Как физика помогает исследовать гравитационное притяжение тел. Что такое гравитация для чайников: определение и теория простыми словами

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

Человечество издревле задумывалось о том, как устроен окружающий мир. Почему растет трава, почему светит Солнце, почему мы не можем летать… Последнее, кстати, всегда особенно интересовало людей. Сейчас мы знаем, что причина всему - гравитация. Что это такое, и почему данное явление настолько важно в масштабах Вселенной, мы сегодня и рассмотрим.

Вводная часть

Ученые выяснили, что все массивные тела испытывают взаимное притяжение друг к другу. Впоследствии оказалось, что эта таинственная сила обуславливает и движение небесных тел по их постоянным орбитам. Саму же теорию гравитации сформулировал гениальный чьи гипотезы предопределили развитие физики на много веков вперед. Развил и продолжил (хотя и в совершенно другом направлении) это учение Альберт Эйнштейн - один из величайших умов минувшего века.

На протяжении столетий ученые наблюдали за притяжением, пытались понять и измерить его. Наконец, в последние несколько десятилетий поставлено на службу человечеству (в определенном смысле, конечно же) даже такое явление, как гравитация. Что это такое, каково определение рассматриваемого термина в современной науке?

Научное определение

Если изучить труды древних мыслителей, то можно выяснить, что латинское слово «gravitas» означает «тяжесть», «притяжение». Сегодня ученые так называют универсальное и постоянное взаимодействие между материальными телами. Если эта сила сравнительно слабая и действует только на объекты, которые движутся значительно медленнее то к ним применима теория Ньютона. Если же дело обстоит наоборот, следует пользоваться эйнштейновскими выводами.

Сразу оговоримся: в настоящее время сама природа гравитации до конца не изучена в принципе. Что это такое, мы все еще полностью не представляем.

Теории Ньютона и Эйнштейна

Согласно классическому учению Исаака Ньютона, все тела притягиваются друг к другу с силой, прямо пропорциональной их массе, обратно пропорциональной квадрату того расстояния, которое пролегает между ними. Эйнштейн же утверждал, что тяготение между объектами проявляется в случае искривления пространства и времени (а кривизна пространства возможна только в том случае, если в нем имеется материя).

Мысль эта была очень глубокой, но современные исследования доказывают ее некоторую неточность. Сегодня считается, что гравитация в космосе искривляет только лишь пространство: время можно затормозить и даже остановить, но реальность изменения формы временной материи теоретически не подтверждена. А потому классическое уравнение Эйнштейна не предусматривает даже шанса на то, что пространство будет продолжать влиять на материю и на возникающее магнитное поле.

В большей степени известен закон гравитации (всемирного тяготения), математическое выражение которого принадлежит как раз-таки Ньютону:

\[ F = γ \frac[-1.2]{m_1 m_2}{r^2} \]

Под γ понимается гравитационная постоянная (иногда используется символ G), значение которой равно 6,67545×10−11 м³/(кг·с²).

Взаимодействие между элементарными частицами

Невероятная сложность окружающего нас пространства во многом связана с бесконечным множеством элементарных частиц. Между ними также существуют различные взаимодействия на тех уровнях, о которых мы можем только догадываться. Впрочем, все виды взаимодействия элементарных частиц между собой значительно различаются по своей силе.

Самые мощные из всех известных нам сил связывают между собой компоненты атомного ядра. Чтобы разъединить их, нужно потратить поистине колоссальное количество энергии. Что же касается электронов, то они «привязаны» к ядру только лишь обыкновенным Чтобы его прекратить, порой достаточно той энергии, которая появляется в результате самой обычной химической реакции. Гравитация (что это такое, вы уже знаете) в варианте атомов и субатомных частиц является наиболее легкой разновидностью взаимодействия.

