bagay na pinansyal at siyentipiko.

Ang ilang wikang European gaya ng Swedish, Danish, Portuguese, Spanish, Italian, Dutch, Norwegian, Polish, German ay gumagamit ng isang bilyon (o isang bilyon) na character sa system na ito. Sa Russian, ang isang numero na may 9 na mga zero ay inilarawan din para sa isang maikling sukat na isang libong milyon, at isang trilyon ay isang milyong milyon. Iniiwasan nito ang hindi kinakailangang kalituhan.

Mga opsyon sa pag-uusap

Sa Russian kolokyal na pananalita pagkatapos ng mga kaganapan noong 1917 - ang Great October Revolution - at ang panahon ng hyperinflation noong unang bahagi ng 1920s. Ang 1 bilyong rubles ay tinawag na "limard". At sa napakagandang 1990s, isang bagong slang expression na "pakwan" ang lumitaw para sa isang bilyon, isang milyon ang tinawag na "lemon".

Ang salitang "bilyon" ay ginagamit na ngayon sa buong mundo. Ito ay isang natural na numero, na ipinapakita sa decimal system bilang 10 9 (isa at 9 na mga zero). Mayroon ding isa pang pangalan - isang bilyon, na hindi ginagamit sa Russia at sa mga bansa ng CIS.

Bilyon = bilyon?

Ang ganitong salita bilang isang bilyon ay ginagamit upang tukuyin ang isang bilyon lamang sa mga estado kung saan ang "maikling sukat" ay kinuha bilang batayan. Ang mga bansang ito ay ang Russian Federation, United Kingdom ng Great Britain at Northern Ireland, USA, Canada, Greece at Turkey. Sa ibang mga bansa, ang konsepto ng isang bilyon ay nangangahulugan ng bilang na 10 12, iyon ay, isa at 12 na mga zero. Sa mga bansang may "short scale", kabilang ang Russia, ang figure na ito ay tumutugma sa 1 trilyon.

Ang ganitong pagkalito ay lumitaw sa France sa panahon na ang pagbuo ng naturang agham bilang algebra ay nagaganap. Ang bilyon ay orihinal na mayroong 12 zero. Gayunpaman, nagbago ang lahat pagkatapos ng paglitaw ng pangunahing manwal sa aritmetika (may-akda Tranchan) noong 1558), kung saan ang isang bilyon ay isa nang numero na may 9 na zero (isang libong milyon).

Para sa ilang kasunod na mga siglo, ang dalawang konsepto na ito ay ginamit sa isang par sa bawat isa. Sa kalagitnaan ng ika-20 siglo, lalo na noong 1948, lumipat ang France sa isang long-scale system ng mga numerical na pangalan. Kaugnay nito, ang maikling sukat, na minsang hiram sa Pranses, ay iba pa rin sa ginagamit nila ngayon.

Sa kasaysayan, ginamit ng United Kingdom ang pangmatagalang bilyon, ngunit mula noong 1974 ang opisyal na istatistika ng UK ay gumamit ng panandaliang sukat. Mula noong 1950s, ang panandaliang iskala ay lalong ginagamit sa larangan ng teknikal na pagsulat at pamamahayag, kahit na ang pangmatagalang iskala ay pinananatili pa rin.

Hunyo 17, 2015

“Nakikita ko ang mga kumpol ng hindi malinaw na mga numero na nakatago doon sa dilim, sa likod ng maliit na lugar ng liwanag na ibinibigay ng kandila ng isip. Nagbubulungan sila sa isa't isa; pinag-uusapan kung sino ang nakakaalam kung ano. Marahil ay hindi nila tayo gaanong nagustuhan sa paghuli sa kanilang maliliit na kapatid sa ating isipan. O baka namumuhay lang sila sa isang hindi malabo na paraan ng pamumuhay, sa labas, na lampas sa aming pang-unawa.''
Douglas Ray

Ipagpatuloy natin ang atin. Ngayon ay mayroon tayong mga numero...

