Первичной структурой белка является. Строение и функции белков

5. Регуляторная функция . Белки осуществляют функции сигнальных веществ - некоторых гормонов, гистогормонов и нейромедиаторов, являются рецепторами к сигнальным веществам любого строения, обеспечивают дальнейшую передачу сигнала в биохимических сигнальных цепях клетки. Примерами могут служить гормон роста соматотропин , гормон инсулин , Н- и М-холинорецепторы .

6. Двигательная функция . С помощью белков осуществляются процессы сокращения и другого биологического движения. Примерами могут служить тубулин, актин , миозин.

7. Запасная функция . В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами, в организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.

Для белков характерным является наличие нескольких уровней структурной организации.

Первичной структурой белка называют последовательность аминокислотных остатков в полипептидной цепи. Пептидная связь - это карбоксамидная связь между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой аминокислоты.

аланилфенилаланилцистеилпролин

У пептидной связи есть несколько особенностей:

а) она резонансно стабилизирована и поэтому находится практически в одной плоскости - планарна; вращение вокруг связи С-N требует больших затрат энергии и затруднено;

б) у связи -CO-NH- особый характер, она меньше, чем обычная, но больше, чем двойная, то есть существует кетоенольная таутомерия :

в) заместители по отношению к пептидной связи находятся в транс -положении;

г) пептидный остов окружен разнообразными по своей природе боковыми цепями, взаимодействуя с окружающими молекулами растворителя, свободные карбоксильные и аминогруппы ионизируются, образуя катионные и анионные центры молекулы белка. В зависимости от их соотношения белковая молекула получает суммарный положительный или отрицательный заряд, а также характеризуется тем или иным значением рН среды при достижении изоэлектрической точки белка. Радикалы образуют солевые, эфирные, дисульфидные мостики внутри молекулы белка, а также определяют круг реакций, свойственных белкам.


В настоящее время условились считать белками полимеры, состоящие из 100 и более аминокислотных остатков, полипептидами - полимеры, состоящие из 50-100 аминокислотных остатков, низкомолекулярными пептидами - полимеры, состоящие из менее 50 аминокислотных остатков.

Некоторые низкомолекулярные пептиды играют самостоятельную биологическую роль. Примеры некоторых таких пептидов:

Глутатион - γ-глу-цис-гли - один из наиболее широко распространен-ных внутриклеточных пептидов, принимает участие в окислительно-восстановительных процессах в клетках и переносе аминокислот через биологические мембраны.

Карнозин - β-ала-гис - пептид, содержащийся в мышцах животных, устраняет продукты перекисного расщепления липидов, ускоряет процесс распада углеводов в мышцах и в виде фосфата вовлекается в энергетический обмен в мышцах.

Вазопрессин - гормон задней доли гипофиза, участвующий в регуля-ции водного обмена организма:

Фаллоидин - ядовитый полипептид мухомора, в ничтожных концентрациях вызывает гибель организма вследствие выхода ферментов и ионов калия из клеток:

Грамицидин - антибиотик , действующий на многие грамположительные бактерии, изменяет проницаемость биологических мембран для низкомолекулярных соединений и вызывает гибель клеток:

Мет -энкефалин - тир-гли-гли-фен-мет - пептид, синтезирующийся в нейронах и ослабляющий болевые ощущения.

Вторичная структура белка - это пространственная структура, образующаяся в результате взаимодействий между функциональными группами пептидного остова.

Пептидная цепь содержит множество СО- и NH-групп пептидных связей, каждая из которых потенциально способна участвовать в образовании водородных связей. Существуют два главных типа структур, которые позволяют это осуществить: α-спираль, в которую цепь свертывается как шнур от телефонной трубки, и складчатая β-структура, в которой бок о бок уложены вытянутые участки одной или нескольких цепей. Обе эти структуры весьма стабильны.

α-Спираль характеризуется предельно плотной упаковкой скрученной полипептидной цепи, на каждый виток правозакрученной спирали приходится 3,6 аминокислотных остатка, радикалы которых направлены всегда наружу и немного назад, то есть в начало полипептидной цепи.

Основные характеристики α-спирали:

1) α-спираль стабилизируется водородными связями между атомом водорода при азоте пептидной группы и карбонильным кислородом остатка, отстоящего от данного вдоль цепи на четыре позиции;

2) в образовании водородной связи участвуют все пептидные группы, это обеспечивает максимальную стабильность α-спирали;

3) в образовании водородных связей вовлечены все атомы азота и кислорода пептидных групп, что в значительной мере снижает гидрофильность α-спиральных областей и увеличивает их гидрофобность;

4) α-спираль образуется самопроизвольно и является наиболее устойчивой конформацией полипептидной цепи, отвечающей минимуму свободной энергии;

5) в полипептидной цепи из L-аминокислот правая спираль, обычно обнаруживаемая в белках, намного стабильнее левой.

Возможность образования α-спирали обусловлена первичной структурой белка. Некоторые аминокислоты препятствуют закручиванию пептидного остова. Например, расположенные рядом карбоксильные группы глутамата и аспартата взаимно отталкиваются друг от друга, что препятствует образованию водородных связей в α-спирали. По этой же причине затруднена спирализация цепи в местах близко расположенных друг к другу положительно заряженных остатков лизина и аргинина. Однако наибольшую роль в нарушении α-спирали играет пролин. Во-первых, в пролине атом азота входит в состав жесткого кольца, что препятствует вращению вокруг связи N-C, во-вторых, пролин не образует водородную связь из-за отсутствия водорода при атоме азота.

β-складчатость - это слоистая структура , образуемая водородными связями между линейно расположенными пептидными фрагментами. Обе цепи могут быть независимыми или принадлежать одной молекуле полипептида. Если цепи ориентированы в одном направлении, то такая β-структура называется параллельной. В случае противоположного направления цепей, то есть когда N-конец одной цепи совпадает с С-концом другой цепи, β-структура называется антипараллельной. Энергетически более предпочтительна антипараллельная β-складчатость с почти линейными водородными мостиками.

параллельная β-складчатость антипараллельная β-складчатость

В отличие от α-спирали , насыщенной водородными связями, каждый участок цепи β-складчатости открыт для образования дополнительных водородных связей. Боковые радикалы аминокислот ориентированы почти перпендикулярно плоскости листа попеременно вверх и вниз.

В тех участках, где пептидная цепь изгибается достаточно круто, часто находится β-петля. Это короткий фрагмент, в котором 4 аминокислотных остатка изгибаются на 180 о и стабилизируются одним водородным мостиком между первым и четвертым остатками. Большие аминокислотные радикалы мешают образованию β-петли, поэтому в нее чаще всего входит самая маленькая аминокислота глицин.

Надвторичная структура белка - это некоторый специфический порядок чередования вторичных структур. Под доменом понимают обособленную часть молекулы белка, обладающую в определенной степени структурной и функциональной автономией. Сейчас домены считают фундаментальными элементами структуры белковых молекул и соотношение и характер компоновки α-спиралей и β-слоев дает для понимания эволюции белковых молекул и филогенетических связей больше, чем сопоставление первичных структур.

Главной задачей эволюции является конструирование все новых белков. Бесконечно мал шанс случайно синтезировать такую аминокислотную последовательность, которая бы удовлетворила условиям упаковки и обеспечила выполнение функциональных задач. Поэтому часто встречаются белки с различной функцией, но сходные по структуре настолько, что кажется, что они имели одного общего предка или произошли друг от друга. Похоже, что эволюция, столкнувшись с необходимостью решить определенную задачу, предпочитает не конструировать для этого белки сначала, а приспособить для этого уже хорошо отлаженные структуры, адаптируя их для новых целей.

Некоторые примеры часто повторяющихся надвторичных структур:

1) αα’ - белки, содержащие только α-спирали (миоглобин, гемоглобин);

2) ββ’ - белки, содержащие только β-структуры (иммуноглобулины, супероксиддисмутаза);

3) βαβ’ - структура β-бочонка, каждый β-слой расположен внутри бочонка и связан с α-спиралью, находящейся на поверхности молекулы (триозофосфоизомераза, лактатдегидрогеназа);

4) «цинковый палец» - фрагмент белка, состоящий из 20 аминокислотных остатков, атом цинка связан с двумя остатками цистеина и двумя гистидина, в результате чего образуется «палец» из примерно 12 амино-кислотных остатков, может связываться с регуляторными участками молекулы ДНК;

5) «лейциновая застежка-молния» - взаимодействующие белки имеют α-спиральный участок, содержащий по крайней мере 4 остатка лейцина, они расположены через 6 аминокислот один от другого, то есть находятся на поверхности каждого второго витка и могут образовывать гидрофобные связи с лейциновыми остатками другого белка. С помощью лейциновых застежек, например, молекулы сильноосновных белков гистонов могут объединяться в комплексы, преодолевая положительный заряд.

Третичная структура белка - это пространственное расположение молекулы белка, стабилизируемое связями между боковыми радикалами аминокислот.

Типы связей, стабилизирующих третичную структуру белка:

электростатическое водородные гидрофобные дисульфидные взаимодействие связи взаимодействия связи

В зависимости от складывания третичной структуры белки можно классифицировать на два основных типа - фибриллярные и глобулярные.

Фибриллярные белки - нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси. В основном это структурные и сократительные белки. Несколько примеров самых распространенных фибриллярных белков:

1. α- Кератины . Синтезируются клетками эпидермиса. На их долю приходится почти весь сухой вес волос, шерсти, перьев, рогов, ногтей, когтей, игл, чешуи, копыт и черепашьего панциря, а также значительная часть веса наружного слоя кожи. Это целое семейство белков, они сходны по аминокислотному составу, содержат много остатков цистеина и имеют одинаковое пространственное расположение полипептидных цепей.

В клетках волос полипептидные цепи кератина сначала организуются в волокна, из которых затем формируются структуры наподобие каната или скрученного кабеля, заполняющего в конце концов все пространство клетки. Клетки волос становятся при этом уплощенными и, наконец, отмирают, а клеточные стенки образуют вокруг каждого волоса трубчатый чехол, называемый кутикулой. В α-кератине полипептидные цепи имеют форму α-спирали, скручены одна вокруг другой в трехжильный кабель с образованием поперечных дисульфидных связей.

N-концевые остатки расположены с одной стороны (параллельны). Кератины нерастворимы в воде из-за преобладания в их составе аминокислот с неполярными боковыми радикалами, которые обращены в сторону водной фазы. При химической завивке происходят следующие процессы: вначале путем восстановления тиолами разрушаются дисульфидные мостики, а затем при придании волосам необходимой формы их высушивают нагреванием, при этом за счет окисления кислородом воздуха образуются новые дисульфидные мостики, которые сохраняют форму прически.

2. β-Кератины . К ним относятся фиброин шелка и паутины. Представляют из себя антипараллельные β-складчатые слои с преобладанием глицина, аланина и серина в составе.

3. Коллаген . Самый распространенный белок у высших животных и главный фибриллярный белок соединительных тканей. Коллаген синтезируется в фибробластах и хондроцитах - специализированных клетках соединительной ткани, из которых затем выталкивается. Коллагеновые волокна находятся в коже, сухожилиях, хрящах и костях. Они не растяги-ваются, по прочности превосходят стальную проволоку, коллагеновые фибриллы характеризуются поперечной исчерченностью.

При кипячении в воде волокнистый , нерастворимый и неперевариваемый коллаген превращается в желатин в результате гидролиза некоторых ковалентных связей. Коллаген содержит 35% глицина, 11% аланина, 21% пролина и 4-гидроксипролина (аминокислоты, свойственной только для коллагена и эластина). Такой состав определяет относительно низкую питательную ценность желатина как пищевого белка. Фибриллы коллагена состоят из повторяющихся полипептидных субъединиц, называемых тропоколлагеном. Эти субъединицы уложены вдоль фибриллы в виде параллельных пучков по типу «голова к хвосту». Сдвинутость головок и придает характерную поперечную исчерченность. Пустоты в этой структуре при необходимости могут служить местом отложения кристаллов гидроксиапатита Са 5 (ОН)(РО 4) 3 , играющего важную роль в минерализации костей.

Тропоколлагеновые субъединицы состоят из трех полипептидных цепей, плотно скрученных в виде трехжильного каната, отличающегося от α- и β-кератинов. В одних коллагенах все три цепи имеют одинаковую аминокислотную последовательность, тогда как в других идентичны только две цепи, а третья отличается от них. Полипептидная цепь тропоколлагена образует левую спираль, на один виток которой приходится только три аминокислотных остатка из-за изгибов цепи, обусловленной пролином и гидроксипролином. Три цепи связаны между собой кроме водородных связей связью ковалентного типа, образующейся между двумя остатками лизина, находящимися в соседних цепях:

По мере того как мы становимся старше , в тропоколлагеновых субъединицах и между ними образуется все большее число поперечных связей, что делает фибриллы коллагена более жесткими и хрупкими, и это изменяет механические свойства хрящей и сухожилий, делает более ломкими кости и понижает прозрачность роговицы глаза.

4. Эластин . Содержится в желтой эластичной ткани связок и эластическом слое соединительной ткани в стенках крупных артерий. Основная субъединица фибрилл эластина - тропоэластин. Эластин богат глицином и аланином, содержит много лизина и мало пролина. Спиральные участки эластина растягиваются при натяжении, но возвращаются при снятии нагрузки к исходной длине. Остатки лизина четырех разных цепей образуют ковалентные связи между собой и позволяют эластину обратимо растягиваться во всех направлениях.

Глобулярные белки - белки, полипептидная цепь которых свернута в компактную глобулу, способны выполнять самые разнообразные функции.

Третичную структуру глобулярных белко в удобнее всего рассмотреть на примере миоглобина. Миоглобин - это относительно небольшой кислород-связывающий белок, присутствующий в мышечных клетках. Он запасает связанный кислород и способствует его переносу в митохондрии. В молекуле миоглобина находится одна полипептидная цепь и одна гемогруппа (гем) - комплекс протопорфирина с железом.

Основные свойства миоглобина :

а) молекула миоглобина настолько компактна, что внутри нее может уместиться всего 4 молекулы воды;

б) все полярные аминокислотные остатки, за исключением двух, расположены на внешней поверхности молекулы, причем все они находятся в гидратированном состоянии;

в) большая часть гидрофобных аминокислотных остатков расположена внутри молекулы миоглобина и, таким образом, защищена от соприкосно-вения с водой;

г) каждый из четырех остатков пролина в молекуле миоглобина находится в месте изгиба полипептидной цепи, в других местах изгиба расположены остатки серина, треонина и аспарагина, так как такие аминокислоты препятствуют образованию α-спирали, если находятся друг с другом;

д) плоская гемогруппа лежит в полости (кармане) вблизи поверхности молекулы, атом железа имеет две координационные связи, направленные перпендикулярно плоскости гемма, одна из них связана с остатком гистидина 93, а другая служит для связывания молекулы кислорода.