Гравитационное поле в этом случае настолько слабо, что его трудно себе представить. Как ни странно, но за движением небесных тел, чью массу порой невозможно себе вообразить, «следят» именно они. Все это возможно благодаря двум особенностям тяготения, которые особенно ярко проявляются в случае больших физических тел:

  • В отличие от атомных более ощутимо на удалении от объекта. Так, гравитация Земли удерживает в своем поле даже Луну, а аналогичная сила Юпитера с легкостью поддерживает орбиты сразу нескольких спутников, масса каждого из которых вполне сопоставима с земной!
  • Кроме того, оно всегда обеспечивает притяжение между объектами, причем с расстоянием эта сила ослабевает с небольшой скоростью.

Формирование более-менее стройной теории гравитации произошло сравнительно недавно, и именно по результатам многовековых наблюдений за движением планет и прочими небесными телами. Задача существенно облегчалась тем, что все они движутся в вакууме, где просто нет других вероятных взаимодействий. Галилей и Кеплер - два выдающихся астронома того времени, своими ценнейшими наблюдениями помогли подготовить почву для новых открытий.

Но только великий Исаак Ньютон смог создать первую теорию гравитации и выразить ее в математическом отображении. Это был первый закон гравитации, математическое отображение которого представлено выше.

Выводы Ньютона и некоторых его предшественников

В отличие от прочих физических явлений, которые существуют в окружающем нас мире, гравитация проявляется всегда и везде. Нужно понимать, что термин «нулевая гравитация», который нередко встречается в околонаучных кругах, крайне некорректен: даже невесомость в космосе не означает, что на человека или космический корабль не действует притяжение какого-то массивного объекта.

Кроме того, все материальные тела обладают некой массой, выражающейся в виде силы, которая к ним была приложена, и ускорения, полученного за счет этого воздействия.

Таким образом, силы гравитации пропорциональны массе объектов. В числовом отношении их можно выразить, получив произведение масс обоих рассматриваемых тел. Данная сила строго подчиняется обратной зависимости от квадрата расстояния между объектами. Все прочие взаимодействия совершенно иначе зависят от расстояний между двумя телами.

Масса как краеугольный камень теории

Масса объектов стала особым спорным пунктом, вокруг которого выстроена вся современная теория гравитации и относительности Эйнштейна. Если вы помните Второй то наверняка знаете о том, что масса является обязательной характеристикой любого физического материального тела. Она показывает, как будет вести себя объект в случае применения к нему силы вне зависимости от ее происхождения.

Так как все тела (согласно Ньютону) при воздействии на них внешней силы ускоряются, именно масса определяет, насколько большим будет это ускорение. Рассмотрим более понятный пример. Представьте себе самокат и автобус: если прикладывать к ним совершенно одинаковую силу, то они достигнут разной скорости за неодинаковое время. Все это объясняет именно теория гравитации.

Каково взаимоотношение массы и притяжения?

Если говорить о тяготении, то масса в этом явлении играет роль совершенно противоположную той, которую она играет в отношении силы и ускорения объекта. Именно она является первоисточником самого притяжения. Если вы возьмете два тела и посмотрите, с какой силой они притягивают третий объект, который расположен на равных расстояниях от первых двух, то отношение всех сил будет равно отношению масс первых двух объектов. Таким образом, сила притяжения прямо пропорциональна массе тела.

Если рассмотреть Третий закон Ньютона, то можно убедиться, что он говорит точно о том же. Сила гравитации, которая действует на два тела, расположенных на равном расстоянии от источника притяжения, прямо зависит от массы данных объектов. В повседневной жизни мы говорим о силе, с которой тело притягивается к поверхности планеты, как о его весе.

Подведем некоторые итоги. Итак, масса тесно связана и ускорением. В то же время именно она определяет ту силу, с которой будет действовать на тело притяжение.

Особенности ускорения тел в гравитационном поле

Эта удивительная двойственность является причиной того, что в одинаковом гравитационном поле ускорение совершенно различных объектов будет равным. Предположим, что у нас есть два тела. Присвоим одному из них массу z, а другому - Z. Оба объекта сброшены на землю, куда свободно падают.

