Эффект мейснера объяснение.

В 1913г. немецкие физики Мейснер и Оксенфельд решили экспериментально проверить, как именно распределяется магнитное поле вокруг сверхпроводника. Результат оказался неожиданным. Независимо от условий проведения эксперимента магнитное поле внутрь проводника не проникало. Поразительный факт заключался в том, что сверхпроводник, охлажденный ниже критической температуры в постоянном магнитном поле, самопроизвольно выталкивает это поле из своего объема, переходя в состояние, при котором магнитная индукция В=0, т.е. состояние идеального диамагнетизма. Это явление получило название эффекта Мейснера.

Многие считают, что эффект Мейснера, является наиболее фундаментальным свойством сверхпроводников. Действительно, существование нулевого сопротивления неизбежно следует из этого эффекта. Ведь поверхностные экранизирующие токи постоянны во времени и не затухают в не измеряющемся магнитном поле. В тонком поверхностном слое сверхпроводника эти токи создают свое магнитное поле, строго равное и противоположное внешнему полю. В сверхпроводнике эти два встречных магнитных поля складываются так, что суммарное магнитное поле становится равным нулю, хотя слагаемые поля существуют совместно, поэтому и говорят об эффекте «выталкивание» внешнего магнитного поля из сверхпроводника.

Пусть в исходном состоянии идеальный проводник охлажден ниже критической температуры и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Поле в образец не проникает, что схематически изображено на рис. 1. Сразу по появлении внешнего поля на поверхности идеального проводника возникает ток, создающий, по правилу Ленца, свое собственное магнитное поле, направленное навстречу приложенному, и полное поле в образце будет равно нулю.

Это можно доказать используя уравнения Максвелла. При изменении индукции В внутри образца должно возникнуть электрическое поле Е:

Где с - скорость света в вакууме. Но в идеальном проводнике R= 0, так как

E = jс ,

где с -- удельное сопротивление, которое в нашем случае равно нулю, j -- плотность наведенного тока. Отсюда следует, что B =const, но поскольку до внесения образца в поле В = 0, то ясно, что В = 0 и после внесения в поле. Это можно интерпретировать еще и так: поскольку с =0, время проникновения магнитного поля в идеальный проводник равно бесконечно.

Итак, внесенный во внешнее магнитное поле идеальный проводник имеет В = 0 в любой точке образца. Однако того же состояния (идеальный проводник при Т <Т с во внешнем магнитном поле) можно достигнуть и другим путем: сперва наложить внешнее поле на «теплый» образец, а затем охладить его до температуры Т <Т с .

Электродинамика предсказывает для идеального проводника совершенно другой результат. Действительно, образец при Т>Т с имеет сопротивление и магнитное поле в него хорошо проникает. После охлаждения его ниже Т с поле останется в образце. Эта ситуация изображена на рис. 2.

Таким образом, кроме нулевого сопротивления сверхпроводники обладают еще одним фундаментальным свойством - идеальным диамагнетизмом. Исчезновение магнитного поля внутри связано с появлением незатухающих поверхностных токов в сверхпроводнике. Но магнитное поле не может быть вытолкнуто полностью, т.к. это бы означало, что на поверхности магнитное поле падает скачком от конечного значения В до нуля. Для этого необходимо, чтобы по поверхности протекал ток, бесконечной плотности, что невозможно. Следовательно, магнитное поле проникает в глубь сверхпроводника, на некоторую глубину л.

Эффект Мейснера Ї Оксенфельда наблюдается только в слабых полях. При увеличении напряженности магнитного поля до величины Н cm сверхпроводящее состояние разрушается. Это поле получило название критического Н cm .Зависимость между критическим магнитным полем и критической температурой хорошо описывается эмпирической формулой (6).

Н cm (T)= Н cm (0) [1-(T/T c ) 2 ] (6)

Где Н cm (0) - критическое поле экстраполированное к абсолютному нулю.

График этой зависимости приведен на рисунке 3. Этот график также можно рассматривать, как фазовую диаграмму, где каждая точка серой части соответствует сверхпроводящему состоянию, а белой области - нормальному.