Начиная с третичной структуры белок становится способным выполнять свойственные ему биологические функции. В основе функционирования белков лежит то, что при укладке третичной структуры на поверхности белка образуются участки, которые могут присоединять к себе другие молекулы, называемые лигандами. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда. Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Для большей части белков третичная структура - максимальный уровень укладки.

Четвертичная структура белка - характерна для белков, состоящих из двух и более полипептидных цепей, связанных между собой исключительно нековалентными связями, в основном электростатическими и водородными. Чаще всего белки содержат две или четыре субъединицы, более четырех субъединиц обычно содержат регуляторные белки.

Белки, имеющие четвертичную структуру , часто называются олигомерными. Различают гомомерные и гетеромерные белки. К гомо-мерным относятся белки, у которых все субъединицы имеют одинаковое строение, например, фермент каталаза состоит их четырех абсолютно одинаковых субъединиц. Гетеромерные белки имеют разные субъединицы, например, фермент РНК-полимераза состоит из пяти разных по строению субъединиц, выполняющих разные функции.

Взаимодействие одной субъединицы со специфическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других субъединиц к лигандам, это свойство лежит в основе способности олигомерных белков к аллостерической регуляции.

Четвертичную структуру белка можно рассмотрет ь на примере гемоглобина. Содержит четыре полипептидных цепи и четыре простетические группы гема, в которых атомы железа находятся в закисной форме Fe 2+ . Белковая часть молекулы - глобин - состоит из двух α-цепей и двух β-цепей, содержащих до 70% α-спиралей. Каждая из четырех цепей имеет характерную для нее третичную структуру, с каждой цепью связана одна гемогруппа. Гемы разных цепей сравнительно далеко расположены друг от друга и имеют разный угол наклона. Между двумя α-цепями и двумя β-цепями образуется мало прямых контактов, тогда как между α- и β-цепями возникают многочисленные контакты типа α 1 β 1 и α 2 β 2 , образованные гидрофобными радикалами. Между α 1 β 1 и α 2 β 2 остается канал.

В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду, что позволяет ему при существующих в тканях низких парциальных давлениях кислорода отдавать им значительную часть связанного кислорода. Кислород легче связывается железом гемоглобина при более высоких значениях рН и низкой концентрации СО 2 , свойственные альвеолам легких; освобождению кислорода из гемоглобина благоприятствуют более низкие значения рН и высокие концентрации СО 2 , свойственные тканям.

Кроме кислорода гемоглобин переносит ионы водорода , которые связываются с остатками гистидина в цепях. Также гемоглобин переносит углекислый газ, который присоединяет к концевой аминогруппе каждой из четырех полипептидных цепей, в результате чего образуется карбаминогемоглобин:

В эритроцитах в достаточно больших концентрациях присутствует вещество 2,3-дифосфоглицерат (ДФГ), его содержание увеличивается при подъеме на большую высоту и при гипоксии, облегчая высвобождение кислорода из гемоглобина в тканях. ДФГ располагается в канале между α 1 β 1 и α 2 β 2 , взаимодействуя с положительно зараженными группами β-цепей. При связывании гемоглобином кислорода ДФГ вытесняется из полости. В эритроцитах некоторых птиц содержится не ДФГ, а инозитолгекса-фосфат, который еще больше снижает сродство гемоглобина к кислороду.

2,3-дифосфоглицерат (ДФГ)

HbA - нормальный гемоглобин взрослого человека , HbF - фетальный гемоглобин, имеет большее сродство к О 2 , HbS - гемоглобин при серповидноклеточной анемии. Серповидноклеточная анемия - это серьезное наследственное заболевание, связанное с генетической аномалией гемоглобина. В крови больных людей наблюдается необычно большое количество тонких серповидных эритроцитов, которые, во-первых, легко разрываются, во-вторых, закупоривают кровеносные капилляры.

На молеку-лярном уровне гемоглобин S отличается от гемоглобина А по одному аминокислотному остатку в положении 6 β-цепей, где вместо остатка глутаминовой кислоты находится валин. Таким образом, гемоглобин S содержит на два отрицательных заряда меньше, появление валина приводит к возникновению «липкого» гидрофобного контакта на поверхности молекулы, в результате при дезоксигенации молекулы дезоксигемоглобина S слипаются и образуют нерастворимые аномально длинные нитевидные агрегаты, приводящие к деформации эритроцитов.

Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка выше первичного, поскольку первичная структура определяет и вторичную, и третичную, и четвертичную (если она имеется). Нативной конформацией белка является термодинамически наиболее устойчивая в данных условиях структура.

ЛЕКЦИЯ 6

Различают физические, химические и биологические свойства белков.

Физическими свойствами белков являются наличие молекулярной массы, двойное лучепреломление (изменение оптической характеристики раствора белка, находящегося в движении, по сравнению с раствором, находящимся в покое), обусловленное несферической формой белков, подвижность в электрическом поле, обусловленная зарядом молекул белка. Кроме этого для белков характерны оптические свойства, заключающиеся в способности вращать плоскость поляризации света, рассеивать световые лучи ввиду значительных размеров белковых частиц и поглощать ультрафиолетовые лучи.

Одним из характерных физических свойств белков являются способность адсорбировать на поверхности, а иногда и захватывать внутрь молекулы, низкомолекулярные органические соединения и ионы.

Химические свойства белков отличаются исключительным разнообразием, так как для белков характерны все реакции аминокислотных радикалов и характерна реакция гидролиза пептидных связей.

Имея значительное число кислотных и основных групп , белки проявляют амфотерные свойства. В отличие от свободных аминокислот кислотно-основные свойства белков обусловлены не α-амино- и α-карбокси-группами, занятыми в образовании пептидных связей, а заряженными радикалами аминокислотных остатков. Основные свойства белков обусловлены остатками аргинина , лизина и гистидина. Кислые свойства обусловлены остатками аспарагиновой и глутаминовой кислоты.

Кривые титрования белков достаточно сложны для интерпретации, так как в любом белке имеется слишком большое число титруемых групп, между ионизированными группами белка имеются электростатические взаимодействия, на рК каждой титруемой группы оказывают влияние рядом расположенные гидрофобные остатки и водородные связи. Наибольшее практическое применение имеет изоэлектрическая точка белка - значение рН, при котором суммарный заряд белка равен нулю. В изоэлектрической точке белок максимально инертен, не перемещается в электрическом поле и имеет наиболее тонкую гидратную оболочку.

Белки проявляют буферные свойства , но их буферная емкость незначительна. Исключение составляют белки, содержащие большое число остатков гистидина. Например, содержащийся в эритроцитах гемоглобин за счет очень высокого содержания остатков гистидина имеет значительную буферную емкость при рН около 7, что весьма важно для той роль, которую играют эритроциты в переносе кровью кислорода и углекислого газа.

Для белков характерна растворимость в воде , причем с физической точки зрения они образуют истинные молекулярные растворы. Однако для растворов белков характерны некоторые коллоидные свойства: эффект Тендаля (явление светорассеяния), неспособность проходить через полупроницаемые мембраны, высокая вязкость, образование гелей.

Растворимость белка сильно зависит от концентрации солей, то есть от ионной силы раствора. В дистиллированной воде белки чаще всего растворяются плохо, однако их растворимость возрастает по мере увеличения ионной силы. При этом все большее количество гидратированных неорганических ионов связывается с поверхностью белка и тем самым уменьшается степень его агрегации. При высокой ионной силе ионы солей забирают гидратную оболочку у молекул белка, что приводит к агрегации и выпадению белков в осадок (явление высаливания). Используя различие в растворимости, можно с помощью обычных солей разделить смесь белков.

К числу биологических свойств белков относят в первую очередь их каталитическую активность. Другое важное биологическое свойство белков - их гормональная активность, то есть способность воздействовать на целые группы реакций в организме. Некоторым белкам присущи токсические свойства, патогенная активность, защитные и рецепторные функции, ответственность за явления клеточной адгезии.

Еще одно своеобразное биологическое свойство белков - денатурация . Белки в их естественном состоянии носят название нативных. Денатурация - это разрушение пространственной структуры белков при действии денатурирующих агентов. Первичная структура белков при денатурации не нарушается, но теряется их биологическая активность, а также растворимость, электрофоретическая подвижность и некоторые другие реакции. Радикалы аминокислот, формирующие активный центр белка, при денатурации оказываются пространственно удаленными друг от друга, то есть разрушается специфический центр связывания белка с лигандом. Гидрофобные радикалы, обычно находящиеся в гидрофобном ядре глобулярных белков, при денатурации оказываются на поверхности молекулы, тем самым создаются условия для агрегации белков, которые выпадают в осадок.

Реагенты и условия, вызывающие денатурацию белков:

Температура выше 60 о С - разрушение слабых связей в белке,

Кислоты и щелочи - изменение ионизации ионогенных групп, разрыв ионных и водородных связей,

Мочевина - разрушение внутримолекулярных водородных связей в резуль-тате образования водородных связей с мочевиной,

Спирт, фенол, хлорамин - разрушение гидрофобных и водородных связей,

Соли тяжелых металлов - образование нерастворимых солей белков с иона-ми тяжелых металлов.

При удалении денатурирующих агентов возможна ренативация, так как пептидная цепь стремится принять в растворе конформацию с наименьшей свободной энергией.

В условиях клетки белки могут самопроизвольно денатурировать, хотя и с меньшей скоростью, чем при высокой температуре. Самопроизвольная ренативация белков в клетке затруднена, так как из-за высокой концентрации существует большая вероятность агрегации частично денатурированных молекул.

В клетках имеются белки - молекулярные шапероны, которые обладают способностью связываться с частично денатурированными, находящимися в неустойчивом, склонном к агрегации состоянии белками и восстанавливать их нативную конформацию. Вначале эти белки были обнаружены как белки теплового шока, так как их синтез усиливался при стрессовых воздействиях на клетку, например, при повышении температуры. Шапероны классифицируются по массе субъединиц: hsp-60, hsp-70 и hsp-90. Каждый класс включает семейство родственных белков.

Молекулярные шапероны (hsp-70) высококонсервативный класс белков, находящийся во всех отделах клетки: цитоплазме, ядре, эндоплазматическом ретикулуме, митохондриях. На С-конце единственной полипептидной цепи hsp-70 имеет участок, который представляет собой бороздку, способную взаимодействовать с пептидами длиной 7-9 аминокис-лотных остатков, обогащенных гидрофобными радикалами. Такие участки в глобулярных белках встречаются примерно через каждые 16 аминокислот. Hsp-70 способны защищать белки от температурной инактивации и восста-навливать конформацию и активность частично денатурированных белков.

Шапероны-60 (hsp-60) участвуют в формировании третичной структуры белков. Hsp-60 функционируют в виде олигомерных белков, состоящих из 14 субъединиц. Hsp-60 образуют два кольца, каждое кольцо состоит из 7 субъединиц, соединенных друг с другом.

Каждая субъединица состоит из трех доменов:

Апикальный домен имеет ряд гидрофобных аминокислотных остатков, обращенных внутрь полости, формируемой субъединицами;

Экваториальный домен обладает АТФазной активностью, необходим для высвобождения белка из шаперонинового комплекса;

Промежуточный домен соединяет апикальный и экваториальный домены.

Белок, имеющий на своей поверхности фрагменты , обогащенные гидрофобными аминокислотами, попадает в полость шаперонинового комплекса. В специфической среде этой полости в условиях изолированности от других молекул цитозоля клетки выбор возможных конформаций белка происходит до тех пор, пока не будет найдена энергетически более выгодная конформация. Шаперонзависимое формирование нативной конформации связано с расходованием значительного количества энергии, источником которой служит АТФ.

МОДУЛЬ 1 СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ БЕЛКОВ

МОДУЛЬ 1 СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ БЕЛКОВ

Структура модуля

Темы

Модульная единица 1

1.1. Структурная организация белков. Этапы формирования нативной конформации белков

1.2. Основы функционирования белков. Лекарства как лиганды, влияющие на функцию белков

1.3. Денатурация белков и возможность их спонтанной ренативации

Модульная единица 2

1.4. Особенности строения и функционирования олигомерных белков на примере гемоглобина

1.5. Поддержание нативной конформации белков в условиях клетки

1.6. Многообразие белков. Семейства белков на примере иммуноглобулинов

1.7. Физико-химические свойства белков и методы их разделения

Модульная единица 1 СТРУКТУРНАЯ ОРГАНИЗАЦИЯ МОНОМЕРНЫХ БЕЛКОВ И ОСНОВЫ ИХ ФУНКЦИОНИРОВАНИЯ

Цели изучения Уметь:

1. Использовать знания об особенностях структуры белков и зависимости функций белков от их структуры для понимания механизмов развития наследственных и приобретенных протеинопатий.

2. Объяснять механизмы лечебного действия некоторых лекарств как лигандов, взаимодействующих с белками и изменяющих их активность.

3. Использовать знания о строении и конформационной лабильности белков для понимания их структурно-функциональной неустойчивости и склонности к денатурации в изменяющихся условиях.

4. Объяснять применение денатурирующих агентов в качестве средств для стерилизации медицинского материала и инструментов, а также в качестве антисептиков.

Знать:

1. Уровни структурной организации белков.

2. Значение первичной структуры белков, определяющей их структурное и функциональное многообразие.

3. Механизм формирования в белках активного центра и его специфическое взаимодействие с лигандом, лежащее в основе функционирования белков.

4. Примеры влияния экзогенных лигандов (лекарств, токсинов, ядов) на конформацию и функциональную активность белков.

5. Причины и следствия денатурации белков, факторы, вызывающие денатурацию.

6. Примеры использования денатурирующих факторов в медицине в качестве антисептиков и средств для стерилизации медицинских инструментов.

ТЕМА 1.1. СТРУКТУРНАЯ ОРГАНИЗАЦИЯ БЕЛКОВ. ЭТАПЫ ФОРМИРОВАНИЯ НАТИВНОЙ

КОНФОРМАЦИИ БЕЛКОВ

Белки - это полимерные молекулы, мономерами которых являются всего 20 α-аминокислот. Набор и порядок соединения аминокислот в белке определяется строением генов в ДНК индивидумов. Каждый белок в соответствии с его специфической структурой выполняет свойственную ему функцию. Набор белков данного организма определяет его фенотипические особенности, а также наличие наследственных болезней или предрасположенность к их развитию.