Как определяется отношение сил притяжения? Его показывает простейшая математическая формула - z/Z. Вот только ускорение, получаемое ими в результате действия силы притяжения, будет абсолютно одинаковым. Проще говоря, ускорение, которое тело имеет в гравитационном поле, никак не зависит от его свойств.

От чего зависит ускорение в описанном случае?

Оно зависит только (!) от массы объектов, которые и создают это поле, а также от их пространственного положения. Двойственная роль массы и равное ускорение различных тел в гравитационном поле открыты уже относительно давно. Эти явления получили следующее название: «Принцип эквивалентности». Указанный термин еще раз подчеркивает, что ускорение и инерция зачастую эквивалентны (в известной мере, конечно же).

О важности величины G

Из школьного курса физики мы помним, что ускорение свободного падения на поверхности нашей планеты (гравитация Земли) равно 10 м/сек.² (9,8 разумеется, но для простоты расчетов используется это значение). Таким образом, если не принимать в расчет сопротивление воздуха (на существенной высоте при небольшом расстоянии падения), то получится эффект, когда тело приобретает приращение ускорения в 10 м/сек. ежесекундно. Так, книга, которая упала со второго этажа дома, к концу своего полета будет двигаться со скоростью 30-40 м/сек. Проще говоря, 10 м/с - это «скорость» гравитации в пределах Земли.

Ускорение свободного падения в физической литературе обозначается буквой «g». Так как форма Земли в известной степени больше напоминает мандарин, чем шар, значение этой величины далеко не во всех ее областях оказывается одинаковым. Так, у полюсов ускорение выше, а на вершинах высоких гор оно становится меньше.

Даже в добывающей промышленности не последнюю роль играет именно гравитация. Физика этого явления порой позволяет сэкономить много времени. Так, геологи особенно заинтересованы в идеально точном определении g, поскольку это позволяет с исключительной точностью производить разведку и нахождение залежей полезных ископаемых. Кстати, а как выглядит формула гравитации, в которой рассмотренная нами величина играет не последнюю роль? Вот она:

Обратите внимание! В этом случае формула гравитации подразумевает под G «гравитационную постоянную», значение которой мы уже приводили выше.

В свое время Ньютон сформулировал вышеизложенные принципы. Он прекрасно понимал и единство, и всеобщность но все аспекты этого явления он описать не мог. Эта честь выпала на долю Альберта Эйнштейна, который смог объяснить также принцип эквивалентности. Именно ему человечество обязано современным пониманием самой природы пространственно-временного континуума.

Теория относительности, работы Альберта Эйнштейна

Во времена Исаака Ньютона считалось, что точки отсчета можно представить в виде каких-то жестких «стержней», при помощи которых устанавливается положение тела в пространственной системе координат. Одновременно предполагалось, что все наблюдатели, которые отмечают эти координаты, будут находиться в едином временном пространстве. В те годы это положение считалось настолько очевидным, что не делалось никаких попыток его оспорить или дополнить. И это понятно, ведь в пределах нашей планеты никаких отклонений в данном правиле нет.

Эйнштейн доказал, что точность измерения окажется действительно значимой, если гипотетические часы движутся значительно медленнее скорости света. Проще говоря, если один наблюдатель, движущийся медленнее скорости света, будет следить за двумя событиями, то они произойдут для него единовременно. Соответственно, для второго наблюдателя? скорость которого такая же или больше, события могут происходить в различное время.

Но как сила гравитации связана с теорией относительности? Раскроем этот вопрос подробно.

Связь между теорией относительности и гравитационными силами

В последние годы сделано огромное количество открытий в области субатомных частиц. Крепнет убеждение, что мы вот-вот найдем окончательную частицу, дальше которой наш мир дробиться не может. Тем настойчивее становится потребность узнать, как именно влияют на мельчайшие «кирпичики» нашего мироздания те фундаментальные силы, которые были открыты еще в прошлом веке, а то и раньше. Особенно обидно, что сама природа гравитации до сих пор не объяснена.

