Работа с линиями вероятности и выбор плана будущего в собственной Искре. Практика

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность всех событий. А вероятность событий, которые мы считаем неблагоприятными (когда вытащим красный фломастер) - .

Таким образом, вероятность вытащить НЕ красный фломастер - .

Ответ:

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Что должно произойти? Мы должны вытащить (красный ИЛИ зеленый).

Теперь понятно, складываем вероятности этих событий:

Ответ:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Ответ:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

  1. В колоде карты каждого достоинства, значит:
  2. События зависимы, так как после первой вытащенной карты количество карт в колоде уменьшилось (как и количество «картинок»). Всего вальтов, дам, королей и тузов в колоде изначально, а значит вероятность первой картой вытащить «картинку»:

    Поскольку мы убираем из колоды первую карту, то значит в колоде осталось уже карта, из них картинок. Вероятность второй картой вытащить картинку:

    Поскольку нас интересует ситуация, когда мы достаем из колоды: «картинку» И «картинку», то нужно перемножать вероятности:

    Ответ:

  3. После первой вытащенной карты, количество карт в колоде уменьшится.Таким образом, нам подходит два варианта:
    1) Первой картой вытаскиваем Туза, второй - валета, даму или короля
    2) Первой картой вытаскиваем валета, даму или короля, второй - туза.Т.е. (туз и (валет или дама или король)) или ((валет или дама или король) и туз). Не забываем про уменьшение количества карт в колоде!

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

  1. (Выпал орел и выпал орел) или (выпала решка и выпала решка): .
  2. Какие есть варианты? и. Тогда:
    Выпало (и) или (и) или (и): .

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

Ой, как же не хочется перебирать варианты… Орел-решка-решка, Орел-орел-решка, … А и не надо! Вспоминаем про полную вероятность. Вспомнил? Какова вероятность, что орел не выпадет ни разу ? Это же просто: все время летят решки, значит.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

Нас часто интересует вероятность одновременного наступления нескольких событий, например выпадения двух орлов при двух бросках монеты или по крайней мере одной шестерки при двух бросках игральной кости. Ситуации такого рода называются ситуациями с несколькими возможными исходами.


Использование древовидных диаграмм


Хотя довольно легко понять, что вероятность выпадения орла при одном броске «честной» монеты равна?, интуитивно определить вероятность выпадения четырех орлов при четырех бросках «честной» монеты несколько труднее. Хотя пример с монетой может показаться искусственным, он хорошо подходит для объяснения сочетания вероятностей при нескольких попытках. Давайте произведем расчеты. (Следите за моими рассуждениями, даже если вы панически боитесь математики. Если вы поработаете над примерами, вычисления и математические рассуждения покажутся вам довольно простыми. Не надо восклицать, взглянув на следующие несколько цифр: «Нет, ни в коем случае, я это просто пропущу». Важно уметь думать с числами и о числах.)

При первом броске может наступить лишь один из двух возможных исходов; орел (О) или решка (Р). Что произойдет, если монету бросят дважды? Существует четыре возможных исхода: орел оба раза (ОО), орел в первый раз и решка во второй раз (ОР), решка в первый раз и орел во второй раз (РО) и решка оба раза (РР). Поскольку существует четыре возможных исхода и лишь один способ выпадения двух орлов, то вероятность этого события равна 1/ 4 (опять-таки мы предполагаем, что монета – «честная», т. е. выпадение орла и решки равновероятно). Существует общее правило для вычисления вероятности совместного появления нескольких событий в любой ситуации – правило «и». Если вы хотите найти вероятность совместного появления первого и второго события (орел при первом и при втором броске), надо перемножить вероятности наступления этих событий по отдельности. Применяя правило «и», мы находим, что вероятность появления двух решек при двукратном броске монеты равна? x ? = 1/ 4 . Интуитивно кажется, что вероятность совместного появления двух событий должна быть меньше, чем вероятность каждого из них в отдельности; так оно и оказывается.

Простой способ расчета этой вероятности получается, если представить все возможные события с помощью древовидной диаграммы. Древовидные диаграммы использовались в главе 4, когда мы проверяли правильность утверждений типа «если… то…». В этой главе мы припишем ветвям дерева вероятностные значения, чтобы определить вероятности различных сочетаний исходов. В последующих главах я еще вернусь к древовидным диаграммам при рассмотрении способов нахождения творческих решений задач.