1. Аминокислоты, входящие в состав белков. Пептидная связь. Белки - полимеры, построенные из мономеров - 20 α-аминокислот, общая формула которых

Аминокислоты различаются по строению, размерам, физико-химическим свойствам радикалов, присоединенных к α-углеродному атому. Функциональные группы аминокислот определяют особенности свойств разных α-аминокислот. Встречающиеся в α-аминокислотах радикалы можно разделить на несколько групп:

Пролин, в отличие от других 19 мономеров белков, не аминокислота, а иминокислота, радикал в пролине связан как с α-углеродным атомом, так и с иминогруппой

Аминокислоты различаются по растворимости в воде. Это связано со способностью радикалов взаимодействовать с водой (гидратироваться).

К гидрофильным относятся радикалы, содержащие анионные, катионные и полярные незаряженные функциональные группы.

К гидрофобным относятся радикалы, содержащие метильные группы, алифатические цепи или циклы.

2. Пептидные связи соединяют аминокислоты в пептиды. При синтезе пептида α-карбоксильная группа одной аминокислоты взаимодействует с α-аминогруппой другой аминокислоты с образованием пептидной связи:

Белки представляют собой полипептиды, т.е. линейные полимеры α-аминокислот, соединенных пептидной связью (рис. 1.1.)

Рис. 1.1. Термины, используемые при описании строения пептидов

Мономеры аминокислот, входящих в состав полипептидов, называются аминокислотными остатками. Цепь повторяющихся групп -NH-CH-CO - образует пептидный остов. Аминокислотный остаток, имеющий свободную α-аминогруппу, называется N-концевым, а имеющий свободную α-карбоксильную группу - С-концевым. Пептиды записывают и читают с N-конца к С-концу.

Пептидная связь, образуемая иминогруппой пролина, отличается от других пептидных связей: у атома азота пептидной группы отсутствует водород,

вместо него имеется связь с радикалом, в результате одна сторона цикла включается в пептидный остов:

Пептиды различаются аминокислотным составом, количеством аминокислот и порядком соединения аминокислот, например, Сер-Ала-Глу-Гис и Гис-Глу-Ала-Сер - два разных пептида.

Пептидные связи очень прочные, и для их химического неферментативного гидролиза требуются жесткие условия: анализируемый белок гидролизуют в концентрированной соляной кислоте при температуре около 110° в течение 24 часов. В живой клетке пептидные связи могут разрываться с помощью протеолитических ферментов, называемых протеазами или пептидгидролазами.

3. Первичная структура белков. Аминокислотные остатки в пептидных цепях разных белков чередуются не случайным образом, а расположены в определенном порядке. Линейная последовательность или порядок чередования аминокислотных остатков в полипептидной цепи называется первичной структурой белка.

Первичная структура каждого индивидуального белка закодирована в молекуле ДНК (в участке, называемом геном) и реализуется в ходе транскрипции (переписывания информации на мРНК) и трансляции (синтез первичной структуры белка). Следовательно, первичная структура белков индивидуального человека - наследственно передаваемая от родителей детям информация, определяющая особенности строения белков данного организма, от которых зависит функция имеющихся белков (рис. 1.2.).

Рис. 1.2. Взаимосвязь между генотипом и конформацией белков, синтезирующихся в организме индивидума

Каждый из примерно 100 000 индивидуальных белков в организме человека имеет уникальную первичную структуру. В молекулах одного типа белка (например, альбумина) одинаковое чередование аминокислотных остатков, что отличает альбумин от любого другого индивидуального белка.

Последовательность аминокислотных остатков в пептидной цепи можно рассматривать как форму записи информации. Эта информация определяет пространственную укладку линейной пептидной цепи в более компактную трехмерную структуру, называемую конформацией белка. Процесс формирования функционально активной конформации белка носит название фолдинг.

4. Конформация белков. Свободное вращение в пептидном остове возможно между атомом азота пептидной группы и соседним α-углеродным атомом, а также между α-углеродным атомом и углеродом карбонильной группы. Вследствие взаимодействия функциональных групп аминокислотных остатков первичная структура белков может приобретать более сложные пространственные структуры. В глобулярных белках различают два основных уровня укладки конформации пептидных цепей: вторичную и третичную структуры.

Вторичная структура белков - это пространственная структура, формирующаяся в результате образования водородных связей между функциональными группами -С=О и - NH- пептидного остова. При этом пептидная цепь может приобретать регулярные структуры двух типов: α-спирали и β-структуры.

В α-спирали водородные связи образуются между атомом кислорода карбонильной группы и водородом амидного азота 4-й от него аминокислоты; боковые цепи аминокислотных остатков

располагаются по периферии спирали, не участвуя в образовании вторичной структуры (рис. 1.3.).

Объемные радикалы или радикалы, несущие одинаковые заряды, препятствуют формированию α-спирали. Остаток пролина, имеющий кольцевую структуру, прерывает α-спираль, так как из-за отсутствия водорода у атома азота в пептидной цепи невозможно образовать водородную связь. Связь между азотом и α-углеродным атомом входит в состав цикла пролина, поэтому пептидный остов в этом месте приобретает изгиб.

β-Структура формируется между линейными областями пептидного остова одной полипептидной цепи, образуя при этом складчатые структуры. Полипептидные цепи или их части могут формировать параллельные или антипараллельные β-структуры. В первом случае N- и С-концы взаимодействующих пептидных цепей совпадают, а во втором - имеют противоположное направление (рис. 1.4).

Рис. 1.3. Вторичная структура белка - α-спираль

Рис. 1.4. Параллельные и антипараллельные β-складчатые структуры

β-структуры обозначены широкими стрелками: А - Антипараллельная β-структура. Б - Параллельные β-складчатые структуры

В некоторых белках β-структуры могут формироваться за счет образования водородных связей между атомами пептидного остова разных полипептидных цепей.

В белках также встречаются области с нерегулярной вторичной структурой, к которым относят изгибы, петли, повороты полипептидного остова. Они часто располагаются в местах, где меняется направление пептидной цепи, например, при формировании параллельной β-складчатой структуры.

По наличию α-спиралей и β-структур глобулярные белки могут быть разделены на четыре категории.

Рис. 1.5. Вторичная структура миоглобина (А) и β-цепи гемоглобина (Б), содержащие восемь α-спиралей


Рис. 1.6. Вторичная структура триозофосфатизомеразы и домена пируваткиназы

Рис. 1.7. Вторичная структура константного домена иммуноглобулина (А) и фермента супероксиддисмутазы (Б)

В четвертую категорию включены белки, имеющие в своем составе незначительное количество регулярных вторичных структур. К таким белкам можно отнести небольшие, богатые цистеином белки или металлопротеины.

Третичная структура белка - тип конформации, образующийся за счет взаимодействий между радикалами аминокислот, которые могут находиться на значительном расстоянии друг от друга в пептидной цепи. Большинство белков при этом формируют пространственную структуру, напоминающую глобулу (глобулярные белки).

Так как гидрофобные радикалы аминокислот имеют тенденцию к объединению с помощью так называемых гидрофобных взаимодействий и межмолекулярных ван-дер-ваальсовых сил, внутри белковой глобулы образуется плотное гидрофобное ядро. Гидрофильные ионизированные и неионизированные радикалы в основном располагаются на поверхности белка и определяют его растворимость в воде.

Рис. 1.8. Типы связей, возникающих между радикалами аминокислот при формировании третичной структуры белка

1 - ионная связь - возникает между положительно и отрицательно заряженными функциональными группами;

2 - водородная связь - возникает между гидрофильной незаряженной и любой другой гидрофильной группой;

3 - гидрофобные взаимодействия - возникают между гидрофобными радикалами;

4 - дисульфидная связь - формируется за счет окисления SH-групп остатков цистеина и их взаимодействия друг с другом

Гидрофильные аминокислотные остатки, оказавшиеся внутри гидрофобного ядра, могут взаимодействовать друг с другом с помощью ионных и водородных связей (рис. 1.8).

Ионные и водородные связи, а также гидрофобные взаимодействия относятся к числу слабых: их энергия ненамного превышает энергию теплового движения молекул при комнатной температуре. Конформация белка поддерживается за счет возникновения множества таких слабых связей. Так как атомы, из которых состоит белок, находятся в постоянном движении, то возможен разрыв одних слабых связей и образование других, что приводит к небольшим перемещениям отдельных участков полипептидной цепи. Это свойство белков изменять конформацию в результате разрыва одних и образования других слабых связей называется конформационной лабильностью.

В организме человека функционируют системы, поддерживающие гомеостаз - постоянство внутренней среды в определенных допустимых для здорового организма пределах. В условиях гомеостаза небольшие изменения конформации не нарушают общую структуру и функцию белков. Функционально активная конформация белка называется нативной конформацией. Изменение внутренней среды (например, концентрации глюкозы, ионов Са, протонов и т.д.) приводит к изменению конформации и нарушению функций белков.

Третичная структура некоторых белков стабилизирована дисульфидными связями, образующимися за счет взаимодействия -SH групп двух остатков

Рис. 1.9. Образование дисульфидной связи в молекуле белка

цистеина (рис. 1.9). Большинство внутриклеточных белков не имеет в третичной структуре ковалентных дисульфидных связей. Их наличие характерно для секретируемых клеткой белков, что обеспечивает их большую стабильность во внеклеточных условиях. Так, дисульфидные связи имеются в молекулах инсулина и иммуноглобулинов.

Инсулин - белковый гормон, синтезирующийся в β-клетках поджелудочной железы и секретируемый в кровь в ответ на повышение концентрации глюкозы в крови. В структуре инсулина имеются две дисульфидные связи, соединяющие полипептидные А- и В-цепи, и одна дисульфидная связь внутри А-цепи (рис. 1.10).

Рис. 1.10. Дисульфидные связи в структуре инсулина

5. Супервторичная структура белков. В разных по первичной структуре и функциям белках иногда выявляются сходные сочетания и взаиморасположение вторичных структур, которые называются супервторичной структурой. Она занимает промежуточное положение между вторичной и третичной структурами, поскольку это специфическое сочетание элементов вторичной структуры при формировании третичной структуры белка. Супервторичные структуры имеют специфические названия, такие как «α-спираль-поворот-а-спираль», «лейциновая застежка молния», «цинковые пальцы» и др. Такие супервторичные структуры характерны для ДНК-связывающих белков.

«Лейциновая застежка-молния». Этот вид супервторичной структуры используется для соединения двух белков. На поверхности взаимодействующих белков имеются α-спиральные участки, содержащие не менее четырех остатков лейцина. Лейциновые остатки в α-спирали располагаются через шесть аминокислот один от другого. Так как каждый виток α-спирали содержит 3,6 аминокислотных остатка, радикалы лейцина находятся на поверхности каждого второго витка. Лейциновые остатки α-спирали одного белка могут взаимодействовать с лейциновыми остатками другого белка (гидрофобные взаимодействия), соединяя их вместе (рис. 1.11.). Многие ДНК связывающие белки функционируют в составе олигомерных комплексов, где отдельные субъединицы связываются друг с другом «лейциновыми застежками».

Рис. 1.11. «Лейциновая застежка-молния» между α-спиральными участками двух белков

Примером таких белков могут служить гистоны. Гистоны - ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот - аргинина и лизина (до 80%). Молекулы гистонов объединяются в олигомерные комплексы, содержащие восемь мономеров с помощью «лейциновых застежек», несмотря на значительный одноименный заряд этих молекул.

«Цинковый палец» - вариант супервторичной структуры, характерный для ДНК-связывающих белков, имеет вид вытянутого фрагмента на поверхности белка и содержит около 20 аминокислотных остатков (рис. 1.12). Форму «вытянутого пальца» поддерживает атом цинка, связанный с радикалами четыре аминокислот - двух остатков цистеина и двух - гистидина. В некоторых случаях вместо остатков гистидина находятся остатки цистеина. Два близко лежащих остатка цистеина отделены от двух других остатков Гисили Циспоследовательностью, состоящей примерно из 12 аминокислотных остатков. Этот участок белка образует α-спираль, радикалы которой могут специфично связываться с регуляторными участками большой бороздки ДНК. Специфичность связывания индивидуального

Рис. 1.12. Первичная структура участка ДНК-связывающих белков, формирующих структуру «цинкового пальца» (буквами обозначены аминокислоты, входящие в состав этой структуры)

регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца». Такие структуры содержат, в частности, рецепторы стероидных гормонов, участвующих в регуляции транскрипции (считывание информации с ДНК на РНК).

ТЕМА 1.2. ОСНОВЫ ФУНКЦИОНИРОВАНИЯ БЕЛКОВ. ЛЕКАРСТВА КАК ЛИГАНДЫ, ВЛИЯЮЩИЕ НА ФУНКЦИЮ БЕЛКОВ

1. Активный центр белка и его взаимодействие с лигандом. В процессе формирования третичной структуры на поверхности функционально активного белка, обычно в углублении, образуется участок, сформированный радикалами аминокислот, далеко стоящими друг от друга в первичной структуре. Этот участок, имеющий уникальное строение для данного белка и способный специфично взаимодействовать с определенной молекулой или группой похожих молекул, называется центром связывания белка с лигандом или активным центром. Лигандами называются молекулы, взаимодействующие с белками.

Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда.

Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Активный центр должен не только пространственно соответствовать входящему в него лиганду, но и между функциональными группами радикалов, входящих в активный центр, и лигандом должны образоваться связи (ионные, водородные, а также гидрофобные взаимодействия), которые удерживают лиганд в активном центре (рис. 1.13).

Рис. 1.13. Комплементарное взаимодействие белка с лигандом

Некоторые лиганды, присоединяясь к активному центру белка, выполняют вспомогательную роль в функционировании белков. Такие лиганды называются кофакторами, а белки, имеющие в своем составе небелковую часть, - сложными белками (в отличие от простых белков, состоящих только из белковой части). Небелковая часть, прочно соединенная с белком, носит название простетической группы. Например, в составе миоглобина, гемоглобина и цитохромов содержится прочно прикрепленная к активному центру простетическая группа - гем, содержащий ион железа. Сложные белки, содержащие гем, называются гемопротеинами.

При присоединении к белкам специфических лигандов проявляется функция этих белков. Так, альбумин - важнейший белок плазмы крови - проявляет свою транспортную функцию, присоединяя к активному центру гидрофобные лиганды, такие как жирные кислоты, билирубин, некоторые лекарства и др. (рис. 1.14)

Лигандами, взаимодействующими с трехмерной структурой пептидной цепи, могут быть не только низкомолекулярные органические и неорганические молекулы, но и макромолекулы:

ДНК (рассмотренные выше примеры с ДНК-связывающими белками);

Полисахариды;

Рис. 1.14. Взаимосвязь генотипа и фенотипа

Уникальная первичная структура белков человека, закодированная в молекуле ДНК, в клетках реализуется в виде уникальной конформации, структуры активного центра и функций белков

В этих случаях белок узнает определенный участок лиганда, соразмерный и комплементарный центру связывания. Так на поверхности гепатоцитов имеются белки-рецепторы к гормону инсулину, имеющему также белковое строение. Взаимодействие инсулина с рецептором вызывает изменение его конформации и активации сигнальных систем, приводящих к запасанию в гепатоцитах питательных веществ после еды.