Maaga o huli, lahat ay pinahihirapan ng tanong, ano ang pinakamalaking bilang. Ang tanong ng isang bata ay masasagot sa isang milyon. Anong susunod? Trilyon. At higit pa? Sa katunayan, ang sagot sa tanong kung ano ang pinakamalaking numero ay simple. Ito ay nagkakahalaga lamang ng pagdaragdag ng isa sa pinakamalaking bilang, dahil hindi na ito ang pinakamalaki. Ang pamamaraang ito ay maaaring ipagpatuloy nang walang katapusan.

Ngunit kung tatanungin mo ang iyong sarili: ano ang pinakamalaking bilang na umiiral, at ano ang sariling pangalan nito?

Ngayon alam na nating lahat...

Mayroong dalawang sistema para sa pagbibigay ng pangalan sa mga numero - Amerikano at Ingles.

Ang sistemang Amerikano ay binuo nang simple. Ang lahat ng mga pangalan ng malalaking numero ay binuo tulad nito: sa simula ay mayroong isang Latin na ordinal na numero, at sa dulo ang suffix -million ay idinagdag dito. Ang pagbubukod ay ang pangalang "milyon" na siyang pangalan ng bilang isang libo (lat. mille) at ang magnifying suffix -million (tingnan ang talahanayan). Kaya ang mga numero ay nakuha - trilyon, quadrillion, quintillion, sextillion, septillion, octillion, nonillion at decillion. Ang sistemang Amerikano ay ginagamit sa USA, Canada, France at Russia. Maaari mong malaman ang bilang ng mga zero sa isang numerong nakasulat sa American system gamit ang simpleng formula na 3 x + 3 (kung saan ang x ay Latin numeral).

Ang sistema ng pagpapangalan sa Ingles ay ang pinakakaraniwan sa mundo. Ginagamit ito, halimbawa, sa Great Britain at Spain, gayundin sa karamihan ng mga dating kolonya ng Ingles at Espanyol. Ang mga pangalan ng mga numero sa sistemang ito ay binuo tulad nito: tulad nito: isang suffix -million ay idinagdag sa Latin numeral, ang susunod na numero (1000 beses na mas malaki) ay binuo ayon sa prinsipyo - ang parehong Latin numeral, ngunit ang suffix ay - bilyon. Iyon ay, pagkatapos ng isang trilyon sa sistema ng Ingles ay darating ang isang trilyon, at pagkatapos lamang ng isang quadrillion, na sinusundan ng isang quadrillion, at iba pa. Kaya, ang isang quadrillion ayon sa English at American system ay ganap na magkaibang mga numero! Maaari mong malaman ang bilang ng mga zero sa isang numerong nakasulat sa English system at nagtatapos sa suffix -million gamit ang formula 6 x + 3 (kung saan ang x ay Latin numeral) at gamit ang formula na 6 x + 6 para sa mga numerong nagtatapos sa -bilyon.

Tanging ang bilang na bilyon (10 9 ) lamang ang lumipas mula sa sistemang Ingles patungo sa wikang Ruso, na, gayunpaman, ay mas tamang tawagin ito sa paraan ng pagtawag dito ng mga Amerikano - isang bilyon, dahil pinagtibay natin ang sistemang Amerikano. Ngunit sino sa ating bansa ang gumagawa ng isang bagay ayon sa mga patakaran! ;-) Sa pamamagitan ng paraan, kung minsan ang salitang trilyon ay ginagamit din sa Russian (makikita mo para sa iyong sarili sa pamamagitan ng pagpapatakbo ng paghahanap sa Google o Yandex) at nangangahulugan ito, tila, 1000 trilyon, i.e. quadrillion.

Bilang karagdagan sa mga numerong isinulat gamit ang mga Latin na prefix sa American o English system, ang tinatawag na mga off-system na numero ay kilala rin, i.e. mga numero na may sariling mga pangalan nang walang anumang Latin prefix. Mayroong ilang mga naturang numero, ngunit pag-uusapan ko ang mga ito nang mas detalyado sa ibang pagkakataon.