При первом броске монеты она упадет или орлом, или решкой вверх. Для «честной» монеты выпадения орла и решки имеют одинаковую вероятность, равную 0,5. Давайте изобразим это следующим образом:

Когда вы бросаете монету второй раз, то либо за первым орлом последуют второй орел или решка, либо за первой решкой последуют второй орел или решка. Вероятности выпадения орла и решки при втором броске по-прежнему равны 0,5. Исходы второго броска изображаются на диаграмме в виде дополнительных ветвей дерева.




Как видно из диаграммы, существует четыре возможных исхода. Вы можете пользоваться этим деревом для нахождения вероятностей других событий. Чему равна вероятность получения одной решки при двух бросках монеты? Поскольку существует два способа, которыми можно получить одну решку (ОР или РО), ответ равен 2 / 4 или?. Если вы хотите найти вероятность двух или более различных исходов, сложите вероятности всех исходов. Это называется правилом «или». По-другому эту задачу можно сформулировать так: «Чему равна вероятность получить или сначала орла, а потом решку (1/ 4), или сначала решку, а потом орла (1/4)?» Правильная процедура нахождения ответа состоит в том, чтобы сложить эти значения, в результате чего получается?. Интуитивно кажется, что вероятность появления одного из нескольких событий должна быть больше, чем вероятность появления каждого из них; так оно и оказывается.

Правилами «и» и «или» можно пользоваться только тогда, когда интересующие нас события независимы. Два события независимы, если появление одного из них не влияет на появление второго. В рассматриваемом примере результат первого броска монеты никак не влияет на результат второго броска. Кроме того, для применения правила «или» необходимо, чтобы события были несовместимыми, т. е. не могли происходить одновременно. В рассматриваемом примере исходы являются несовместимыми, поскольку мы не можем получить и орла, и решку при одном броске.

Представление событий в виде древовидных диаграмм полезно во многих ситуациях. Давайте расширим наш пример. Предположим, что мужчина в полосатом костюме с длинными, подкрученными вверх усами и бегающими маленькими глазками останавливает вас на улице и предлагает сыграть на деньги, бросая монету. Он все время ставит на орла. При первом броске монета падает орлом вверх. При втором броске происходит то же самое. При третьем броске опять выпадает орел. Когда вы начнете подозревать, что у него «нечестная» монета? У большинства людей сомнения возникают при третьей или четвертой попытке. Вычислите вероятность выпадения одних орлов при трех и четырех бросках «честной» монеты (вероятность выпадения орла равна 0,5).

Для расчета вероятности выпадения трех орлов в трех попытках вам надо нарисовать дерево с тремя рядами «узлов», причем из каждого узла исходят две «ветви».




В этом примере нас интересует вероятность выпадения трех орлов подряд при условии, что монета «честная». Посмотрите на столбец, озаглавленный «исход», и найдите исход ООО. Поскольку это единственный исход с тремя орлами, перемножьте вероятности вдоль ветви 000 (обведенной на диаграмме) и вы получите 0,5 х 0,5 х 0,5 = 0,125. Вероятность 0,125 означает, что если монета «честная», то в среднем она будет падать орлом вверх три раза подряд в 12,5% случаев. Поскольку эта вероятность невелика, то при выпадении трех орлов подряд большинство людей начинает подозревать, что монета «с секретом».

Для расчета вероятности выпадения четырех орлов в четырех попытках добавьте к дереву дополнительные ветви.



Вероятность выпадения четырех орлов равна 0,5 х 0,5 х 0,5 х 0,5 = 0,0625, или 6,25%. Как вы уже знаете, математически она равна 0,5 4 ; т. е. умножить число само на себя четыре раза – это то же самое, что возвести его в четвертую степень. Если вы будете считать на калькуляторе, где есть операция возведения в степень, то вы получите тот же самый ответ – 0,0625. Хотя такой исход возможен и когда-нибудь произойдет, он маловероятен. На самом деле он настолько неправдоподобен и необычен, что многие сказали бы, что человек с бегающими глазками, наверное, жульничает. Несомненно, что при выпадении пятого орла подряд разумно будет заключить, что вы имеете дело с мошенником. Для большинства научных целей событие считается «необычным», если его появление ожидается с вероятностью менее 5%. (На языке теории вероятностей это записывается так: р ‹ 0,05.)