Таким образом, в основе функционирования белков лежит специфическое взаимодействие активного центра белка с лигандом.

2. Доменная структура и ее роль в функционировании белков. Длинные полипептидные цепи глобулярных белков часто складываются в несколько компактных, относительно независимых областей. Они имеют самостоятельную третичную структуру, напоминающую таковую у глобулярных белков, и называются доменами. Благодаря доменной структуре белков легче формируется их третичная структура.

В доменных белках центры связывания с лигандом часто располагаются между доменами. Так, трипсин - протеолитический фермент, который вырабатывается экзокринной частью поджелудочной железы и необходим для переваривания белков пищи. Он имеет двухдоменное строение, а центр связывания трипсина с его лигандом - пищевым белком - располагается в бороздке между двумя доменами. В активном центре создаются условия, необходимые для эффективного связывания специфического участка пищевого белка и гидролиза его пептидных связей.

Разные домены в белке при взаимодействии активного центра с лигандом могут перемещаться друг относительно друга (рис. 1.15).

Гексокиназа - фермент, катализирующий фосфорилирование глюкозы с помощью АТФ. Активный центр фермента располагается в расщелине между двумя доменами. При связывании гексокиназы с глюкозой окружающие ее домены смыкаются и субстрат оказывается в «ловушке», где и происходит фосфорилирование (см. рис. 1.15).

Рис. 1.15. Связывание доменов гексокиназы с глюкозой

В некоторых белках домены выполняют самостоятельные функции, связываясь с различными лигандами. Такие белки называются многофункциональными.

3. Лекарства - лиганды, влияющие на функцию белков. Взаимодействие белков с лигандами специфично. Однако благодаря конформационной лабильности белка и его активного центра можно подобрать другое вещество, которое также могло бы взаимодействовать с белком в активном центре или ином участке молекулы.

Вещество, по структуре похожее на природный лиганд, называют структурным аналогом лиганда или неприродным лигандом. Оно также взаимодействует с белком в активном центре. Структурный аналог лиганда может как усиливать функцию белка (агонист), так и снижать ее (антагонист). Лиганд и его структурные аналоги конкурируют друг с другом за связывание с белком в одном центре. Такие вещества называются конкурентными модуляторами (регуляторами) белковых функций. Многие лекарственные препараты действуют как ингибиторы белков. Некоторые из них получают химической модификацией природных лигандов. Ингибиторы белковых функций могут быть лекарствами и ядами.

Атропин - конкурентный ингибитор М-холинорецепторов. Ацетилхолин - нейромедиатор передачи нервного импульса через холинэргические синапсы. Для проведения возбуждения выделившийся в синаптическую щель ацетилхолин должен взаимодействовать с белком - рецептором постсинаптической мембраны. Обнаружены два типа холинорецепторов:

М-рецептор, кроме ацетилхолина избирательно взаимодействующий с мускарином (токсином мухомора). М - холинорецепторы имеются на гладких мышцах и при взаимодействии с ацетилхолином вызывают их сокращение;

Н-рецептор, специфично связывающийся с никотином. Н-холинорецепторы обнаружены в синапсах поперечнополосатых скелетных мышц.

Специфическим ингибитором М-холинорецепторов является атропин. Он содержится в растениях красавке и белене.

Атропин имеет в структуре схожие с ацетилхолином функциональные группы и их пространственное расположение, поэтому относится к конкурентным ингибиторам М-холинорецепторов. Учитывая, что связывание ацетилхолина с М-холинорецепторами вызывает сокращение гладких мышц, атропин используют как лекарство, снимающее их спазм (спазмолитик). Так, известно применение атропина для расслабления глазных мышц при просмотре глазного дна, а также для снятия спазмов при желудочнокишечных коликах. М-холинорецепторы имеются и в центральной нервной системе (ЦНС), поэтому большие дозы атропина могут вызвать нежелательную реакцию со стороны ЦНС: двигательное и психическое возбуждение, галлюцинации, судороги.

Дитилин - конкурентный агонист Н-холинорецепторов, ингибирующий функцию нервно-мышечных синапсов.

Нервно-мышечные синапсы скелетных мышц содержат Н-холинорецепторы. Их взаимодействие с ацетилхолином приводит к мышечным сокращениям. При некоторых хирургических операциях, а также в эндоскопических исследованиях используют препараты, вызывающие расслабление скелетных мышц (миорелаксанты). К ним относится дитилин, являющийся структурным аналогом ацетилхолина. Он присоединяется к Н-холинорецепторам, но в отличие от ацетилхолина очень медленно разрушается ферментом - ацетилхолинэстеразой. В результате длительного открытия ионных каналов и стойкой деполяризации мембраны нарушается проведение нервного импульса и происходит мышечное расслабление. Первоначально эти свойства были обнаружены у яда кураре, поэтому такие препараты называют курареподобными.

ТЕМА 1.3. ДЕНАТУРАЦИЯ БЕЛКОВ И ВОЗМОЖНОСТЬ ИХ СПОНТАННОЙ РЕНАТИВАЦИИ

1. Так как нативная конформация белков поддерживается за счет слабых взаимодействий, изменение состава и свойств окружающей белок среды, воздействие химических реагентов и физических факторов вызывают изменение их конформации (свойство конформационной лабильности). Разрыв большого количества связей приводит к разрушению нативной конформации и денатурации белков.

Денатурация белков - это разрушение их нативной конформации под действием денатурирующих агентов, вызванное разрывом слабых связей, стабилизирующих пространственную структуру белка. Денатурация сопровождается разрушением уникальной трехмерной структуры и активного центра белка и потерей его биологической активности (рис. 1.16).

Все денатурированные молекулы одного белка приобретают случайную конформацию, отличающуюся от других молекул того же белка. Радикалы аминокислот, формирующие активный центр, оказываются пространственно удаленными друг от друга, т.е. разрушается специфический центр связывания белка с лигандом. При денатурации первичная структура белков остается неизменной.

Применение денатурирующих агентов в биологических исследованиях и медицине. В биохимических исследованиях перед определением в биологическом материале низкомолекулярных соединений обычно из раствора вначале удаляют белки. Для этой цели чаще всего используют трихлоруксусную кислоту (ТХУ). После добавления ТХУ в раствор денатурированные белки выпадают в осадок и легко удаляются фильтрованием (табл. 1.1.)

В медицине денатурирующие агенты часто применяют для стерилизации медицинского инструмента и материала в автоклавах (денатурирующий агент - высокая температура) и в качестве антисептиков (спирт, фенол, хлорамин) для обработки загрязненных поверхностей, содержащих патогенную микрофлору.

2. Спонтанная ренативация белков - доказательство детерминированности первичной структуры, конформации и функции белков. Индивидуальные белки - это продукты одного гена, которые имеют идентичную аминокислотную последовательность и в клетке приобретают одинаковую конформацию. Фундаментальный вывод о том, что в первичной структуре белка уже заложена информация о его конформации и функции, был сделан на основе способности некоторых белков (в частности, рибонуклеазы и миоглобина) к спонтанной ренативации - восстановлению их нативной конформации после денатурации.

Формирование пространственных структур белка осуществляется способом самосборки - самопроизвольного процесса, при котором полипептидная цепь, имеющая уникальную первичную структуру, стремится принять в растворе конформацию с наименьшей свободной энергией. Способность к ренативации белков, сохраняющих после денатурации первичную структуру, описана в опыте с ферментом рибонуклеазой.

Рибонуклеаза - фермент, разрушающий связи между отдельными нуклеотидами в молекуле РНК. Этот глобулярный белок имеет одну полипептидную цепь, третичная структура которой стабилизирована множеством слабых и четырьмя дисульфидными связями.

Обработка рибонуклеазы мочевиной, разрушающей водородные связи в молекуле, и восстановителем, разрывающим дисульфидные связи, приводит к денатурации фермента и потере его активности.

Удаление денатурирующих агентов диализом приводит к восстановлению конформации и функции белка, т.е. к ренативации. (рис. 1.17).

Рис. 1.17. Денатурация и ренативация рибонуклеазы

А - нативная конформация рибонуклеазы, в третичной структуре которой имеются четыре дисульфидные связи; Б - денатурированная молекула рибонуклеазы;

В - ренативированная молекула рибонуклеазы с восстановленной структурой и функцией

1. Заполните таблицу 1.2.

Таблица 1.2. Классификация аминокислот по полярности радикалов

2. Напишите формулу тетрапептида:

Асп - Про - Фен - Лиз

а) выделите в пептиде повторяющиеся группы, образующие пептидный остов, и вариабельные группы, представленные радикалами аминокислот;

б) обозначьте N- и С-концы;

в) подчеркните пептидные связи;

г) напишите другой пептид, состоящий из тех же аминокислот;

д) подсчитайте количество возможных вариантов тетрапептида с аналогичным аминокислотным составом.

3. Объясните роль первичной структуры белков на примере сравнительного анализа двух сходных по структуре и эволюционно близких пептидных гормонов нейрогипофиза млекопитающих - окситоцина и вазопрессина (табл. 1.3).

Таблица 1.3. Структура и функции окситоцина и вазопрессина

Для этого:

а) сравните состав и последовательность аминокислот двух пептидов;

б) найдите сходство первичной структуры двух пептидов и сходство их биологического действия;

в) найдите различия в структуре двух пептидов и различие их функций;

г) сделайте вывод о влиянии первичной структуры пептидов на их функции.

4. Опишите основные этапы формирования конформации глобулярных белков (вторичная, третичная структуры, понятие о супервторичной структуре). Укажите типы связей, участвующих в формировании структур белка. Радикалы каких аминокислот могут участвовать в образовании гидрофобных взаимодействий, ионных, водородных связях.

Приведите примеры.

5. Дайте определение понятию «конформационная лабильность белков», укажите причины ее существования и значение.

6. Раскройте смысл следующей фразы: «В основе функционирования белков лежит их специфическое взаимодействие с лигандом», используя термины и объясняя их значение: конформация белка, активный центр, лиганд, комплементарность, функция белка.

7. На одном из примеров объясните, что такое домены и какова их роль в функционировании белков.

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Установите соответствие.

Функциональная группа в радикале аминокислоты:

А. Карбоксильная группа Б. Гидроксильная группа В Гуанидиновая группа Г. Тиольная группа Д. Аминогруппа

2. Выберите правильные ответы.

Аминокислоты с полярными незаряженными радикалами - это:

A. Цис Б. Асн

B. Глу Г. Три

3. Выберите правильные ответы.

Радикалы аминокислот:

A. Обеспечивают специфичность первичной структуры Б. Участвуют в формировании третичной структуры

B. Располагаясь на поверхности белка, влияют на его растворимость Г. Формируют активный центр

Д. Участвуют в образовании пептидных связей

4. Выберите правильные ответы.

Гидрофобные взаимодействия могут образовываться между радикалами аминокислот:

A. Тре Лей Б. Про Три

B. Мет Иле Г. Тир Ала Д. Вал Фен

5. Выберите правильные ответы.

Ионные связи могут образовываться между радикалами аминокислот:

A. Глн Асп Б. Apr Лиз

B. Лиз Глу Г. Гис Асп Д. Асн Apr

6. Выберите правильные ответы.

Водородные связи могут образовываться между радикалами аминокислот:

A. Сер Глн Б. Цис Тре

B. Асп Лиз Г. Глу Асп Д. Асн Тре

7. Установите соответствие.

Тип связи, участвующий в формировании структуры белка:

A. Первичная структура Б. Вторичная структура

B. Третичная структура

Г. Супервторичная структура Д. Конформация.

1. Водородные связи между атомами пептидного остова

2. Слабые связи между функциональными группами радикалов аминокислот

3. Связи между α-амино и α-карбоксильными группами аминокислот

8. Выберите правильные ответы. Трипсин:

A. Протеолитический фермент Б. Содержит два домена

B. Гидролизирует крахмал

Г. Активный центр расположен между доменами. Д. Состоит из двух полипептидных цепей.

9. Выберите правильные ответы. Атропин:

A. Нейромедиатор

Б. Структурный аналог ацетилхолина

B. Взаимодействует с Н-холинорецепторами

Г. Усиливает проведение нервного импульса через холинэргические синапсы

Д. Конкурентный ингибитор М-холинорецепторов

10. Выберите правильные утверждения. В белках:

A. Первичная структура содержит информацию о строении его активного центра

Б. Активный центр формируется на уровне первичной структуры

B. Конформация жестко фиксирована ковалентными связями

Г. Активный центр может взаимодействовать с группой похожих лигандов

благодаря конформационной лабильности белков Д. Изменение окружающей среды, может влиять на сродство активного

центра к лиганду

1. 1-В, 2-Г, 3-Б.

3. А, Б, В, Г.

7. 1-Б, 2-Д, 3-А.

8. А, Б, В, Г.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Белок, полипептид, аминокислоты

2. Первичная, вторичная, третичная структуры белка

3. Конформация, нативная конформация белка

4. Ковалентные и слабые связи в белке

5. Конформационная лабильность

6. Активный центр белка

7. Лиганды

8. Фолдинг белков

9. Структурные аналоги лигандов

10. Доменные белки

11. Простые и сложные белки

12. Денатурация белка, денатурирующие агенты

13. Ренативация белков

Решите задачи

«Структурная организация белков и основы их функционирования»

1. Основная функция белка - гемоглобина А (НвА) - транспорт кислорода к тканям. В популяции людей известны множественные формы этого белка с измененными свойствами и функцией - так называемые аномальные гемоглобины. Например, установлено, что гемоглобин S, обнаруженный в эритроцитах больных серповидно-клеточной анемией (HbS), имеет низкую растворимость в условиях низкого парциального давления кислорода (как это имеет место в венозной крови). Это приводит к образованию агрегатов данного белка. Белок утрачивает свою функцию, выпадает в осадок, а эритроциты приобретают неправильную форму (некоторые из них образуют форму серпа) и быстрее обычного разрушаются в селезенке. В результате развивается серповидноклеточная анемия.

Единственное различие в первичной структуре НвА и обнаружено в N-концевом участке β-цепи гемоглобина. Сравните N-концевые участки β-цепи и покажите, как изменения в первичной структуре белка влияют на его свойства и функции.

Для этого:

а) напишите формулы аминокислот, по которым различаются НвА и сравните свойства этих аминокислот (полярность, заряд).

б) сделайте вывод о причине снижения растворимости и нарушении транспорта кислорода в ткани.