По характеру проникновения магнитного поля сверхпроводники делятся на сверхпроводники первого и второго рода. В сверхпроводник первого рода магнитное поле не проникает до тех пор пока, напряженность поля не достигнет значения Н cm . Если поле превышает критическое значении, то сверхпроводящее состояние разрушается и поле полностью проникает в образец. К сверхпроводникам первого рода относятся все химические элементы сверхпроводники, кроме ниобия.

Подсчитали, что при переходе металла из нормального состояния в сверхпроводящее производится некоторая работа. Что, собственно, является источником этой работы? То, что у сверхпроводника энергия ниже, чем у того же металла в нормальном состоянии.

Ясно, что «роскошь» эффекта Мейснера сверхпроводник может себе позволить за счет выигрыша в энергии. Выталкивание магнитного поля будет иметь место до тех пор, пока связанное с этим явлением увеличение энергии компенсируется более эффективным ее уменьшением, связанным с переходом металла в сверхпроводящее состояние. В достаточно магнитных полях энергетически более выгодным оказывается не сверхпроводящее, а нормальное состояние, в котором поле свободно проникает в образец.

Эффект Мейснера

Эффект Мейснера - это полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Теория сверхпроводимости

При крайне низких температурах целый ряд веществ обладает сопротивлением по крайней мере в 10-12 раз меньше, чем при комнатной температуре. Эксперименты показывают, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте. Сверхпроводимость исчезает под действием следующих факторов:

  • 1) повышение температуры;
  • 2) действие достаточно сильного магнитного поля;
  • 3) достаточно большая плотность тока в образце;

С повышением температуры почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах). Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической.

И Р. Оксенфельдом .

Физическое объяснение

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля , что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик . Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Эффект Мейснера не может быть объяснён только бесконечной проводимостью. Впервые его природу объяснили братья Фриц и Хайнц Лондоны c помощью уравнения Лондонов . Они показали, что в сверхпроводнике поле проникает на фиксированную глубину от поверхности - лондоновскую глубину проникновения магнитного поля \lambda. Для металлов \lambda \sim 10^{-2} мкм.

Сверхпроводники I и II рода

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный - сверхпроводниками второго рода. Однако стоит отметить, что в низких магнитных полях полным эффектом Мейснера обладают все типы сверхпроводников.

У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей вихрей Абрикосова . Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода. Хотя в сверхпроводящем состоянии в сверхпроводниках второго рода сопротивление может быть не равно нулю, что связано со срывом вихревой решетки с центров пининга. Однако в этом состоянии существуют пары купера, а возникшее сопротивление имеет природу диссипативных потерь на передвижении магнитного потока внутри сверхпроводника.

«Гроб Магомета»

«Гроб Магомета» - опыт, демонстрирующий эффект Мейснера в сверхпроводниках .

Происхождение названия

По преданию , гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот эксперимент называют «Гроб Магомета».

Постановка опыта

Сверхпроводимость существует только при низких температурах (в ВТСП -керамиках - при температурах ниже 150 ), поэтому предварительно вещество охлаждают, например, при помощи жидкого азота . Далее магнит кладут на поверхность плоского сверхпроводника. Даже в полях, магнитная индукция которых составляет 0,001 Тл , заметно смещение магнита вверх на расстояние порядка сантиметра. При увеличении поля вплоть до критического магнит поднимается всё выше.

Объяснение

Одним из свойств сверхпроводников является выталкивание магнитного поля из области сверхпроводящей фазы. Отталкиваясь от неподвижного сверхпроводника, магнит «всплывает» сам и продолжает «парить» до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «видит» магнит одинаковой полярности и точно такого же размера, - что и вызывает левитацию.

Напишите отзыв о статье "Эффект Мейснера"

Примечания

Литература

  • де Жен П.-Ж. Сверхпроводимость металлов и сплавов. - М .: Мир , 1968. - 280 с.
  • Мартыненко Ю. Г. // Соросовский образовательный журнал . - 1996. - № 3 . - С. 82-86 .
  • Матвеев А. Н. Электричество и магнетизм. - М .: Высшая школа , 1983. - 463 с.