Bumalik tayo sa pagsulat gamit ang Latin numerals. Tila maaari silang sumulat ng mga numero hanggang sa kawalang-hanggan, ngunit hindi ito ganap na totoo. Ngayon ipapaliwanag ko kung bakit. Tingnan muna natin kung paano tinawag ang mga numero mula 1 hanggang 10 33:

At kaya, ngayon ang tanong ay lumitaw, kung ano ang susunod. Ano ang isang decillion? Sa prinsipyo, posible, siyempre, sa pamamagitan ng pagsasama-sama ng mga prefix upang makabuo ng mga halimaw gaya ng: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion at novemdecillion, ngunit ang mga ito ay magiging mga tambalang pangalan, at kami ay interesado sa aming sariling mga numero ng pangalan. Samakatuwid, ayon sa sistemang ito, bilang karagdagan sa itaas, maaari ka pa ring makakuha ng tatlong tamang pangalan - vigintillion (mula sa lat.viginti- dalawampu't), sentilyon (mula sa lat.porsyento- isang daan) at isang milyon (mula sa lat.mille- isang libo). Ang mga Romano ay walang higit sa isang libong wastong pangalan para sa mga numero (lahat ng mga numero na higit sa isang libo ay pinagsama-sama). Halimbawa, isang milyon (1,000,000) Romano ang tumawagcentena miliaibig sabihin, sampung daang libo. At ngayon, sa totoo lang, ang talahanayan:

Kaya, ayon sa isang katulad na sistema, ang mga numero ay higit sa 10 3003 , na magkakaroon ng sarili nitong, di-compound na pangalan, imposibleng makuha! Ngunit gayunpaman, ang mga numerong higit sa isang milyon ay kilala - ito ang mga hindi sistematikong numero. Sa wakas, pag-usapan natin sila.


Ang pinakamaliit na bilang ay isang napakaraming bilang (ito ay kahit na sa diksyunaryo ni Dahl), na nangangahulugang isang daang daan, iyon ay, 10,000. Totoo, ang salitang ito ay lipas na at halos hindi na ginagamit, ngunit ito ay kakaiba na ang salitang "myriad" ay malawak. ginamit, na hindi nangangahulugang isang tiyak na numero, ngunit isang hindi mabilang, hindi mabilang na hanay ng isang bagay. Ito ay pinaniniwalaan na ang salitang myriad (English myriad) ay dumating sa mga wikang European mula sa sinaunang Egypt.

Mayroong iba't ibang mga opinyon tungkol sa pinagmulan ng numerong ito. Ang ilan ay naniniwala na ito ay nagmula sa Egypt, habang ang iba ay naniniwala na ito ay ipinanganak lamang sa sinaunang Greece. Maging na ito ay maaaring, sa katunayan, ang napakaraming bilang ay nakakuha ng katanyagan tiyak salamat sa mga Greeks. Myriad ang pangalan para sa 10,000, at walang mga pangalan para sa mga numerong higit sa sampung libo. Gayunpaman, sa tala na "Psammit" (i.e., ang calculus ng buhangin), ipinakita ni Archimedes kung paano sistematikong makakabuo at makapangalan ang isang tao ng arbitraryong malalaking numero. Sa partikular, ang paglalagay ng 10,000 (myriad) na butil ng buhangin sa isang poppy seed, nalaman niya na sa Uniberso (isang bola na may diameter ng isang napakaraming diameter ng Earth) ay magkasya (sa aming notasyon) ng hindi hihigit sa 10 63 butil ng buhangin. Nakakapagtataka na ang mga modernong kalkulasyon ng bilang ng mga atomo sa nakikitang uniberso ay humahantong sa bilang na 10 67 (isang napakaraming beses lamang). Ang mga pangalan ng mga numerong iminungkahi ni Archimedes ay ang mga sumusunod:
1 myriad = 10 4 .
1 di-myriad = myriad myriad = 10 8 .
1 tri-myriad = di-myriad di-myriad = 10 16 .
1 tetra-myriad = tatlong-myriad tatlong-myriad = 10 32 .
atbp.



Ang Googol (mula sa Ingles na googol) ay ang bilang na sampu hanggang sa ika-isang daang kapangyarihan, iyon ay, isa na may isang daang zero. Ang "googol" ay unang isinulat noong 1938 sa artikulong "Mga Bagong Pangalan sa Matematika" sa isyu ng Enero ng journal na Scripta Mathematica ng American mathematician na si Edward Kasner. Ayon sa kanya, iminungkahi ng kanyang siyam na taong gulang na pamangkin na si Milton Sirotta na tawagan ang isang malaking bilang ng "googol". Ang numerong ito ay naging kilala salamat sa search engine na ipinangalan sa kanya. Google. Tandaan na ang "Google" ay isang trademark at ang googol ay isang numero.