2. На рисунке представлена схема строения белка, имеющего центр связывания с лигандом (активный центр). Объясните, почему белок обладает избирательностью в выборе лиганда. Для этого:

а) вспомните, что такое активный центр белка, и рассмотрите строение активного центра белка, представленного на рисунке;

б) напишите формулы радикалов аминокислот, входящих в состав активного центра;

в) нарисуйте лиганд, который мог бы специфически взаимодействовать с активным центром белка. Укажите на нем функциональные группы, способные образовать связи с радикалами аминокислот, входящих в состав активного центра;

г) укажите типы связей, возникающих между лигандом и радикалами аминокислот активного центра;

д) объясните, на чем основана специфичность взаимодействия белка с лигандом.

3. На рисунке представлен активный центр белка и несколько лигандов.

Определите, какой из лигандов с наибольшей вероятностью будет взаимодействовать с активным центром белка и почему.

Какие типы связей возникают в процессе образования комплекса белок-лиганд»?

4. Структурные аналоги естественных лигандов белков могут использоваться в качестве лекарственных препаратов для изменения активности белков.

Ацетилхолин - медиатор передачи возбуждения в нервно-мышечных синапсах. При взаимодействии ацетилхолина с белками - рецепторами постсинаптической мембраны скелетных мышц происходит открытие ионных каналов и мышечное сокращение. Дитилин - лекарство, применяемое при некоторых операциях для расслабления мышц, так как он нарушает передачу нервного импульса через нервно-мышечные синапсы. Объясните механизм действия дитилина как миорелаксирующего препарата. Для этого:

а) напишите формулы ацетилхолина и дитилина и сравните их структуры;

б) опишите механизм расслабляющего действия дитилина.

5. При некоторых заболеваниях у больного повышается температура тела, что рассматривают как защитную реакцию организма. Однако высокие температуры губительны для белков организма. Объясните, почему при температуре выше 40 °С нарушается функция белков и возникает угроза для жизни человека. Для этого вспомните:

1) Строение белков и связи, удерживающие его структуру в нативной конформации;

2) Как меняется структура и функция белков при повышении температуры?;

3) Что такое гомеостаз и почему он важен для поддержания здоровья человека.

Модульная единица 2 ОЛИГОМЕРНЫЕ БЕЛКИ КАК МИШЕНИ РЕГУЛЯТОРНЫХ ВОЗДЕЙСТВИЙ. СТРУКТУРНО-ФУНКЦИОНАЛЬНОЕ МНОГООБРАЗИЕ БЕЛКОВ. МЕТОДЫ РАЗДЕЛЕНИЯ И ОЧИСТКИ БЕЛКОВ

Цели изучения Уметь:

1. Использовать знания об особенностях структуры и функций олигомерных белков для понимания адаптивных механизмов регуляции их функций.

2. Объяснять роль шаперонов в синтезе и поддержании конформации белков в условиях клетки.

3. Объяснять многообразие проявления жизни многообразием структур и функций синтезирующихся в организме белков.

4. Анализировать связь структуры белков с их функцией на примерах сравнения родственных гемопротеинов - миоглобина и гемоглобина, а также представителей пяти классов белков семейства иммуноглобулинов.

5. Применять знания об особенностях физико-химических свойств белков для выбора методов их очистки от других белков и примесей.

6. Интерпретировать результаты количественного и качественного состава белков плазмы крови для подтверждения или уточнения клинического диагноза.

Знать:

1. Особенности строения олигомерных белков и адаптивные механизмы регуляции их функций на примере гемоглобина.

2. Строение и функции шаперонов и их значение для поддержания нативной конформации белков в условиях клетки.

3. Принципы объединения белков в семейства по схожести их конформации и функций на примере иммуноглобулинов.

4. Методы разделения белков, основанные на особенностях их физикохимических свойств.

5. Электрофорез плазмы крови как метод оценки качественного и количественного состава белков.

ТЕМА 1.4. ОСОБЕННОСТИ СТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ ОЛИГОМЕРНЫХ БЕЛКОВ НА ПРИМЕРЕ ГЕМОГЛОБИНА

1. Многие белки имеют в своем составе несколько полипептидных цепей. Такие белки называют олигомерными, а отдельные цепи - протомерами. Протомеры в олигомерных белках соединены множеством слабых нековалентных связей (гидрофобных, ионных, водородных). Взаимодействие

протомеров осуществляется благодаря комплементарности их контактирующих поверхностей.

Количество протомеров в олигомерных белках может сильно варьировать: гемоглобин содержит 4 протомера, фермент аспартатаминотрансфераза - 12 протомеров, а в белок вируса табачной мозаики входит 2120 протомеров, соединенных нековалентными связями. Следовательно, олигомерные белки могут иметь очень большую молекулярную массу.

Взаимодействие одного протомера с другими можно рассматривать как частный случай взаимодействия белка с лигандом, так как каждый протомер служит лигандом для других протомеров. Количество и способ соединения протомеров в белке называется четвертичной структурой белка.

В состав белков могут входить одинаковые или разные по строению протомеры, например, гомодимеры - белки, содержащие два одинаковых протомера, а гетеродимеры - белки, содержащие два разных протомера.

Если в состав белков входят разные протомеры, то на них могут формироваться отличающиеся по структуре центры связывания с разными лигандами. При связывании лиганда с активным центром проявляется функция данного белка. Центр, расположенный на другом протомере, называется аллостерическим (другим, отличным от активного). Связываясь с аллостерическим лигандом или эффектором, он выполняет регуляторную функцию (рис. 1.18). Взаимодействие аллостерического центра с эффектором вызывает конформационные изменения в структуре всего олигомерного белка благодаря его конформационной лабильности. Это влияет на сродство активного центра к специфическому лиганду и регулирует функцию данного белка. Изменение конформации и функции всех протомеров при взаимодействии олигомерного белка хотя бы с одним лигандом носит название кооперативных изменений конформации. Эффекторы, усиливающие функцию белка, называются активаторами, а эффекторы, угнетающие его функцию, - ингибиторами.

Таким образом, у олигомерных белков, а также белков, имеющих доменное строение, появляется новое по сравнению с мономерными белками свойство - способность к аллостерической регуляции функций (регуляции присоединением к белку разных лигандов). Это можно проследить, сравнивая структуры и функции двух близко родственных сложных белков миоглобина и гемоглобина.

Рис. 1.18. Схема строения димерного белка

2. Формирование пространственных структур и функционирование миоглобина.

Миоглобин (Мв) - белок, находящийся в красных мышцах, основная функция которого - создание запасов О 2 , необходимых при интенсивной мышечной работе. Мв - сложный белок, содержащий белковую часть - апоМв и небелковую часть - гем. Первичная структура апоМв определяет его компактную глобулярную конформацию и структуру активного центра, к которому присоединяется небелковая часть миоглобина - гем. Кислород, поступающий из крови в мышцы, связывается с Fe+ 2 гема в составе миоглобина. Мв - мономерный белок, имеющий очень высокое сродство к О 2 , поэтому отдача кислорода миоглобином происходит только при интенсивной мышечной работе, когда парциальное давление O 2 резко снижается.

Формирование конформации Мв. В красных мышцах на рибосомах в ходе трансляции идет синтез первичной структуры Мв, представленной специфической последовательностью 153 аминокислотных остатков. Вторичная структура Мв содержит восемь α-спиралей, называемых латинскими буквами от А до Н, между которыми имеются неспирализованные участки. Третичная структура Мв имеет вид компактной глобулы, в углублении которой между F и Е α-спиралями расположен активный центр (рис. 1.19).

Рис. 1.19. Структура миоглобина

3. Особенности строения и функционирования активного центра Мв. Активный центр Мв сформирован преимущественно гидрофобными радикалами аминокислот, далеко отстоящими друг от друга в первичной структуре (например, Три 3 9 и Фен 138) К активному центру присоединяется плохо растворимые в воде лиганды - гем и О 2 . Гем - специфический лиганд апоМв (рис. 1.20), основу которого составляют четыре пиррольных кольца, соединенных метенильными мостиками; в центре расположен атом Fe+ 2 , соединенный с атомами азота пиррольных колец четырьмя координационными связями. В активном центре Мв кроме гидрофобных радикалов аминокислот имеются также остатки двух аминокислот с гидрофильными радикалами - Гис Е 7 (Гис 64) и Гис F 8 (Гис 93) (рис. 1.21).

Рис. 1.20. Строение гема - небелковой части миоглобина и гемоглобина

Рис. 1.21. Расположение гема и O 2 в активном центре апомиоглобина и протомеров гемоглобина

Гем через атом железа ковалентно связан с Гис F 8 . O 2 присоединяется к железу с другой стороны плоскости гема. Гис Е 7 необходим для правильной ориентации О 2 и облегчает присоединение кислорода к Fe+ 2 гема

Гис F 8 образует координационную связь с Fe+ 2 и прочно фиксирует гем в активном центре. Гис Е 7 необходим для правильной ориентации в активном центре другого лиганда - O 2 при его взаимодействии с Fe+ 2 гема. Микроокружение гема создает условия для прочного, но обратимого связывания O 2 с Fe +2 и препятствует попаданию в гидрофобный активный центр воды, что может привести к его окислению в Fе+ 3 .

Мономерное строение Мв и его активного центра определяет высокое сродство белка к О 2 .

4. Олигомерное строение Нв и регуляция сродства Нв к О 2 лигандами. Гемоглобины человека - семейство белков, так же как и миоглобин относящиеся к сложным белкам (гемопротеинам). Они имеют тетрамерное строение и содержат две α-цепи, но различаются по строению двух других полипептидных цепей (2α-, 2х-цепи). Строение второй полипептидной цепи определяет особенности функционирования этих форм Нв. Около 98% гемоглобина эритроцитов взрослого человека составляет гемоглобин А (2α-, 2р-цепи).

В период внутриутробного развития функционируют два основных типа гемоглобинов: эмбриональный Нв (2α, 2ε), который обнаруживается на ранних этапах развития плода, и гемоглобин F (фетальный) - (2α, 2γ), который приходит на смену раннему гемоглобину плода на шестом месяце внутриутробного развития и только после рождения замещается на Нв А.

Нв А - белок, родственный миоглобину (Мв), содержится в эритроцитах взрослого человека. Строение его отдельных протомеров аналогично таковому у миоглобина. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны, несмотря на то что в первичной структуре их полипептидных цепей идентичны только 24 аминокислотных остатка (вторичная структура протомеров гемоглобина, так же как миоглобин, содержит восемь α-спиралей, обозначаемых латинскими буквами от А до Н, а третичная структура имеет вид компактной глобулы). Но в отличие от миоглобина гемоглобин имеет олигомерное строение, состоит из четырех полипептидных цепей, соединенных нековалентными связями (рис 1.22).

Каждый протомер Нв связан с небелковой частью - гемом и соседними протомерами. Соединение белковой части Нв с гемом аналогично таковому у миоглобина: в активном центре белка гидрофобные части гема окружены гидрофобными радикалами аминокислот за исключением Гис F 8 и Гис Е 7 , которые расположены по обе стороны от плоскости гема и играют аналогичную роль в функционировании белка и связывании его с кислородом (см. строение миоглобина).

Рис. 1.22. Олигомерная структура гемоглобина

Кроме того, Гис Е 7 выполняет важную дополнительную роль в функционировании Нв. Свободный гем имеет в 25 000 раз более высокое сродство к СО, чем к О 2 . СО в небольших количествах образуется в организме и, учитывая его высокое сродство к гему, он мог бы нарушать транспорт необходимого для жизни клеток О 2 . Однако в составе гемоглобина сродство гема к оксиду углерода превышает сродство к О 2 всего в 200 раз благодаря наличию в активном центре Гис Е 7 . Остаток этой аминокислоты создает оптимальные условия для связывания гема с O 2 и ослабляет взаимодействие гема с СО.

5. Основная функция Нв - транспорт О 2 из легких в ткани. В отличие от мономерного миоглобина, имеющего очень высокое сродство к О 2 и выполняющего функцию запасания кислорода в красных мышцах, олигомерная структура гемоглобина обеспечивает:

1) быстрое насыщение Нв кислородом в легких;

2) способность Нв отдавать кислород в тканях при относительно высоком парциальном давлении O 2 (20-40 мм рт. ст.);

3) возможность регуляции сродства Нв к О 2 .

6. Кооперативные изменения конформации протомеров гемоглобина ускоряют связывание O 2 в легких и отдачу его в ткани. В легких высокое парциальное давление O 2 способствует связыванию его с Нв в активном центре четырех протомеров (2α и 2β). Активный центр каждого протомера, так же как и в миоглобине, расположен между двумя α-спиралями (F и Е) в гидрофобном кармане. Он содержит небелковую часть - гем, прикрепленный к белковой части множеством слабых гидрофобных взаимодействий и одной прочной связью между Fe 2 + гема и Гис F 8 (см. рис. 1.21).

В дезоксигемоглобине, благодаря этой связи с Гис F 8 , атом Fe 2 + выступает из плоскости гема по направлению к гистидину. Связывание O 2 с Fe 2 + происходит по другую сторону гема в области Гис Е 7 с помощью единственной свободной координационной связи. Гис Е 7 обеспечивает оптимальные условия для связывания O 2 с железом гема.

Присоединение O 2 к атому Fe +2 одного протомера вызывает его перемещение в плоскость гема, а за ним и остатка гистидина, связанного с ним

Рис. 1.23. Изменение конформации протомера гемоглобина при соединении с O 2

Это приводит к изменению конформации всех полипептидных цепей за счет их конформационной лабильности. Изменение конформации других цепей облегчает их взаимодействие со следующими молекулами О 2 .

Четвертая молекула О 2 присоединяется к гемоглобину в 300 раз легче, чем первая (рис. 1.24).

Рис. 1.24. Кооперативные изменения конформации протомеров гемоглобина при его взаимодействии с О 2

В тканях каждая следующая молекула O 2 отщепляется легче, чем предыдущая, также за счет кооперативных изменений конформации протомеров.

7. CO 2 и Н+, образующиеся при катаболизме органических веществ, уменьшают сродство гемоглобина к О 2 пропорционально их концентрации. Энергия, необходимая для работы клеток, вырабатывается преимущественно в митохондриях при окислении органических веществ с использованием O 2 , доставляемого из легких гемоглобином. В результате окисления органических веществ образуются конечные продукты их распада: СО 2 и K 2 O, количество которых пропорционально интенсивности протекающих процессов окисления.

СO 2 диффузией попадает из клеток в кровь и проникает в эритроциты, где под действием фермента карбангидразы превращается в угольную кислоту. Эта слабая кислота диссоциирует на протон и бикарбонат ион.

Н+ способны присоединятся к радикалам Гис 14 6 в α- и β-цепях гемоглобина, т.е. в участках, удаленных от гема. Протонирование гемоглобина снижает его сродство к О 2 , способствует отщеплению О 2 от оксиНв, образованию дезоксиНв и увеличивает поступление кислорода в ткани пропорционально количеству образовавшихся протонов (рис. 1.25).