Ссылки

  • Ю. Д. Третьяков, Е. А. Гудилин.
  • (YouTube)
  • (YouTube)
  • (YouTube)

Отрывок, характеризующий Эффект Мейснера

– Шахматы поставлены, игра начнется завтра.
Велев подать себе пуншу и призвав Боссе, он начал с ним разговор о Париже, о некоторых изменениях, которые он намерен был сделать в maison de l"imperatrice [в придворном штате императрицы], удивляя префекта своею памятливостью ко всем мелким подробностям придворных отношений.
Он интересовался пустяками, шутил о любви к путешествиям Боссе и небрежно болтал так, как это делает знаменитый, уверенный и знающий свое дело оператор, в то время как он засучивает рукава и надевает фартук, а больного привязывают к койке: «Дело все в моих руках и в голове, ясно и определенно. Когда надо будет приступить к делу, я сделаю его, как никто другой, а теперь могу шутить, и чем больше я шучу и спокоен, тем больше вы должны быть уверены, спокойны и удивлены моему гению».
Окончив свой второй стакан пунша, Наполеон пошел отдохнуть пред серьезным делом, которое, как ему казалось, предстояло ему назавтра.
Он так интересовался этим предстоящим ему делом, что не мог спать и, несмотря на усилившийся от вечерней сырости насморк, в три часа ночи, громко сморкаясь, вышел в большое отделение палатки. Он спросил о том, не ушли ли русские? Ему отвечали, что неприятельские огни всё на тех же местах. Он одобрительно кивнул головой.
Дежурный адъютант вошел в палатку.
– Eh bien, Rapp, croyez vous, que nous ferons do bonnes affaires aujourd"hui? [Ну, Рапп, как вы думаете: хороши ли будут нынче наши дела?] – обратился он к нему.
– Sans aucun doute, Sire, [Без всякого сомнения, государь,] – отвечал Рапп.
Наполеон посмотрел на него.
– Vous rappelez vous, Sire, ce que vous m"avez fait l"honneur de dire a Smolensk, – сказал Рапп, – le vin est tire, il faut le boire. [Вы помните ли, сударь, те слова, которые вы изволили сказать мне в Смоленске, вино откупорено, надо его пить.]
Наполеон нахмурился и долго молча сидел, опустив голову на руку.
– Cette pauvre armee, – сказал он вдруг, – elle a bien diminue depuis Smolensk. La fortune est une franche courtisane, Rapp; je le disais toujours, et je commence a l"eprouver. Mais la garde, Rapp, la garde est intacte? [Бедная армия! она очень уменьшилась от Смоленска. Фортуна настоящая распутница, Рапп. Я всегда это говорил и начинаю испытывать. Но гвардия, Рапп, гвардия цела?] – вопросительно сказал он.
– Oui, Sire, [Да, государь.] – отвечал Рапп.
Наполеон взял пастильку, положил ее в рот и посмотрел на часы. Спать ему не хотелось, до утра было еще далеко; а чтобы убить время, распоряжений никаких нельзя уже было делать, потому что все были сделаны и приводились теперь в исполнение.
– A t on distribue les biscuits et le riz aux regiments de la garde? [Роздали ли сухари и рис гвардейцам?] – строго спросил Наполеон.
– Oui, Sire. [Да, государь.]
– Mais le riz? [Но рис?]
Рапп отвечал, что он передал приказанья государя о рисе, но Наполеон недовольно покачал головой, как будто он не верил, чтобы приказание его было исполнено. Слуга вошел с пуншем. Наполеон велел подать другой стакан Раппу и молча отпивал глотки из своего.
– У меня нет ни вкуса, ни обоняния, – сказал он, принюхиваясь к стакану. – Этот насморк надоел мне. Они толкуют про медицину. Какая медицина, когда они не могут вылечить насморка? Корвизар дал мне эти пастильки, но они ничего не помогают. Что они могут лечить? Лечить нельзя. Notre corps est une machine a vivre. Il est organise pour cela, c"est sa nature; laissez y la vie a son aise, qu"elle s"y defende elle meme: elle fera plus que si vous la paralysiez en l"encombrant de remedes. Notre corps est comme une montre parfaite qui doit aller un certain temps; l"horloger n"a pas la faculte de l"ouvrir, il ne peut la manier qu"a tatons et les yeux bandes. Notre corps est une machine a vivre, voila tout. [Наше тело есть машина для жизни. Оно для этого устроено. Оставьте в нем жизнь в покое, пускай она сама защищается, она больше сделает одна, чем когда вы ей будете мешать лекарствами. Наше тело подобно часам, которые должны идти известное время; часовщик не может открыть их и только ощупью и с завязанными глазами может управлять ими. Наше тело есть машина для жизни. Вот и все.] – И как будто вступив на путь определений, definitions, которые любил Наполеон, он неожиданно сделал новое определение. – Вы знаете ли, Рапп, что такое военное искусство? – спросил он. – Искусство быть сильнее неприятеля в известный момент. Voila tout. [Вот и все.]
Рапп ничего не ответил.
– Demainnous allons avoir affaire a Koutouzoff! [Завтра мы будем иметь дело с Кутузовым!] – сказал Наполеон. – Посмотрим! Помните, в Браунау он командовал армией и ни разу в три недели не сел на лошадь, чтобы осмотреть укрепления. Посмотрим!
Он поглядел на часы. Было еще только четыре часа. Спать не хотелось, пунш был допит, и делать все таки было нечего. Он встал, прошелся взад и вперед, надел теплый сюртук и шляпу и вышел из палатки. Ночь была темная и сырая; чуть слышная сырость падала сверху. Костры не ярко горели вблизи, во французской гвардии, и далеко сквозь дым блестели по русской линии. Везде было тихо, и ясно слышались шорох и топот начавшегося уже движения французских войск для занятия позиции.
Наполеон прошелся перед палаткой, посмотрел на огни, прислушался к топоту и, проходя мимо высокого гвардейца в мохнатой шапке, стоявшего часовым у его палатки и, как черный столб, вытянувшегося при появлении императора, остановился против него.
– С которого года в службе? – спросил он с той привычной аффектацией грубой и ласковой воинственности, с которой он всегда обращался с солдатами. Солдат отвечал ему.