Edward Kasner.

Sa Internet, madalas mong mahahanap iyon - ngunit hindi ito ganoon ...

Sa kilalang Buddhist treatise na Jaina Sutra, mula noong 100 BC, ang bilang na Asankheya (mula sa Chinese. asentzi- hindi makalkula), katumbas ng 10 140. Ito ay pinaniniwalaan na ang bilang na ito ay katumbas ng bilang ng mga cosmic cycle na kinakailangan upang makamit ang nirvana.


Googolplex (Ingles) googolplex) - isang numero na naimbento din ni Kasner kasama ang kanyang pamangkin at nangangahulugang isa na may googol ng mga zero, iyon ay, 10 10100 . Narito kung paano inilarawan mismo ni Kasner ang "pagtuklas" na ito:


Ang mga salita ng karunungan ay binibigkas ng mga bata kahit gaano kadalas ng mga siyentipiko. Ang pangalang "googol" ay naimbento ng isang bata (siyam na taong gulang na pamangkin ni Dr. Kasner) na hiniling na mag-isip ng isang pangalan para sa isang napakalaking numero, ibig sabihin, 1 na may isang daang sero pagkatapos nito. Siya ay napaka tiyak na ang numerong ito ay hindi walang hanggan, at samakatuwid ay pantay na tiyak na kailangan itong magkaroon ng isang pangalan. isang googol, ngunit may hangganan pa rin, gaya ng mabilis na itinuro ng imbentor ng pangalan.

Matematika at ang Imahinasyon(1940) nina Kasner at James R. Newman.

Kahit na mas malaki kaysa sa numero ng googolplex, ang numero ng Skewes ay iminungkahi ni Skewes noong 1933 (Skewes. J. London Math. soc. 8, 277-283, 1933.) sa pagpapatunay ng haka-haka ni Riemann tungkol sa mga prime number. Ibig sabihin e hanggang sa e hanggang sa e sa kapangyarihan ng 79, ibig sabihin, ee e 79 . Nang maglaon, si Riele (te Riele, H. J. J. "Sa Tanda ng Pagkakaiba P(x)-Li(x)." Math. Comput. 48, 323-328, 1987) binawasan ang numero ni Skuse sa ee 27/4 , na tinatayang katumbas ng 8.185 10 370 . Ito ay malinaw na dahil ang halaga ng numero ng Skewes ay nakasalalay sa numero e, kung gayon hindi ito isang integer, kaya hindi natin ito isasaalang-alang, kung hindi, kailangan nating alalahanin ang iba pang mga hindi natural na numero - ang numerong pi, ang numero e, atbp.


Ngunit dapat tandaan na mayroong pangalawang numero ng Skewes, na sa matematika ay tinutukoy bilang Sk2 , na mas malaki pa kaysa sa unang numero ng Skewes (Sk1). Pangalawang numero ni Skuse, ay ipinakilala ni J. Skuse sa parehong artikulo upang tukuyin ang isang numero kung saan ang Riemann hypothesis ay hindi wasto. Ang Sk2 ay 1010 10103 , ibig sabihin, 1010 101000 .

Tulad ng naiintindihan mo, mas maraming degree ang mayroon, mas mahirap maunawaan kung alin sa mga numero ang mas malaki. Halimbawa, ang pagtingin sa mga numero ng Skewes, nang walang mga espesyal na kalkulasyon, halos imposibleng maunawaan kung alin sa dalawang numerong ito ang mas malaki. Kaya, para sa napakalaking bilang, nagiging hindi komportable na gumamit ng mga kapangyarihan. Bukod dito, maaari kang makabuo ng mga naturang numero (at naimbento na sila) kapag ang mga degree ng degree ay hindi magkasya sa pahina. Oo, anong pahina! Ni hindi sila magkakasya sa isang aklat na kasing laki ng buong uniberso! Sa kasong ito, ang tanong ay lumitaw kung paano isulat ang mga ito. Ang problema, tulad ng naiintindihan mo, ay malulutas, at ang mga mathematician ay nakabuo ng ilang mga prinsipyo para sa pagsulat ng mga naturang numero. Totoo, ang bawat matematiko na nagtanong sa problemang ito ay may sariling paraan ng pagsulat, na humantong sa pagkakaroon ng maraming, hindi nauugnay, mga paraan upang magsulat ng mga numero - ito ang mga notasyon ng Knuth, Conway, Steinhaus, atbp.