Увеличение количества освобожденного кислорода в зависимости от увеличения концентрации Н+ в эритроцитах называется эффектом Бора (по имени датского физиолога Христиана Бора, впервые открывшего этот эффект).

В легких высокое парциальное давление кислорода способствует его связыванию с дезоксиНв, что уменьшает сродство белка к Н + . Освободившиеся протоны под действием карбангидразы взаимодействуют с бикарбонатами с образованием СО 2 и Н 2 О


Рис. 1.25. Зависимость сродства Нв к О 2 от концентрации СО 2 и протонов (эффект Бора):

А - влияние концентрации СО 2 и Н+ на высвобождение О 2 из комплекса с Нв (эффект Бора); Б - оксигенирование дезоксигемоглобина в легких, образование и выделение СО 2 .

Образовавшийся СО 2 поступает в альвеолярное пространство и удаляется с выдыхаемым воздухом. Таким образом, количество высвобождаемого гемоглобином кислорода в тканях регулируется продуктами катаболизма органических веществ: чем интенсивнее распад веществ, например при физических нагрузках, тем выше концентрация СО 2 и Н + и тем больше кислорода получают ткани в результате уменьшения сродства Нв к О 2 .

8. Аллостерическая регуляция сродства Нв к О 2 лигандом - 2,3-бис- фосфоглицератом. В эритроцитах из продукта окисления глюкозы - 1,3-бисфосфоглицерата синтезируется аллостерический лиганд гемоглобина - 2,3-бисфосфоглицерат (2,3-БФГ). В нормальных условиях концентрация 2,3-БФГ высокая и сравнима с концентрацией Нв. 2,3-БФГ имеет сильный отрицательный заряд -5.

Бисфосфоглицерат в капиллярах тканей, связываясь с дезоксигемоглобином, увеличивает выход кислорода в ткани, уменьшая сродство Нв к О 2 .

В центре тетрамерной молекулы гемоглобина находится полость. Ее образуют аминокислотные остатки всех четырех протомеров (см. рис. 1.22). В капиллярах тканей протонирование Нв (эффект Бора) приводит к разрыву связи между железом гема и О 2 . В молекуле

дезоксигемоглобина по сравнению с оксигемоглобином возникают дополнительные ионные связи, соединяющие протомеры, вследствие чего размеры центральной полости по сравнению с оксигемоглобином увеличиваются. Центральная полость является местом присоединения 2,3-БФГ к гемоглобину. Из-за различия в размерах центральной полости 2,3-БФГ может присоединяться только к дезоксигемоглобину.

2,3-БФГ взаимодействует с гемоглобином в участке, удаленном от активных центров белка и относится к аллостерическим (регуляторным) лигандам, а центральная полость Нв является аллостерическим центром. 2,3-БФГ имеет сильный отрицательный заряд и взаимодействует с пятью положительно заряженными группами двух β-цепей Нв: N-концевой α-аминогруппой Вал и радикалами Лиз 82 Гис 143 (рис. 1.26).

Рис. 1.26. БФГ в центральной полости дезоксигемоглобина

БФГ связывается с тремя положительно заряженными группами в каждой β-цепи.

В капиллярах тканей образующийся дезоксигемоглобин взаимодействует с 2,3-БФГ и между положительно заряженными радикалами β-цепей и отрицательно заряженным лигандом образуются ионные связи, которые изменяют конформацию белка и снижают сродство Нв к О 2 . Уменьшение сродства Нв к О 2 способствует более эффективному выходу О 2 в ткани.

В легких при высоком парциальном давлении кислород взаимодействует с Нв, присоединяясь к железу гема; при этом изменяется конформация белка, уменьшается центральная полость и происходит вытеснение 2,3-БФГ из аллостерического центра

Таким образом, олигомерные белки обладают новыми по сравнению с мономерными белками свойствами. Присоединение лигандов на участках,

пространственно удаленных друг от друга (аллостерических), способно вызывать конформационные изменения во всей белковой молекуле. Благодаря взаимодействию с регуляторными лигандами происходит изменение конформации и адаптация функции белковой молекулы к изменениям окружающей среды.

ТЕМА 1.5. ПОДДЕРЖАНИЕ НАТИВНОЙ КОНФОРМАЦИИ БЕЛКОВ В УСЛОВИЯХ КЛЕТКИ

В клетках в процессе синтеза полипептидных цепей, их транспорта через мембраны в соответствующие отделы клетки, в процессе фолдинга (формирования нативной конформации) и при сборке олигомерных белков, а также в период их функционирования в структуре белков возникают промежуточные, склонные к агрегации, нестабильные конформации. Гидрофобные радикалы, в нативной конформации обычно спрятанные внутри белковой молекулы, в нестабильной конформации оказываются на поверхности и стремятся к объединению с такими же плохо растворимыми в воде группами других белков. В клетках всех известных организмов обнаружены специальные белки, которые обеспечивают оптимальный фолдинг белков клетки, стабилизируют их нативную конформацию при функционировании и, что особенно важно, поддерживают структуру и функции внутриклеточных белков при нарушении гомеостаза. Эти белки получили название «шапероны», что в переводе с французского обозначает «няня».

1. Молекулярные шапероны и их роль в предотвращении денатурации белков.

Шапероны (Ш) классифицируются по массе субъединиц. Высокомолекулярные шапероны имеют массу от 60 до 110 кД. Среди них наиболее изучены три класса: Ш-60, Ш-70 и Ш-90. Каждый класс включает семейство родственных белков. Так, в состав Ш-70 входят белки с молекулярной массой от 66 до 78 кД. Низкомолекулярные шапероны имеют молекулярную массу от 40 до 15 кД.

Среди шаперонов различают конститутивные белки, высокий базальный синтез которых не зависит от стрессовых воздействий на клетки организма, и индуцибельные, синтез которых в нормальных условиях идет слабо, но резко возрастает при стрессовых воздействиях. Индуцибельные шапероны называют также «белками теплового шока», так как впервые они были обнаружены в клетках, подвергавшихся воздействию высоких температур. В клетках из-за высокой концентрации белков самопроизвольная ренативация частично денатурированных белков затруднена. Ш-70 могут предотвращать начавшийся процесс денатурации и способствовать восстановлению нативной конформации белков. Молекулярные шапероны-70 - высококонсервативный класс белков, находящихся во всех отделах клетки: цитоплазме, ядре, эндоплазматическом ретикулуме, митохондриях. На карбоксильном конце единственной полипептидной цепи Ш-70 имеется участок, который представляет собой бороздку, способный взаимодействовать с пептидами длиной

от 7 до 9 аминокислотных остатков, обогащенных гидрофобными радикалами. Такие участки в глобулярных белках встречаются примерно через каждые 16 аминокислот. Ш-70 способны защищать белки от температурной инактивации и восстанавливать конформацию и активность частично денатурированных белков.

2. Роль шаперонов в фолдинге белков. При синтезе белков на рибосоме N-концевая область полипептида синтезируется раньше С-концевой. Для формирования нативной конформации необходима полная аминокислотная последовательность белка. В процессе синтеза белков шапероны-70, благодаря строению их активного центра, способны закрывать склонные к агрегации участки полипептида, обогащенные гидрофобными радикалами аминокислот до завершения синтеза (рис 1.27, А).

Рис. 1.27. Участие шаперонов в фолдинге белков

А - участие шаперонов-70 в предотвращении гидрофобных взаимодействий между участками синтезирующегося полипептида; Б - формирование нативной конформации белка в шапероновом комплексе

Многие высокомолекулярные белки, имеющие сложную конформацию, например доменное строение, осуществляют фолдинг в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомерного комплекса, состоящего из 14 субъединиц. Они формируют два полых кольца, каждое из которых состоит из семи субъединиц, эти кольца соединены друг с другом. Каждая субъединица Ш-60 состоит из трех доменов: апикального (верхушечного), обогащенного гидрофобными радикалами, обращенными в полость кольца, промежуточного и экваториального (рис. 1.28).

Рис. 1.28 . Структура шаперонинового комплекса, состоящего из 14 Ш-60

А - вид сбоку; Б - вид сверху

Синтезированные белки, имеющие на поверхности элементы, характерные для несвернутых молекул, в частности гидрофобные радикалы, попадают в полость шапероновых колец. В специфической среде этих полостей происходит перебор возможных конформаций, пока не будет найдена единственная, энергетически наиболее выгодная (рис. 1.27, Б). Формирование конформаций и высвобождение белка сопровождается гидролизом АТФ в экваториальной области. Обычно такой шаперонозависимый фолдинг требует затрат значительного количества энергии.

Кроме участия в формировании трехмерной структуры белков и ренативации частично денатурированных белков, шапероны также необходимы для протекания таких фундаментальных процессов, как сборка олигомерных белков, узнавание и транспорт в лизосомы денатурированных белков, транспорт белков через мембраны, участие в регуляции активности белковых комплексов.

ТЕМА 1.6. МНОГООБРАЗИЕ БЕЛКОВ. СЕМЕЙСТВА БЕЛКОВ НА ПРИМЕРЕ ИММУНОГЛОБУЛИНОВ

1. Белки играют решающую роль в жизнедеятельности отдельных клеток и всего многоклеточного организма, а их функции удивительно многообразны. Это определяется особенностями первичной структуры и конформаций белков, уникальностью строения активного центра и способностью связывать специфические лиганды.

Лишь очень небольшая часть всех возможных вариантов пептидных цепей может принять стабильную пространственную структуру; большинство

из них может принимать множество конформаций с примерно одинаковой энергией Гиббса, но с различными свойствами. Первичная структура большинства известных белков, отобранных биологической эволюцией, обеспечивает исключительную стабильность одной из конформаций, которая определяет особенности функционирования этого белка.

2. Семейства белков. В пределах одного биологического вида замены аминокислотных остатков могут приводить к возникновению разных белков, выполняющих родственные функции и имеющих гомологичные последовательности аминокислот. Такие родственные белки имеют поразительно сходные конформации: количество и взаиморасположение α-спиралей и (или) β-структур, большинство поворотов и изгибов полипептидных цепей похожи или идентичны. Белки с гомологичными участками полипептидной цепи, сходной конформацией и родственными функциями выделяют в семейства белков. Примеры семейств белков: сериновые протеиназы, семейство иммуноглобулинов, семейство миоглобина.

Сериновые протеиназы - семейство белков, выполняющих функцию протеолитических ферментов. К ним относятся пищеварительные ферменты - химотрипсин, трипсин, эластаза и многие факторы свертывания крови. Эти белки имеют в 40% положений идентичные аминокислоты и очень близкую конформацию (рис. 1.29).

Рис. 1.29 . Пространственные структуры эластазы (А) и химотрипсина (Б)

Некоторые аминокислотные замены привели к изменению субстратной специфичности этих белков и возникновению функционального многообразия внутри семейства.

3. Семейство иммуноглобулинов. В работе иммунной системы огромную роль играют белки суперсемейства иммуноглобулинов, которое включает в себя три семейства белков:

Антитела (иммуноглобулины);

Рецепторы Т-лимфоцитов;

Белки главного комплекса гистосовместимости - МНС 1-го и 2-го классов (Major Histocompatibility Complex).

Все эти белки имеют доменное строение, состоят из гомологичных иммуноподобных доменов и выполняют сходные функции: взаимодействуют с чужеродными структурами, либо растворенными в крови, лимфе или межклеточной жидкости (антитела), либо находящимися на поверхности клеток (собственных или чужеродных).

4. Антитела - специфические белки, вырабатываемые В-лимфоцитами в ответ на попадание в организм чужеродной структуры, называемой антигеном.

Особенности строения антител

Простейшие молекулы антител состоят из четырех полипептидных цепей: двух идентичных легких - L, содержащих около 220 аминокислот, и двух идентичных тяжелых - Н, состоящих из 440-700 аминокислот. Все четыре цепи в молекуле антитела соединены множеством нековалентных связей и четырьмя дисульфидными связями (рис. 1.30).

Легкие цепи антитела состоят из двух доменов: вариабельного (VL), находящегося в N-концевой области полипептидной цепи, и константного (CL), расположенного на С-конце. Тяжелые цепи обычно имеют четыре домена: один вариабельный (VH), находящийся на N-конце, и три константных (CH1, CH2, СНЗ) (см. рис. 1.30). Каждый домен иммуноглобулина имеет β-складчатую суперструктуру, в которой два остатка цистеина соединены дисульфидной связью.

Между двумя константными доменами СН1 и СН2 имеется участок, содержащий большое число остатков пролина, которые препятствуют формированию вторичной структуры и взаимодействию соседних Н-цепей на этом отрезке. Эта шарнирная область придает молекуле антитела гибкость. Между вариабельными доменами тяжелых и легких цепей находятся два идентичных антигенсвязывающих участка (активные центры для связывания антигенов), поэтому такие антитела часто называют бивалентами. В связывании антигена с антителом участвует не вся аминокислотная последовательность вариабельных участков обеих цепей, а всего лишь 20-30 аминокислот, расположенных в гипервариабельных областях каждой цепи. Именно эти области определяют уникальную способность каждого вида антитела взаимодействовать с соответствующим комплементарным антигеном.

Антитела - одна из линий защиты организма против внедрившихся чужеродных организмов. Их функционирование можно разделить на два этапа: первый этап - узнавание и связывание антигена на поверхности чужеродных организмов, что возможно благодаря наличию в структуре антитела антигенсвязывающих участков; второй этап - инициация процесса инактивации и разрушения антигена. Специфичность второго этапа зависит от класса антител. Существует пять классов тяжелых цепей, отличающихся друг от друга по строению константных доменов: α, δ, ε, γ и μ, в соответствии с которыми различают пять классов иммуноглобулинов: A, D, Е, G и М.

Особенности строения тяжелых цепей придают шарнирным участкам и С-концевым областям тяжелых цепей характерную для каждого класса конформацию. После связывания антигена с антителом конформационные изменения константных доменов определяют путь удаления антигена.

Рис. 1. 30. Доменное строение IgG

Иммуноглобулины М

Иммуноглобулины М имеют две формы.

Мономерная форма - 1-й класс антител, продуцируемый развивающимся В-лимфоцитом. Впоследствии многие В-клетки переключаются на выработку других классов антител, но с тем же антигенсвязывающим участком. IgM встраивается в мембрану и выполняет роль антигенраспознающего рецептора. Встраивание IgM в мембрану клеток возможно благодаря наличию в хвостовой части участка 25 гидрофобных аминокислотных остатков.