Именно поэтому после Эйнштейна, который установил «недееспособность» классической механики Ньютона в рассматриваемой области, исследователи сосредоточились на полном переосмыслении полученных ранее данных. Во многом пересмотру подверглась и сама гравитация. Что это такое на уровне субатомных частиц? Имеет ли она хоть какое-то значение в этом удивительном многомерном мире?

Простое решение?

Сперва многие предполагали, что несоответствие тяготения Ньютона и теории относительности можно объяснить довольно просто, проведя аналогии из области электродинамики. Можно бы было предположить, что гравитационное поле распространяется наподобие магнитного, после чего его можно объявить «посредником» при взаимодействиях небесных тел, объяснив многие несоответствия старой и новой теории. Дело в том, что тогда бы относительные скорости распространения рассматриваемых сил оказались значительно ниже световой. Так как связаны гравитация и время?

В принципе, у самого Эйнштейна почти получилось построить релятивистскую теорию на основе именно таких взглядов, вот только одно обстоятельство помешало его намерению. Никто из ученых того времени не располагал вообще никакими сведениями, которые бы могли бы помочь определить «скорость» гравитации. Зато имелось немало информации, связанной с перемещениями больших масс. Как известно, они как раз-таки являлись общепризнанным источником возникновения мощных гравитационных полей.

Большие скорости сильно влияют на массы тел, и это ничуть не похоже на взаимодействие скорости и заряда. Чем скорость выше, тем больше масса тела. Проблема в том, что последнее значение автоматически бы стало бесконечным в случае движения со скоростью света или выше. А потому Эйнштейн заключил, что существует не гравитационное, а тензорное поле, для описания которого следует использовать намного больше переменных.

Его последователи пришли к выводу, что гравитация и время практически не связаны. Дело в том, что само это тензорное поле может действовать на пространство, но на время повлиять не в состоянии. Впрочем, у гениального физика современности Стивена Хокинга есть другая точка зрения. Но это уже совсем другая история...

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия - это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? - задумался он. - Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g - ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg - mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

Каждый человек в своей жизни не раз сталкивался с этим понятием, ведь гравитация это основа не только современной физики, но и ряда других смежных наук.

Изучением притяжения тел занимались многие учёные с античных времен, однако главное открытие приписывается Ньютону и описывается как известная каждому история с упавшим на голову фруктом.

Что такое гравитация простыми словами

Гравитация представляет собой притяжение между несколькими предметами во всей Вселенной. Природа явления бывает разной, так как определяется массой каждого из них и протяженностью между, то есть дистанцией.

Теория Ньютона была основана на том, что и на падающий фрукт, и на спутник нашей планеты действует одна и та же сила — притяжение к Земле. А не упал спутник на земное пространство именно из-за своей массы и удалённости.

Гравитационное поле

Гравитационное поле являет собой пространство, в рамках которого происходит взаимодействие тел по законам притяжения.

Эйнштейновская теория относительности описывает поле, как определенное свойство времени и пространства, характерно проявляющееся при появлении физических объектов.

Гравитационная волна

Это определенного рода изменения полей, которые образуются в результате излучения от движущихся объектов. Они отрываются от предмета и распространяются волновым эффектом.

Теории гравитации

Классической теорией является ньютоновская. Однако, она была несовершенна и впоследствии появились альтернативные варианты.

К ним относятся:

  • метрические теории;
  • неметрические;
  • векторные;
  • Ле-Сажа, который впервые описал фазы;
  • квантовая гравитация.

Сегодня существует несколько десятков различных теорий, все они либо дополняют друг друга, либо рассматривают явления с другой стороны.

Стоит отметить: идеального варианта пока не существует, но постоянные разработки открывают больше вариантов ответов в отношении притяжения тел.

Сила гравитационного притяжения

Базовый расчет следующий – сила тяготения пропорциональна умножению массы тела на другую, между которыми она определяется. Эта формула выражена и так: сила обратно пропорциональна дистанции между объектами, возведенными в квадрат.