Isaalang-alang ang notasyon ni Hugo Stenhaus (H. Steinhaus. Mga Snapshot ng Matematika, 3rd edn. 1983), na medyo simple. Iminungkahi ni Steinhouse na magsulat ng malalaking numero sa loob ng mga geometric na hugis - isang tatsulok, isang parisukat at isang bilog:

Nakaisip si Steinhouse ng dalawang bagong napakalaking numero. Tinawag niya ang numero - Mega, at ang numero - Megiston.

Pino ng mathematician na si Leo Moser ang notasyon ni Stenhouse, na nililimitahan ng katotohanan na kung kinakailangan na magsulat ng mga numero na mas malaki kaysa sa isang megiston, ang mga paghihirap at abala ay lumitaw, dahil maraming mga bilog ang kailangang iguguhit sa loob ng isa. Iminungkahi ni Moser na huwag gumuhit ng mga bilog pagkatapos ng mga parisukat, ngunit mga pentagon, pagkatapos ay mga hexagon, at iba pa. Iminungkahi din niya ang isang pormal na notasyon para sa mga polygon na ito, upang ang mga numero ay maisulat nang hindi gumuhit ng mga kumplikadong pattern. Mukhang ganito ang notasyon ng Moser:

Kaya, ayon sa notasyon ni Moser, ang mega ni Steinhouse ay isinulat bilang 2, at megiston bilang 10. Bilang karagdagan, iminungkahi ni Leo Moser na tumawag sa isang polygon na may bilang ng mga panig na katumbas ng mega - megagon. At iminungkahi niya ang numerong "2 sa Megagon", iyon ay, 2. Ang numerong ito ay nakilala bilang numero ni Moser o simpleng bilang moser.


Ngunit ang moser ay hindi ang pinakamalaking bilang. Ang pinakamalaking bilang na ginamit sa isang mathematical proof ay ang limiting value na kilala bilang Graham's number, na unang ginamit noong 1977 sa patunay ng isang pagtatantya sa Ramsey theory. Ito ay nauugnay sa bichromatic hypercubes at hindi maaaring ipahayag nang walang espesyal na 64-level na sistema ng mga espesyal na simbolo ng matematika na ipinakilala ni Knuth noong 1976.

Sa kasamaang palad, ang numerong nakasulat sa Knuth notation ay hindi maisasalin sa Moser notation. Samakatuwid, ang sistemang ito ay kailangan ding ipaliwanag. Sa prinsipyo, wala ring kumplikado dito. Si Donald Knuth (oo, oo, ito ang parehong Knuth na sumulat ng The Art of Programming at lumikha ng editor ng TeX) ay dumating sa konsepto ng superpower, na iminungkahi niyang isulat gamit ang mga arrow na nakaturo:

Sa pangkalahatan, ganito ang hitsura:

Sa tingin ko ay malinaw na ang lahat, kaya't bumalik tayo sa numero ni Graham. Iminungkahi ni Graham ang tinatawag na G-numbers:


  1. G1 = 3..3, kung saan ang bilang ng mga superdegree na arrow ay 33.

  2. G2 = ..3, kung saan ang bilang ng mga superdegree na arrow ay katumbas ng G1 .

  3. G3 = ..3, kung saan ang bilang ng mga superdegree na arrow ay katumbas ng G2 .


  4. G63 = ..3, kung saan ang bilang ng mga superpower na arrow ay G62 .

Ang numerong G63 ay naging kilala bilang ang numero ng Graham (ito ay madalas na tinutukoy bilang G). Ang numerong ito ang pinakamalaking kilalang numero sa mundo at nakalista pa sa Guinness Book of Records. At dito