Секреторная форма IgM содержит пять мономерных субъединиц, связанных друг с другом дисульфидными связями и дополнительной полипептидной J-цепью (рис. 1.31). Тяжелые цепи мономеров этой формы не содержат гидрофобной хвостовой части. Пентамер имеет 10 центров связывания с антигеном и поэтому эффективен в распознавании и удалении впервые попавшего в организм антигена. Секреторная форма IgM - основной класс антител, секретируемых в кровь при первичном иммунном ответе. Связывание IgM с антигеном изменяет конформацию IgM и индуцирует связывание его с первым белковым компонентом системы комплемента (система комплемента - набор белков, участвующих в уничтожении антигена) и активацию этой системы. Если антиген расположен на поверхности микроорганизма, система комплемента вызывает нарушение целостности клеточной мембраны и гибель бактериальной клетки.

Иммуноглобулины G

В количественном отношении этот класс иммуноглобулинов преобладает в крови (75% от всех Ig). IgG - мономеры, основной класс антител, секретируемый в кровь при вторичном иммунном ответе. После взаимодействия IgG с поверхностными антигенами микроорганизмов комплекс антиген-антитело способен связывать и активировать белки системы комплемента или может взаимодействовать со специфическими рецепторами макрофагов и нейтрофилов. Взаимодействие с фагоцитами приводит

Рис. 1.31. Строение секреторной формы IgM

к поглощению комплексов антиген-антитело и разрушению их в фагосомах клеток. IgG - единственный класс антител, которые способны проникать через плацентарный барьер и обеспечивать внутриутробную защиту плода от инфекций.

Иммуноглобулины А

Основной класс антител, присутствующий в секретах (молоке, слюне, секретах дыхательных путей и кишечного тракта). IgA секретируются в основном в димерной форме, где мономеры связаны друг с другом через дополнительную J-цепь (рис. 1.32).

IgA не взаимодействуют с системой комплемента и фагоцитирующими клетками, но, связываясь с микроорганизмами, антитела препятствуют их присоединению к эпителиальным клеткам и проникновению в организм.

Иммуноглобулины Е

Иммуноглобулины Е представлены мономерами, в которых тяжелые ε-цепи содержат, так же как и μ-цепи иммуноглобулинов М, один вариабельный и четыре константных домена. IgE после секреции связываются своими

Рис. 1.32. Строение IgA

С-концевыми участками с соответствующими рецепторами на поверхности тучных клеток и базофилов. В результате они становятся рецепторами для антигенов на поверхности данных клеток (рис. 1.33).

Рис. 1.33. Взаимодействие IgE с антигеном на поверхности тучной клетки

После того как происходит присоединение антигена к соответствующим антигенсвязывающим участкам IgE, клетки получают сигнал к секреции биологически активных веществ (гистамина, серотонина), которые в большой мере ответственны за развитие воспалительной реакции и за проявление таких аллергических реакций, как астма, крапивница, сенная лихорадка.

Иммуноглобулины D

Иммуноглобулины D обнаружены в сыворотке в очень небольшом количестве, они являются мономерами. В тяжелых δ-цепях имеются один вариабельный и три константных домена. IgD выполняют роль рецепторов В-лимфоцитов, другие функции пока неизвестны. Взаимодействие специфических антигенов с рецепторами на поверхности В-лимфоцитов (IgD) приводит к передаче этих сигналов в клетку и включению механизмов, обеспечивающих размножение данного клона лимфоцитов.

ТЕМА 1.7. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ И МЕТОДЫ ИХ РАЗДЕЛЕНИЯ

1. Индивидуальные белки различаются по физико-химическим свойствам:

Форме молекул;

Молекулярной массе;

Суммарному заряду, величина которого зависит от соотношения анионных и катионных групп аминокислот;

Соотношению полярных и неполярных радикалов аминокислот на поверхности молекул;

Степени устойчивости к воздействию различных денатурирующих агентов.

2. Растворимость белков зависит от свойств белков, перечисленных выше, а также от состава среды, в которой растворяется белок (значения рН, солевого состава, температуры, наличия других органических веществ, способных взаимодействовать с белком). Величина заряда белковых молекул - один из факторов, влияющих на их растворимость. При потере заряда в изоэлектрической точке белки легче агрегируют и выпадают в осадок. Это особенно характерно для денатурированных белков, у которых на поверхности оказываются гидрофобные радикалы аминокислот.

На поверхности белковой молекулы имеются как положительно, так и отрицательно заряженные радикалы аминокислот. Количество этих групп, а следовательно, и суммарный заряд белков зависят от рН среды, т.е. соотношения концентрации Н+- и ОН - -групп. В кислой среде повышение концентрации Н+ приводит к подавлению диссоциации карбоксильных групп -СОО - + Н+ > - СООН и понижению отрицательного заряда белков. В щелочной среде связывание избытка ОН - протонами, образующимися при диссоциации аминогрупп -NH 3 + + ОН - - NH 2 + Н 2 О с образованием воды, приводит к уменьшению положительного заряда белков. Значение рН, при котором белок имеет суммарный нулевой заряд, называется изоэлектрической точкой (ИЭТ). В ИЭТ число положительно и отрицательно заряженных групп одинаково, т.е. белок находится в изоэлектрическом состоянии.

3. Разделение индивидуальных белков. Особенности строения и функционирования организма зависят от набора белков, синтезирующихся в нем. Изучение строения и свойств белков невозможно без их выделения из клетки и очистки от других белков и органических молекул. Стадии выделения и очистки индивидуальных белков:

Разрушение клеток изучаемой ткани и получение гомогената.

Разделение гомогената на фракции центрифугированием, получение ядерной, митохондриальной, цитозольной или иной фракции, содержащей искомый белок.

Избирательная тепловая денатурация - кратковременное нагревание раствора белков, при котором можно удалить часть денатурированных белковых примесей (в том случае, если белок относительно термостабилен).

Высаливание. Различные белки выпадают в осадок при разных концентрациях соли в растворе. Постепенно повышая концентрацию соли, можно получить ряд отдельных фракций с преимущественным содержанием выделяемого белка в одной из них. Наиболее часто для фракционирования белков используют сульфат аммония. Белки с наименьшей растворимостью выпадают в осадок при небольших концентрациях солей.

Гель-фильтрация - метод просеивания молекул через набухшие гранулы сефадекса (трехмерные полисахаридные цепи декстрана, имеющие поры). Скорость прохождения белков через колонку, заполненную сефадексом, будет зависеть от их молекулярной массы: чем меньше масса молекул белка, тем легче они проникают внутрь гранул и дольше там задерживаются, чем больше масса, тем быстрее они элюируют с колонки.

Ультрацентрифугирование - метод, заключающийся в том, что белки в центрифужной пробирке помещают в ротор ультрацентрифуги. При вращении ротора скорость оседания белков пропорциональна их молекулярной массе: фракции более тяжелых белков расположены ближе ко дну пробирки, более легкие - ближе к поверхности.

Электрофорез - метод, в основе которого лежат различия в скорости движения белков в электрическом поле. Эта величина пропорциональна заряду белков. Электрофорез белков проводят на бумаге (в этом случае скорость движения белков пропорциональна только их заряду) или в полиакриламидном геле с определенной величиной пор (скорость движения белков пропорциональна их заряду и молекулярной массе).

Ионообменная хроматография - метод фракционирования, основанный на связывании ионизированных групп белков с противоположно заряженными группами ионообменных смол (нерастворимых полимерных материалов). Прочность связывания белка со смолой пропорциональна заряду белка. Белки, адсорбированные на ионообменном полимере, можно смыть растворами NaCl с возрастающими концентрациями; чем меньше заряд белка, тем меньшая концентрация NaCl потребуется, чтобы смыть белок, связанный с ионогенными группами смолы.

Аффинная хроматография - наиболее специфический метод выделения индивидуальных белков.К инертному полимеру ковалентно присоединяется лиганд какого-либо белка. При пропускании раствора белков через колонку с полимером за счет комплементарного связывания белка с лигандом на колонке адсорбируется только специфичный для данного лиганда белок.

Диализ - метод, применяемый для удаления низкомолекулярных соединений из раствора выделяемого белка. Метод основан на неспособности белков проходить через полупроницаемую мембрану в отличие от низкомолекулярных веществ. Применяется для очистки белков от низкомолекулярных примесей, например от солей после высаливания.

ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

1. Заполните табл. 1.4.

Таблица 1.4. Сравнительный анализ структуры и функций родственных белков - миоглобина и гемоглобина

а) вспомните строение активного центра Мв и НЬ. Какую роль играют гидрофобные радикалы аминокислот в формировании активных центров этих белков? Опишите строение активного центра Мв и НЬ и механизмы присоединения к нему лигандов. Какую роль играют остатки Гис F 8 и Гис Е 7 в функционировании активного центра Мв иНв?

б) какими новыми свойствами по сравнению с мономерным миоглобином обладает близко родственный олигомерный белок - гемоглобин? Объясните роль кооперативных изменений конформации протомеров в молекуле гемоглобина, влияние концентраций СО 2 и протонов на сродство гемоглобина к кислороду, а также роль 2,3-БФГ в аллостерической регуляции функции НЬ.

2. Дайте характеристику молекулярным шаперонам, обращая внимание на связь их структуры с функцией.

3. Какие белки объединяют в семейства? На примере семейства иммуноглобулинов определите сходные черты строения и родственные функции белков этого семейства.

4. Часто для биохимических и медицинских целей требуются очищенные индивидуальные белки. Объясните, на каких физико-химических свойствах белков основаны используемые методы их разделения и очистки.

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Выберите правильные ответы.

Функции гемоглобина:

A. Транспорт О 2 из легких в ткани Б. Транспорт Н + из тканей в легкие

B. Поддержание постоянства рН крови Г. Транспорт СО 2 из легких в ткани

Д. Транспорт СО 2 из тканей в легкие

2. Выберите правильные ответы. Лигандом α-протомера Нв является: A. Гем

Б. Кислород

B. СО Г. 2,3-БФГ

Д. β-Протомер

3. Выберите правильные ответы.

Гемоглобин в отличие от миоглобина:

A. Имеет четвертичную структуру

Б. Вторичная структура представлена только α-спиралями

B. Относится к сложным белкам

Г. Взаимодействует с аллостерическим лигандом Д. Ковалентно связан с гемом

4. Выберите правильные ответы.

Сродство Нв к О 2 уменьшается:

A. При присоединении одной молекулы О 2 Б. При отщеплении одной молекулы О 2

B. При взаимодействии с 2,3-БФГ

Г. При присоединении к протомерам Н + Д. При снижении концентрации 2,3-БФГ

5. Установите соответствие.

Для типов Нв характерно:

A. В дезокси форме образует фибриллярные агрегаты Б. Содержит в составе две α- и две δ-цепи

B. Преобладающая форма Нв в эритроцитах взрослого человека Г. В активном центре содержит гем с Fе+ 3

Д. Содержит в составе две α- и две γ-цепи 1. НвА 2.

6. Установите соответствие.

Лиганды Нв:

A. Связывается с Нв в аллостерическом центре

Б. Имеет очень высокое сродство к активному центру Нв

B. Присоединяясь, повышает сродство Нв к O 2 Г. Окисляет Fe+ 2 в Fе+ 3

Д. Образует ковалентную связь с гисF8

7. Выберите правильные ответы.

Шапероны:

A. Белки, присутствующие во всех отделах клетки

Б. Синтез усиливается при стрессовых воздействиях

B. Участвуют в гидролизе денатурированных белков

Г. Участвуют в поддержании нативной конформации белков

Д. Создают органеллы, в которых формируется конформация белков

8. Установите соответствие. Иммуноглобулины:

A. Секреторная форма имеет пентамерную форму

Б. Класс Ig, проникающих через плацентарный барьер

B. Ig - рецептор тучных клеток

Г. Основной класс Ig, присутствующих в секретах эпителиальных клеток. Д. Рецептор В-лимфоцитов, активация которого обеспечивает размножение клеток

9. Выберите правильные ответы.

Иммуноглобулины Е:

A. Вырабатываются макрофагами Б. Имеют тяжелые ε-цепи.

B. Встраиваются в мембрану Т-лимфоцитов

Г. Выполняют роль мембранных рецепторов антигенов на тучных клетках и базофилах

Д. Ответственны за проявление аллергических реакций

10. Выберите правильные ответы.

Метод разделения белков основан на различиях в их молекулярной массе:

A. Гель-фильтрация

Б. Ультрацентрифугирование

B. Электрофорез в полиакриламидном геле Г. Ионообменная хроматография

Д. Аффинная хроматография

11. Выберите правильный ответ.

Метод разделения белков основан на различиях в их растворимости в воде:

A. Гель-фильтрация Б. Высаливание

B. Ионообменная хроматография Г. Аффинная хроматография

Д. Электрофорез в полиакриламидном геле

ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

1. А, Б, В, Д

2. А, Б, В, Д

5. 1-В, 2-А, 3-Г

6. 1-В, 2-Б, 3-А

7. А, Б, Г, Д

8. 1-Г; 2-Б, 3-В

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Олигомерные белки, протомер, четвертичная структура белков

2. Кооперативные изменения конформации протомеров

3. Эффект Бора

4. Аллостерическая регуляция функций белков, аллостерический центр и аллостерический эффектор

5. Молекулярные шапероны, белки теплового шока

6. Семейства белков (сериновые протеазы, иммуноглобулины)

7. IgM-, G-, Е-, А-связь структуры с функцией

8. Суммарный заряд белков, изоэлектрическая точка белков

9. Электрофорез

10. Высаливание

11. Гель-фильтрация

12. Ионообменная хроматография

13. Ультрацентрифугирование

14. Аффинная хроматография

15. Электрофорез белков плазмы крови

ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

1. Сравните зависимости степеней насыщения гемоглобина (Нв) и миоглобина (Mb) кислородом от его парциального давления в тканях

Рис. 1.34. Зависимость насыщения Мв и НЬ кислородом от его парциального давления

Обратите внимание, что форма кривых насыщения белков кислородом различна: для миоглобина - гипербола, для гемоглобина - сигмоидная форма.

1. сравните значения парциального давления кислорода, при котором Мв и Нв насыщены О 2 на 50%. Какой из этих белков характеризуется более высоким сродством к О 2 ?

2. какие особенности строения Мв определяют его высокое сродство к О 2 ?

3. какие особенности строения Нв позволяют ему отдавать О 2 в капиллярах покоящихся тканей (при относительно высоком парциальном давлении О 2) и резко увеличивать эту отдачу в работающих мышцах? Какое свойство олигомерных белков обеспечивает этот эффект?

4. вычислите, какое количество О 2 (в %) отдает оксигенированный гемоглобин покоящейся и работающей мышце?

5. сделайте выводы о связи структуры белка с его функцией.

2. Количество освобождаемого гемоглобином кислорода в капиллярах зависит от интенсивности процессов катаболизма в тканях (эффект Бора). Как изменения метаболизма в тканях регулируют сродство НЬ к O 2 ? Влияние СО 2 и Н+ на сродство НЬ к О 2

1. опишите эффект Бора.