Гравитационное поле – потенциально, а значит сохраняется кинетическая энергия. Этот факт упрощает решение задач, в которых измеряется сила притяжения.

Гравитация в космосе

Несмотря на заблуждение многих, в космосе есть гравитация. Она ниже, чем на Земле, но все же присутствует.

Что касается космонавтов, которые на первый взгляд летают, то они в действительности находятся в состоянии медленного падения. Визуально, кажется, что их ничего не притягивает, но на практике они испытывают гравитацию.

Сила притяжения зависит от удаленности, но каким бы большим не было расстояние между объектами, они продолжат тянуться друг к другу. Взаимное притяжение никогда не будет равным нулю.

Гравитация в Солнечной системе

В солнечной системе не только Земля обладает гравитацией. Планеты, а также и Солнце, притягивают к себе объекты.

Так как сила определятся массой предмета, то наибольший показатель у Солнца. Например, если у нашей планеты показатель равен единице, то у светила показатель будет почти равен двадцати восьми.

Следующим, после Солнца, по тяжести является Юпитер , поэтому сила притяжения у него в три раза выше, чем у Земли. Наименьший параметр у Плутона.

Для наглядности обозначим так, в теории на Солнце среднестатистический человек весил бы примерно две тонны, а вот на самой маленькой планете нашей системы – всего четыре килограмма.

От чего зависит гравитация планеты

Гравитационная тяга, как уже указывалось выше – это мощь, с которой планета тянет к себе предметы, расположенные на ее поверхности.

Сила притяжения зависит от тяжести объекта, самой планеты и дистанции, находящейся между ними. Если много километров – гравитация низкая, но она все равно удерживает объекты на связи.

Несколько важных и увлекательных аспектов, связанных с гравитацией и ее свойствами, которые стоит объяснить ребенку:

  1. Явление все притягивает, но никогда не отталкивает – это отличает ее от других физических явлений.
  2. Не бывает нулевого показателя. Невозможно смоделировать ситуацию, в которой не действует давление, то есть не работает гравитация.
  3. Земля спадает со средней скоростью 11,2 километра в секунду, достигнув этой скорости можно покинуть притягивающий колодец планеты.
  4. Факт существования гравитационных волн не был доказан научно, это лишь догадка. Если когда-либо они станут видимыми, то человечеству откроются многие загадки космоса, связанные со взаимодействием тел.

В соответствии с теорией базовой относительности такого ученого, как Эйнштейн, гравитация представляет собой искривление базовых параметров существования материального мира, которое представляет собой основу Вселенной.

Гравитация – это взаимное притяжение двух объектов. Сила взаимодействия зависит от тяжести тел и дистанции между ними. Пока не все секреты явления раскрыты, но уже сегодня существует несколько десятков теорий, описывающих понятие и его свойства.

Сложность изучаемых объектов влияет на время исследования. В большинстве случаев просто берется зависимость массы и дистанции.

Мы живем на Земле, мы перемещаемся по ее поверхности, как по краю какого-то скалистого утеса, который возвышается над бездонной пропастью. Мы держимся на этом краю пропасти только благодаря тому, что на нас действует сила притяжения Земли ; мы не падаем с земной поверхности только потому, что имеем, как говорят, какую-то определенную весомость. Мы мгновенно слетели бы с этого «утеса» и стремительно полетели бы в бездну пространства, если бы вдруг перестала действовать сила тяжести нашей планеты. Мы бесконечно долго носились бы в бездне мирового пространства, не зная ни верха, ни низа.