В 1933 году немецкий физик Вальтер Фриц Мейснер совместно со своим коллегой Робертом Оксенфельдом открыл эффект, который впоследствии назвали его именем. Эффект Мейснера заключается в том, что при переходе в сверхпроводящее состояние, наблюдается полное вытеснение магнитного поля из объема проводника. Наглядно это можно наблюдать с помощью опыта, которому дали название “Гроб Магомета” (по легенде, гроб мусульманского пророка Магомета висел в воздухе без физической поддержки). В этой статье мы расскажем об Эффекте Мейснера и его будущему и настоящему практическому применению.

В 1911 году Хейке Камерлинг-Оннес сделал важное открытие – сверхпроводимость. Он доказал, что если охладить некоторые вещества до температуры 20 К, то они не оказывают сопротивление электрическому току. Низкая температура “успокаивает” случайные колебания атомов, и электричество не встречает сопротивление.

После этого открытия началась настоящая гонка по нахождению таких веществ, которые не будут оказывать сопротивление без охлаждения, например при обычной комнатной температуре. Такой сверхпроводник сможет передавать электричество на гигантские расстояния. Дело в том, что обычные линии электропередач теряют значительное количество электрического тока, как раз из-за сопротивления. Пока же физики ставят свои опыты с помощью охлаждения сверхпроводников. И одним из самых популярных опытов, является демонстрация Эффекта Мейснера. В сети можно встретить множество роликов, показывающих этот эффект. Мы выложили один, который лучше всего демонстрирует это.

Для демонстрации опыта левитации магнита над сверхпроводником нужно взять высокотемпературную сверхпроводящую керамику и магнит. Керамика охлаждается с помощью азота до уровня сверхпроводимости. К ней подключается ток и сверху кладется магнит. В полях 0,001 Тл магнит смещается вверх и левитирует над сверхпроводником.

Объясняется эффект тем, что при переходе вещества в сверхпроводимость, магнитное поле выталкивается из его объема.