2. в каком направлении протекает процесс, представленный на схеме:

а) в капиллярах легких;

б) в капиллярах тканей?

3. в чем физиологическое значение эффекта Бора?

4. почему взаимодействие Нв с Н+ на участках, удаленных от гема, изменяет сродство белка к О 2 ?

3. Сродство НЬв к О 2 зависит от концентрации его лиганда - 2,3-бифосфо- глицерата, который является аллостерическим регулятором сродства Нв к О 2 . Почему взаимодействие лиганда в участке, удаленном от активного центра, влияет на функцию белка? Как 2,3-БФГ регулирует сродство НЬ к О 2 ? Для решения задачи ответьте на следующие вопросы:

1. где и из чего синтезируется 2.3-бифосфоглицерат (2,3-БФГ)? Напишите его формулу, укажите заряд данной молекулы.

2. с какой формой гемоглобина (окси или дезокси) взаимодействует БФГ и почему? В каком участке молекулы Нв происходит взаимодействие?

3. в каком направлении протекает процесс, представленный на схеме

а) в капиллярах тканей;

б) в капиллярах легких?

4. где должна быть более высокой концентрация комплекса

Нв-2,3-БФГ:

а) в капиллярах мышц, находящихся в состоянии покоя,

б) в капиллярах работающих мышц (при условии одинаковой концентрации БФГ в эритроцитах)?

5. как изменится сродство Нв к кислороду при адаптации человека к условиям высокогорья, если концентрация БФГ в эритроцитах при этом повышается? В чем физиологическое значение этого явления?

4. Разрушение 2,3-БФГ при хранении консервированной крови нарушает функции Нв. Как изменится сродство Нв к O 2 в консервированной крови, если концентрация 2,3-БФГ в эритроцитах может уменьшатся с 8 до 0,5 ммол/л. Можно ли переливать такую кровь тяжелобольным пациентам, если концентрация 2,3-БФГ восстанавливается не ранее чем через трое суток? Можно ли добавлением в кровь 2,3-БФГ восстановить функции эритроцитов?

5. Вспомните строение простейших молекул иммуноглобулинов. Какую роль играют иммуноглобулины в работе иммунной системы? Почему Ig часто называют бивалентами? Как структура Ig связана с их функцией? (Опишите на примере какого-либо класса иммуноглобулинов.)

Физико-химические свойства белков и методы их разделения.

6. Как суммарный заряд белка влияет на его растворимость?

а) определите суммарный заряд пептида при рН 7

Ала-Глу-Тре-Про-Асп-Лиз-Цис

б) как изменится заряд этого пептида при рН >7, рН <7, рН <<7?

в) что такое изоэлектрическая точка белка (ИЭТ) и в какой среде лежит

ИЭТ данного пептида?

г) при каком значении рН будет наблюдаться наименьшая растворимость данного пептида.

7. Почему кислое молоко в отличие от свежего при кипячении «сворачивается» (т.е. белок молока казеин выпадает в осадок)? В свежем молоке молекулы казеина имеют отрицательный заряд.

8. Для разделения индивидуальных белков используется метод гельфильтрации. Смесь, содержащую белки А, В, С с молекулярными массами, равными соответственно 160 000, 80 000 и 60 000, анализировали методом гель-фильтрации (рис. 1.35). Гранулы набухшего геля проницаемы для белков с молекулярной массой меньше 70 000. Какой принцип лежит в основе данного метода разделения? Какой из графиков правильно отражает результаты фракционирования? Укажите порядок выхода белков А, В и С с колонки.

Рис. 1.35. Использование метода гель-фильтрации для разделения белков

9. На рис. 1.36, А представлена схема электрофореза на бумаге белков сыворотки крови здорового человека. Относительные количества белковых фракций, полученных с помощью этого метода, составляют: альбумины 54-58%, α 1 -глобулины 6-7%, α 2 -глобулины 8-9%, β-глобулины 13%, γ-глобулины 11-12%.

Рис. 1.36 Электрофорез на бумаге белков плазмы крови здорового человека (А) и больного (Б)

I - γ-глобулины; II - β-глобулины; III - α 2 -глобулин; IV - α 2 -глобулин; V - альбумины

Многие болезни сопровождаются количественными изменениями в составе сывороточных белков (диспротеинемии). Характер этих изменений учитывается при постановке диагноза и оценке тяжести и стадии заболевания.

С помощью данных, приведенных в табл. 1.5, сделайте предположение о заболевании, для которого характерен электрофоретический профиль, представленный на рис. 1.36.

Таблица 1.5. Изменение концентрации белков сыворотки крови при патологии

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Белки (протеины) - это высокомолекулярные полимерные соединения пептидной природы (полигетероаминокислоты).

Первичная структура белков - это последовательность чередования аминокислотных остатков в полипептидной цепи (ППЦ) .

Первичная структура белков является ковалентной структурой, поскольку в её основе лежит пептидная связь между a-амино- и a-карбоксильными группами аминокислот. Вследствие этого полипептидные цепи имеют неразветвленный характер.

Скелет (хребет, остов) полипептидной цепи состоит из регулярно повторяющихся структурных элементов

Полипептидная цепь обладает векторностью, направление цепи от N-конца (начало цепи) к C-концу (конец цепи), N-конец - это конец, на котором находится свободная a-аминогруппа. C-конец - это конец, на котором находится свободная a-карбоксильная группа. Аминокислотная последовательность белков обозначается, начиная с N-конца, с использованием трехбуквенных сокращенных названий аминокислот, например: гли-ала-цис-про. Может быть использовано и однобуквенное обозначение аминокислотных остатков в белке.

N- и C-концы в составе белков могут быть модифицированы. Аминогруппа на N-конце может быть ацетилирована, формилирована или метилирована. В ряде белков N-концевым является остаток пирролидонкарбоната (пироглутамата), не содержащий свободной аминогруппы. C-конец может быть амидирован. Модификации C-конца более редки по сравнению с N-концевыми модификациями.

Коэффициент поликонденсации белков варьирует в диапазоне от 50 до 2500. Обычно белок содержит 100-300 аминокислотных остатков. Поскольку средняя молекулярная масса одного аминокислотного остатка составляет около 110 Да, молекулярная масса белков варьирует в диапазоне от 6000 до миллионов Да.

Каждый индивидуальный белок обладает уникальной первичной структурой. Первым белком, чья первичная структура была установлена, явился инсулин. Это удалось сделать Сэнгеру. Его стратегия заключалась в следующем. Сначала он разделил две полипептидные цепи и далее провел их специфическое ферментативное расщепление на небольшие пептиды, содержащие перекрывающиеся последовательности. Затем, используя 1-фтор-2,4-динитробензол идентифицировал N-концевые остатки. Кроме того, он определил аминокислотный состав пептидов и в итоге смог установить их структуру, сравнивая последовательности перекрывающихся пептидов. В общих чертах стратегия Сэнгера сохранила свое значение до наших дней. Однако были предложены и иные подходы. Эдманом разработан метод автоматической процедуры последовательного отщепления и идентификации N-концевых аминокислотных остатков. Для расшифровки первичной структуры можно использовать рентгеноструктурный анализ. Последовательность аминокислотных остатков может быть определена по нуклеотидной последовательности матричной РНК.


В настоящее время установлена первичная структура более 2000 белков. Теоретически число различных вариантов первичной структуры белков безгранично. Даже для полипептида из 20 различных аминокислот, число возможных последовательностей составляет 20´10 18 . В живой природе реализуется лишь незначительная доля возможных последовательностей, общее число которых у всех видов живых организмов оценивается величиной 10 10 -10 12. .

Первичная структура белков генетически детерминирована, т.е. последовательность аминокислот в белке определяется последовательностью нуклеотидов в ДНК . Искажения последовательности нуклеотидов ДНК приводят к возникновению аномальных белков с измененными биологическими свойствами, что является причиной молекулярной патологии. В частности, причиной серповидноклеточной анемии служит точечная мутация гена, контролирующего b-цепь гемоглобина. Следствием этого является замена в 6-ом положении b-цепи остатка глутамата на валин. Такая замена приводит к утрате одного отрицательного заряда в каждой из двух b-цепей, что приводит к изменению конформации гемоглобина и утрате его биологической функции.

Гомологичными белками называются белки, выполняющие у разных видов одинаковые функции. Примером может служить гемоглобин: у всех позвоночных он выполняет одну и ту же функцию, связанную с транспортом кислорода. Гомологичные белки характеризуются наличием во многих положениях одних и тех же аминокислот. Как оказалось, число аминокислотных остатков, по которым различаются гомологичные белки пропорционально филогенетическому различию между данными видами. Например, молекулы цитохромов С лошади и дрожжей различаются по 48 аминокислотным остаткам, тогда как те же молекулы курицы и утки – только по 2 остаткам. Что касается цитохромов С курицы и индейки, то они имеют идентичные аминокислотные последовательности. Сведения о числе различий в аминокислотных последовательностях гомологичных белков из разных видов используют для построения эволюционных карт, отражающих последовательные этапы возникновения и развития различных видов животных и растений в процессе эволюции.

Лекция 3. Структура белков

Определение:

Белки - это нерегулярные полимеры, мономерами которых являются L - аминокислоты.

Аминокислоты

В природе существуют две формы стереоизомеров: L (левовращающие) и D (правовращающие). Помимо L -аминокислот, входящих в белки, в организме есть и D -аминокислоты, которые в белки не включаются.

Общая формула аминокислоты показана на рисунке.

Она верна для 19 из 20 аминокислот, встречающихся в белках. В состав белков, кроме этих 19 аминокислот, входит одна иминокислота - пролин.

Во всех аминокислотах имеется α -аминогруппа. Отсюда и название – "α -аминокислоты". В пролине – α-имино группа.

Классификация аминокислот, входящих в состав белков, по принципу полярности (неполярности) радикала.

1. Неполярные или гидрофобные радикалы.

Алифатические - аланин, валин, лейцин, изолейцин. Серусодержащий метионин. Ароматические - фенилаланин, триптофан. Иминокислота пролин.

2. Полярные, но незаряженные радикалы. Глицин.

Оксиаминокислоты - серин, треонин, тирозин. Содержащий сульфгидрильную группу цистеин. Содержащие амидную группу: аспарагин, глутамин.

3. Отрицательно заряженные радикалы. Аспарагиновая кислота, глутаминовая кислота.

4. Положительно заряженные радикалы. Лизин, аргинин, гистидин.

Первичная структура белка

Определение:

Первичная структура белка - это последовательность расположения аминокислотных остатков в полипептидной цепи.

Аминокислоты соединяются в полипептид с помощью ковалентных (амидных) связей.

У трипептида, состоящего из трех разных аминокислот, возможно 3! = 6 различных первичных структур.

У олигопептида, состоящего из двадцати разных аминокислот, разнообразие первичных структур 20!, это означает 2х10 18 .

Разнообразие первичных структур среднего по размеру белка (примерно 500 аминокислот) составляет уже порядка 20 500 вариантов (если все аминокислоты представлены в эквимолярных соотношениях).

На Земле не было, нет и не будет двух людей сполностью одинаковым набором белков.

Вторичная структура белка

Определение:

Вторичная структура белка - это упорядоченное строение полипептидных цепей, обусловленное водородными связями между группами С=О и N - H разных аминокислот.

Вторичная структура может быть регулярной (α- спиралью) и нерегулярной (β-складчатой структурой). В α-спирали NH группа n -ого аминокислотного остатка взаимодействует с С=О группой (п-4)-ого аминокислотного остатка. На один виток β-спирали с диаметром 10,1 Å приходится 3,6 аминокислотных остатков. Период идентичности регулярной α-спирали - 18 аминокислот (5 витков). Нарушителем регулярной α-спирали в первую очередь является пролин . Второе по значению влияние оказывают одинаково заряженные,рядом расположенные радикалы.

β – складки могут образовывать не только одиночные, но и рядом расположенные полипептиды, входящие в один белок.

Чистых природных альфа- или бета - белков не существует.

Третичная структура белка

Определение

Третичная структура белка - это пространственная конформация полипептида, имеющего вторичную структуру, и обусловленная взаимодействиями между радикалами.

Существует четыре типа взаимодействий между радикалами.

Типы взаимодействий между радикалами

1 . Ковалентные связи между остатками двух цистеинов (дисульфидные мостики).

2. Ионные (электростатические) взаимодействия между противоположно заряженными аминокислотными остатками (три радикала со знаком "+" и два со знаком "-").

Например, положительно заряженная ε-аминогруппа лизина (- NH 3 +) притягивается отрицательно заряженной карбоксильной группой – (СОО-) глутаминовой или аспарагиновой кислоты.

3. Водородные связи.

Участвуют все аминокислоты, имеющие гидроксильные, амидные или карбоксильные группы.

4. Гидрофобные взаимодействия . Образуются между неполярными радикалами в водной среде. Участвуют 8 аминокислот (первый класс).

Третичная структура белка полностью задается его первичной структурой, т.е. последовательностью аминокислот, которая в свою очередь предопределяется генетическим кодом.

Определяющими являются гидрофобные взаимодействия в силу неизбирательности (неспецифичности) и многочисленности.

Гидрофобное ядро существует у большинства белков.

Четвертичная структура белка

Определение: четвертичная структура белка - это агрегация двух или большего числа полипептидных цепей, имеющих третичную структуру, в олигомерную функционально значимую композицию.

Связи, образующие и поддерживающие четвертичную структуру, те же самые, что и при образовании третичной структуры, кроме гидрофобных.

N -конца в бета-цепи находится полярная глутаминовая кислота ("-" заряженная). У больных серповидно-клеточной анемией вместо нее - неполярный валин.

Из 574 аминокислот заменено 2.

Такой гемоглобин теряет растворимость, образуется волокнистый осадок, деформирующий эритроцит.

Серповидно-клеточная анемия - заболевание генетическое. Причина - замена всего одного нуклеотида в гене, кодирующем В-цепь гемоглобина. Дети -рецессивные гомозиготы по такому аллелю не доживают до двух лет. У гетерозигот 85% нормальных и 15% дефектных эритроцитов. Доминантные гомозиготы болеют малярией, гетерозиготы - не болеют.

Глобулярные и фибриллярные белки

95% белков имеют гидрофобное ядро. 5% фибриллярные белки.

Подавляющее число глобулярных белков растворимо. Большинство фибриллярных - нерастворимо (α-кератины - на их долю приходится почти весь сухой вес волос, шерсти, рогов, копыт, ногтей, чешуи, перьев; коллаген - белок сухожилий, хрящей; фиброин - белок шелка).

Фибриллярные белки содержат большую долю заряженных аминокислоту чем глобулярные - отдельные цепи растворимы, а их комплексы неполярны и нерастворимы.