Передвижение по Земле

Своим передвижением по Земле мы тоже обязаны наличию силы тяжести. Мы ходим по Земле и непрестанно преодолеваем сопротивление этой силы, ощущая ее действие, как некоторый тяжелый груз на своих ногах. Этот «груз» особенно дает себя знать при подъеме в гору, когда приходится волочить его, словно какие-то тяжелые гири, привешенные к ногам. Он не менее резко сказывается и при спуске с горы, вынуждая нас ускорять шаги. Преодоление силы тяжести при передвижении по Земле. Эти направления – «верх» и «низ» – указывает нам только сила тяжести. Во всех точках земной поверхности она направлена почти к центру Земли. Поэтому, понятия «низ» и «верх» будут диаметрально противоположными для так называемых антиподов, т. е. людей, обитающих на диаметрально противоположных частях поверхности Земли. Например, то направление, которое для живущих в Москве, показывает «низ», для жителей Огненной Земли показывает «верх». Направления, показывающие «низ» для людей, находящихся на полюсе и на экваторе, составляют прямой угол; они перпендикулярны между собой. Вне Земли, при удалении от нее, сила тяжести уменьшается, так как уменьшается сила притяжения (сила притяжения Земли, как и всякого другого мирового тела, распространяется в пространстве неограниченно далеко) и увеличивается центробежная сила, которая уменьшает силу тяжести. Следовательно, чем выше мы будем поднимать какой-нибудь груз, например, на воздушном шаре, тем меньше будет весить этот груз.

Центробежная сила Земли

Вследствие суточного вращения возникает центробежная сила Земли . Эта сила всюду на поверхности Земли действует в направлении, перпендикулярном к земной оси и в сторону от нее. Центробежная сила невелика по сравнению с силой притяжения . На экваторе она достигает наибольшей величины. Но и здесь, согласно вычислениям Ньютона, центробежная сила составляет только 1/289 долю силы притяжения. Чем дальше к северу от экватора, тем меньше центробежная сила. На самом полюсе она равна нулю .
Действие центробежной силы Земли. На некоторой высоте центробежная сила возрастет настолько, что она будет равна силе притяжения, и сила тяжести сделается сначала равной нулю, а затем, с увеличением расстояния от Земли, примет отрицательное значение и будет непрерывно возрастать, будучи направлена в противоположную сторону по отношению к Земле.

Сила тяжести

Равнодействующая силы притяжения Земли и центробежной силы называется силой тяжести . Сила тяжести во всех точках земной поверхности была бы одинакова, если бы наша совершенно точного и правильного шара, если бы ее масса всюду была одинаковой плотности и, наконец, если не было бы суточного вращения вокруг оси. Но, так как наша Земля не является правильным шаром, не состоит во всех своих частях из пород одинаковой плотности и все время вращается, то, следовательно, сила тяжести в каждой точке земной поверхности несколько различна . Стало быть, в каждой точке земной поверхности величина силы тяжести зависит от величины центробежной силы, уменьшающей силу притяжения, от плотности земных пород и расстояния от центра Земли . Чем больше это расстояние, тем меньше сила тяжести. Радиусы Земли, которые одним своим концом как бы упираются в земной экватор, – самые большие. Радиусы, имеющие своим концом точку Северного или Южного полюса, – наименьшие. Поэтому все тела на экваторе имеют меньшую тяжесть (меньший вес), чем на полюсе. Известно, что на полюсе сила тяжести больше, чем на экваторе, на 1/289 долю . Эту разность тяжести одних и тех же тел на экваторе и на полюсе можно узнать при их взвешивании с помощью пружинных весов. Если же мы будем взвешивать тела на весах с гирями, то этой разности мы не заметим. Весы будут показывать один и тот же вес, как на полюсе, так и на экваторе; гири, как и тела, которые взвешиваются, тоже, конечно, изменятся в весе.
Пружинные весы как способ измерения силы тяжести на экваторе и на полюсе. Допустим, что корабль с грузом весит в заполярных областях, вблизи полюса, около 289 тысяч тонн. По приходе в порты вблизи экватора корабль с грузом будет весить уже только около 288 тысяч тонн. Таким образом, на экваторе корабль потерял в весе около тысячи тонн. Все тела держатся на земной поверхности только благодаря тому, что на них действует сила тяжести. Утром, вставая с кровати, вы в состоянии спустить ноги на пол только потому, что эта сила тянет их вниз.