Как можно применить эффект Мейснера на практике? Наверное, каждый читатель этого сайта видел множество фантастических фильмов, в которых автомобили парили над дорогой. Если удастся изобрести вещество, которое превратится в сверхпроводник при температуре, скажем не ниже +30, то это уже не окажется фантастикой.

А как же сверхскоростные поезда, которые тоже парят над железной дорогой. Да они существуют уже сейчас. Но в отличие от Эффекта Мейснера, там действуют другие законы физики: отталкивание однополюсных сторон магнитов. К сожалению, дороговизна магнитов не позволяет широко распространить эту технологию. С изобретение сверхпроводника, которого не нужно охлаждать, летающие машины станут реальностью.

Ну а пока Эффект Мейснера взяли на свое вооружение фокусники. Одно из таких представлений мы раскопали для вас в сети. Свои трюки показывает труппа “Эксос”. Никакой магии – только физика.

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в вытеснении постоянного магнитного поля из сверхпроводника. Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Достаточно сильное магнитное полепри данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Н c , которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Н c возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением

где - критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока сплотностью, большей, чем критическая, поскольку он создаёт магнитное поле, большее критического.

Разрушение сверхпроводящего состояния под действием магнитного поля отличается у сверхпроводников I и II рода. Для сверхпроводников II рода существует 2 значения критических поля: Н c1 при котором магнитное поле проникает в сверхпроводник в виде вихрей Абрикосова и Н c2 - при котором происходит исчезновение сверхпроводимости.

Изотопический эффект

Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента. Как следствие моноизотопные препараты несколько отличаются по критическим температурам от природной смеси и от друг друга .

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa 2 Cu 3 O x , получены вещества, для которых температура Т c перехода в сверхпроводящее состояние превышает 77 К (температуру сжиженияазота). К сожалению, практически все высокотемпературные сверхпроводники не технологичны (хрупки, не обладают стабильностью свойств и т. д.), вследствие чего в технике до сих пор применяются в основном сверхпроводники на основе сплавов ниобия.

Явление сверхпроводимости используется для получения сильных магнитных полей (например, в циклотронах), поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока (вихри Абрикосова). Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля H c 2 . В технике применяются, в основном, следующие сверхпроводники:

Существуют детекторы фотоновна сверхпроводниках. В одних используется наличие критического тока, используют такжеэффект Джозефсона,андреевское отражениеи т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУи др.), использующими другие способы регистрации.

Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, основанные не на свойствах сверхпроводимости (первые четыре), а также сверхпроводниковые детекторы (последние три):

Вид детектора

Максимальная скорость счета, c −1

Квантовая эффективность, %

, c −1

NEP Вт

InGaAs PFD5W1KSF APS (Fujitsu)

R5509-43 PMT (Hamamatsu)

Si APD SPCM-AQR-16 (EG\&G)

Mepsicron-II (Quantar)

менее 1·10 -3

менее 1·10 -19

менее 1·10 -3

Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).

Отсутствие потерь на нагревание при прохождении постоянного тока через сверхпроводник делает привлекательным применение сверхпроводящих кабелей для доставки электричества, так как один тонкий подземный кабель способен передавать мощность, которая традиционным методом требует создания цепи линии электропередачс несколькими кабелями много большей толщины. Проблемами, препятствующими широкому использованию является стоимость кабелей и их обслуживания - через сверхпроводящие линии необходимо постоянно прокачивать жидкий азот. Первая коммерческая сверхпроводящая линия электропередачи была запущена в эксплуатацию фирмой American Superconductor наЛонг-АйлендевНью-Йоркев конце июня 2008 года . Энергосистемы Южной Кореи собираются создать к 2015 году сверхпроводящие линии электропередачи общей длиной в 3000 км .

Важное применение находят миниатюрные сверхпроводящие приборы-кольца - сквиды, действие которых основано на связи изменения магнитного потока и напряжения. Они входят в состав сверхчувствительных магнитометров, измеряющихмагнитное поле Земли, а также используемых в медицине для получения магнитограмм различных органов .

Сверхпроводники также применяются в маглевах.

Явление зависимости температуры перехода в сверхпроводящее состояние от величины магнитного поля используется в криотронах- управляемых сопротивлениях.