Поиск точек экстремума. Урок на тему: "Нахождение точек экстремумов функций

Это довольно-таки занятный раздел математики, с которым сталкиваются абсолютно все ученики выпускных классов и студенты. Тем не менее далеко не каждому нравится матан. Некоторые не могут понять даже элементарных вещей наподобие, казалось бы, стандартного исследования функции. Данная статья призвана исправить подобную оплошность. Хотите поподробнее узнать об анализе функции? Желаете узнать, что такое точки экстремума и как их найти? Тогда данная статья для вас.

Исследование графика функции

Для начала стоит понять, зачем вообще необходимо анализировать график. Существуют простые функции, начертить которые не составит труда. Ярким примером подобной функции может служить парабола. Начертить ее график не составит труда. Все что необходимо, так это с помощью простого преобразования найти числа, при которых функция принимает значение 0. И в принципе это все что знать для того, чтобы начертить график параболы.

Но что делать, если функция, график которой нам нужно начертить, намного сложнее? Поскольку свойства сложных функций довольно-таки неочевидны, необходимо проводить целый анализ. Только после этого можно изобразить функцию графически. Как же это сделать? Ответ на этот вопрос вы сможете найти в данной статье.

План анализа функции

Первое, что необходимо сделать, так это провести поверхностное исследование функции, в ходе которого мы найдем область определения. Итак, начнем по порядку. Область определения - это совокупность тех значений, которыми функция задается. Проще говоря, это те числа, которые можно использовать в функции вместо х. Для того чтобы определить область определения, необходимо просто взглянуть на запись. К примеру, очевидно, что у функции у (х) = х 3 + х 2 - х + 43 область определения - множество действительных чисел. Ну а с функцией наподобие (х 2 - 2х)/х все немного иначе. Поскольку число в знаменателе не должно равняться 0, то областью определения данной функции будут все действительные числа, помимо нуля.

Далее необходимо найти так называемые нули функции. Это те значения аргумента, при которых вся функция принимает значения ноль. Для этого необходимо приравнять функцию к нулю, подробно ее рассмотреть и совершить некоторые преобразования. Возьмём уже знакомую нам функцию у(х) = (х 2 - 2х)/х. Из школьного курса мы знаем, что дробь равна 0 тогда, когда числитель равен нулю. Поэтому знаменатель мы отбрасываем и начинаем работать с числителем, приравнивая его к нулю. Получаем х 2 - 2х = 0 и выносим х за скобочки. Отсюда х (х - 2) = 0. В итоге получаем, что наша функция равна нулю тогда, когда х равняется 0 или же 2.

Во время исследования графика функции многие сталкиваются с проблемой в виде точек экстремума. И это странно. Ведь экстремумы - это довольно-таки простая тема. Не верите? Убедитесь сами, прочитав данную часть статьи, в которой мы поговорим о точках минимума и максимума.

Для начала стоит разобраться в том, что собой представляет экстремум. Экстремум - это предельное значений, которое достигает функция на графике. Отсюда получается, что существует два крайних значения - максимум и минимум. Для наглядности можно посмотреть на картинку, что расположена выше. На исследованной области точка -1 является максимумом функции у (х) = х 5 - 5х, а точка 1, соответственно, минимумом.

Также не стоит путать между собой понятия. Точки экстремума функции - это те аргументы, при которых заданная функция приобретает крайние значения. В свою очередь, экстремумом называют значение минимумов и максимумов функции. К примеру, вновь рассмотрим рисунок выше. -1 и 1 - это точки экстремума функции, а 4 и -4 - это сами экстремумы.

Нахождение точек экстремума

Но как все-таки найти точки экстремума функции? Все довольно-таки просто. Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х 3 + 2х 2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х 2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.

Также стоит отметить, что на ЕГЭ требуют не просто найти точки экстремума, Но и провести с ними какую-то операцию (прибавить, умножить и т.д.). Именно по этой причине стоит обратить особое внимание на условия задачи. Ведь из-за невнимательности можно потерять баллы.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке.

Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близкихк точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е. Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

Примеры .

  1. y =|x |.

    Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

  2. Функция не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум.