Сила тяжести внутри Земли

Посмотрим, как изменяется сила тяжести внутри Земли . С углублением внутрь Земли сила тяжести непрерывно увеличивается вплоть до некоторой глубины. На глубине около тысячи километров сила тяжести будет иметь максимальное (наибольшее) значение и увеличится по сравнению с ее средней величиной на земной поверхности (9,81 м/сек) приблизительно на пять процентов. При дальнейшем углублении сила тяжести станет непрерывно уменьшаться и в центре Земли будет равна нулю.

Предположения относительно вращения Земли

Наша Земля вращаясь делает полный оборот вокруг своей оси в 24 часа. Центробежная сила, как известно, возрастает пропорционально квадрату угловой скорости. Следовательно, если Земля ускорит свое вращение вокруг оси в 17 раз, то центробежная сила увеличится в 17 раз в квадрате, т. е. в 289 раз. В обычных условиях, как уже сказано выше, центробежная сила на экваторе составляет 1/289 долю силы притяжения. При увеличении в 17 раз сила притяжения и центробежная сила делаются равными. Сила тяжести – равнодействующая этих двух сил – при подобном увеличении скорости осевого вращения Земли будет равна нулю.
Значение центробежной силы при вращении Земли. Эта скорость вращения Земли вокруг оси называется критической, так как при такой скорости вращения нашей планеты все тела на экваторе потеряли бы свою тяжесть. Продолжительность суток в этом критическом случае будет составлять приблизительно 1 час 25 минут. При дальнейшем ускорении вращения Земли все тела (прежде всего на экваторе) сначала потеряют свою весомость, а затем будут отброшены центробежной силой в пространство, а сама Земля этой же силой будет разорвана на части. Заключение наше было бы правильным, если бы Земля представляла собой абсолютно твердое тело и при ускорении своего вращательного движения не изменила бы своей формы, другими словами, если бы радиус земного экватора сохранил свою величину. Но известно, что при ускорении вращения Земли поверхность ее должна будет претерпеть некоторую деформацию: она станет сжиматься в направлении полюсов и расширяться в направлении экватора; она будет принимать все более и более приплюснутый вид. Длина радиуса земного экватора при этом начнет возрастать и этим увеличивать центробежную силу. Таким образом, тела на экваторе потеряют свою тяжесть раньше, чем скорость вращения Земли увеличится в 17 раз, и катастрофа с Землей наступит раньше, чем сутки сократят свою продолжительность до 1 часа 25 минут. Иначе говоря, критическая скорость вращения Земли будет несколько меньше, а предельная длина суток несколько больше. Представьте себе мысленно, что скорость вращения Земли вследствие каких-то неизвестных причин приблизится к критической. Что тогда станет с земными обитателями? Прежде всего, всюду на Земле сутки будут составлять, например, около двух-трех часов. День и ночь будут сменяться калейдоскопически быстро. Солнце, как в планетарии, очень быстро будет перемещаться по небу, и едва вы успеете проснуться и умыться, как оно уже скроется за горизонтом, и на смену ему наступит ночь. Люди перестанут точно ориентироваться во времени. Никто не будет знать, которое сейчас число месяца и какой день недели. Нормальная человеческая жизнь будет дезорганизована. Маятниковые часы замедлят свой ход, а затем всюду остановятся. Они ведь ходят потому, что на них действует сила тяжести. Ведь и в нашем быту, когда «ходики» начинают отставать или спешить, то необходимо укорачивать или удлинять их маятник, а то еще и подвешивать к маятнику какой-нибудь дополнительный груз. Тела на экваторе будут терять свою весомость. В этих воображаемых условиях легко можно будет поднимать очень тяжелые тела. Не составит особого труда взвалить на плечи лошадь, слона или поднять даже целый дом. Птицы потеряют возможность приземляться. Вот кружится над корытом с водой стая воробьев. Они громко чирикают, но не в состоянии спуститься. Брошенная им горсть зерна повисла бы над Землей отдельными зернинками. Пусть, далее, скорость вращения Земли все более и более приближается к критической. Наша планета сильно деформируется и принимает все более приплюснутый вид. Она уподобляется быстро вращающейся карусели и грозит вот-вот сбросить с себя своих обитателей. Реки тогда перестанут течь. Они будут представлять собой длинные стоячие болота. Громадные океанские корабли будут еле касаться своими днищами водной глади, подводные лодки не в состоянии будут погрузиться в глубины моря, рыбы и морские животные будут плавать по поверхности морей и океанов, они уже не смогут скрыться в морской пучине. Моряки уже не смогут бросить якорь, они перестанут владеть рулями своих судов, большие и малые корабли будут стоять неподвижно. Вот еще одна воображаемая картина. Пассажирский железнодорожный поезд стоит у вокзала. Свисток уже дан; поезд должен отойти. Машинист принял все зависящие от него меры. Кочегар щедро бросает в топку уголь. Крупные искры летят из трубы паровоза. Колеса отчаянно вертятся. Но паровоз стоит неподвижно. Его колеса не касаются рельс, и нет трения между ними. Настанет момент, когда люди не будут иметь возможности спуститься на пол; они прилипнут, как мухи, к потолку. Пусть скорость вращения Земли все увеличивается. Центробежная сила все более превосходит по своей величине силу притяжения... Тогда люди, животные, предметы домашнего обихода, дома, все находящиеся на Земле предметы, весь животный ее мир будут отброшены в мировое пространство. От Земли отделится Австралийский материк и колоссальной черной тучей повиснет в пространстве. В глубь безмолвной бездны, прочь от Земли, полетит Африка. В громадное количество сферических капель превратятся воды Индийского океана и тоже полетят в беспредельные дали. Средиземное море, не успев еще превратиться в гигантские скопления капель, всей своей толщей воды отделится от днища, по которому свободно можно будет пройти от Неаполя до Алжира. Наконец, скорость вращения настолько увеличится, центробежная сила настолько возрастет, что вся Земля разорвется на части. Однако и этого случиться не может. Скорость вращения Земли, как мы уже говорили выше, не возрастает, а наоборот, даже немного убывает, – правда, настолько мало, что, как мы уже знаем, за 50 тысяч лет продолжительность суток увеличивается всего только на одну секунду. Иначе говоря, Земля теперь вращается с такой скоростью, которая необходима, чтобы под теплотворными, живительными лучами Солнца многие тысячелетия процветал животный и растительный мир нашей планеты.