    Функция не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

    Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

    Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

    Например . .

    Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

    Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .


    Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

    Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

    Таким образом, если

    Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

    1. Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

      f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

    2. Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

    Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

    Аналогично доказывается вторая часть теоремы о минимуме.

    Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

    f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

    Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

    Аналогично можно рассматривать точки x 2 и x 3 .


    Схематически все вышесказанное можно изобразить на картинке:

    Правило исследования функции y=f(x) на экстремум

    1. Найти область определения функции f(x).
    2. Найти первую производную функции f "(x) .
    3. Определить критические точки, для этого:
      1. найти действительные корни уравнения f "(x) =0;
      2. найти все значения x при которых производная f "(x) не существует.
    4. Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.
    5. Вычислить значение функции в точках экстремума.

    Примеры . Исследовать функции на минимум и максимум.


    НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ НА ОТРЕЗКЕ

    Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.

    Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b ]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.

    Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b ] :

    1. Найти все критические точки функции в интервале (a, b ) и вычислить значения функции в этих точках.
    2. Вычислить значения функции на концах отрезка при x = a, x = b .
    3. Из всех полученных значений выбрать наибольшее и наименьшее.

>> Экстремумы

Экстремум функции

Определение экстремума

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о ) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Функции, вовсе необязательно знать о наличии первой и второй производной и понимать их физический смысл. Для начала нужно уяснить следующее:

  • экстремумы функции максимизируют или, наоборот, минимизируют значение функции в сколь угодно малой окрестности;
  • в точке экстремума не должно быть разрыва функции.

А теперь то же самое, только простым языком. Посмотрите на кончик стержня шариковой ручки. Если ручку расположить вертикально, пишущим концом вверх, то самая середина шарика будет экстремумом — наивысшей точкой. В этом случае говорят о максимуме. Теперь, если повернуть ручку пишущим концом вниз, то на середке шарика уже будет минимум функции. С помощью рисунка, приведенного здесь же, можно представить перечисленные манипуляции для канцелярского карандаша. Итак, экстремумы функции — это всегда критические точки: ее максимумы или минимумы. Прилегающий участок графика может быть сколь угодно острым или плавным, но он должен существовать с обеих сторон, только в этом случае точка является экстремумом. Если график присутствует лишь с одной стороны, точка эта экстремумом являться не будет даже в том случае, если с одной ее стороны условия экстремума выполняются. Теперь изучим экстремумы функции с научной точки зрения. Дабы точка могла считаться экстремумом, необходимо и достаточно, чтобы:

  • первая производная равнялась нулю или не существовала в точке;
  • первая производная меняла свой знак в этой точке.

Условие трактуется несколько иначе с точки зрения производных более высокого порядка: для функции, дифференцируемой в точке, достаточно, чтобы существовала производная нечетного порядка, неравная нулю, при том, что все производные более низшего порядка должны существовать и быть равными нулю. Это максимально простое толкование теорем из учебников Но для самых обычных людей стоит пояснить этот момент примером. За основу берется обыкновенная парабола. Сразу оговоримся, в нулевой точке у нее имеется минимум. Совсем немного математики:

  • первая производная (X 2) | = 2X, для нулевой точки 2Х = 0;
  • вторая производная (2Х) | = 2, для нулевой точки 2 = 2.

Таким нехитрым образом проиллюстрированы условия, определяющие экстремумы функции и для производных первого порядка, и для производных высшего порядка. Можно к этому добавить, что вторая производная как раз является той самой производной нечетного порядка, неравной нулю, о которой говорилось чуть выше. Когда речь заходит про экстремумы функции двух переменных, то условия должны выполняться для обоих аргументов. Когда происходит обобщение, то в ход идут частные производные. То есть необходимо для наличия экстремума в точке, чтобы обе производные первого порядка равнялись нулю, либо хотя бы одна из них не существовала. Для достаточности наличия экстремума исследуется выражение, представляющее собой разность произведения производных второго порядка и квадрата смешанной производной второго порядка функции. Если это выражение больше нуля, значит, экстремум имеет место быть, а если присутствует равенство нулю, то вопрос остается открытым, и нужно проводить дополнительные исследования.