Значение трения

Посмотрим теперь, какое значение имеет трение и что было бы, если бы оно отсутствовало. Трение, как известно, вредно отражается на нашей одежде: у пальто раньше всего изнашиваются рукава, а у ботинок подошвы, так как рукава и подошвы больше всего подвержены действию трения. Но вообразите себе на минуту, что поверхность нашей планеты была как бы хорошо отполированная, совершенно гладкая, и возможность трения была бы исключена. Могли ли бы мы ходить по такой поверхности? Конечно, нет. Всем известно, что даже по льду и по натертому полу идти очень трудно и приходится остерегаться, чтобы не упасть. А ведь поверхность льда и натертого пола все же обладает некоторым трением.
Сила трения на льду. Если бы на поверхности Земли исчезла сила трения, то на нашей планете вечно царил бы неописуемый хаос. Если не будет никакого трения, то будет вечно бушевать море и никогда не утихнет буря. Песчаные смерчи не перестанут висеть над Землей, и постоянно будет дуть ветер. Мелодичные звуки рояля, скрипки и страшный рев хищных зверей смешаются и без конца будут распространяться в воздухе. При отсутствии трения тело, пришедшее в движение, никогда бы не остановилось. По абсолютно гладкой земной поверхности вечно перемешались бы в самых разнообразных направлениях различные тела и предметы. Смешон и трагичен был бы мир Земли, если бы не существовало трения и притяжения Земли.