Давайте оставим искусственный пример с монетой и применим ту же логику в более полезном контексте. Я уверена, что любой студент когда-либо сталкивался с тестами с выбором вариантов, в которых нужно выбирать из предложенных вариантов правильные ответы. В большинстве таких тестов на каждый вопрос предлагается пять вариантов ответов, из которых правилен только один. Предположим, что вопросы настолько трудны, что вы можете только случайно угадать правильный ответ. Какова вероятность правильного угадывания при ответе на первый вопрос? Если вы понятия не имеете, какой из вариантов является правильным ответом, то вы с одинаковой вероятностью можете выбрать любой из пяти вариантов, предполагая, что любой из них может оказаться правильным. Поскольку сумма вероятностей выбора всех вариантов должна быть равна единице, то вероятность выбора каждого из вариантов при равновероятности всех вариантов равна 0,20. Один из вариантов правильный, а остальные – неправильные, поэтому вероятность выбора правильного варианта равна 0,20. Древовидная диаграмма этой ситуации изображена ниже.




Какова вероятность правильно угадать ответы на первые два вопроса теста? Нам придется добавить новые ветви к дереву, которое вскоре станет очень густым. Чтобы сэкономить место и упростить вычисления, можно представить все неправильные варианты в виде одной ветви, обозначенной «неправильные». Вероятность ошибиться при ответе на один вопрос равна 0,8.




Вероятность правильно угадать ответы на два вопроса равна 0,2 х 0,2 = 0,04. То есть случайно это может произойти только в 4% попыток. Допустим, что мы расширим наш пример до трех вопросов. Я не буду рисовать дерево, но вы должны уже понять, что вероятность равна 0,2 х 0,2 х 0,2 = 0,008. Это настолько необычное событие, что оно может произойти случайно менее чем в 1 % попыток. Что вы подумаете о человеке, которому удалось правильно ответить на все три вопроса? Большинство людей (а преподаватели тоже люди) заключит, что студент не выбирал ответы наугад, а действительно что-то знал. Конечно, не исключено, что ему просто повезло, но это чрезвычайно маловероятно. Таким образом, мы приходим к выводу, что полученный результат не может объясняться только удачей.

Мне хотелось бы отметить одну любопытную сторону таких рассуждений. Рассмотрим плачевную ситуацию, в которую попала Сара. Она отвечала на 15 вопросов теста, где ответ на каждый вопрос надо было выбирать из пяти вариантов. Сара ответила неправильно на все 15 вопросов. Можете ли вы определить вероятность того, что это произошло случайно? Я не буду рисовать древовидную диаграмму для иллюстрации этой ситуации, но легко видеть, что вероятность ошибиться при ответе на один вопрос равна 0,8; поэтому вероятность неправильно ответить на все 15 вопросов равна 0,8 15 . Это число 0,8, умноженное само на себя 15 раз, в результате чего получается 0,0352. Поскольку вероятность такой случайности равна 3,52%, может быть, Саре стоит заявить преподавателю, что такой необычный результат не может объясняться случайностью? Сара, конечно, может привести подобный довод, но поверили бы вы ей на месте преподавателя? Предположим, она утверждает, что знала ответы на все вопросы. Как иначе она смогла бы не выбрать правильный вариант ответа в 15 вопросах подряд? Я не знаю, сколько преподавателей поверили бы ее утверждению, что 15 неверных ответов доказывают наличие у нее знаний, хотя в принципе такой ход рассуждений используется для доказательства наличия знаний, поскольку вероятность правильно угадать все ответы примерно такая же. (В этом примере вероятность наугад ответить правильно на все 15 вопросов равна 0,20 15 ; это число значительно меньше 0,0001.) Если бы преподавателем Сары была я, то я бы поставила ей высокие оценки за творческий подход и понимание статистических принципов. Не исключено, что Сара действительно что-то знала на эту тему, но в этом «чем-то» была систематическая ошибка. Я бы также указала ей на то, что, возможно, она не подготовилась к тесту, а вдобавок ей еще и не повезло, и она сделала 15 неверных догадок. В конце концов, иногда случаются и очень необычные события.

Перед тем как перейти к чтению следующего раздела, проверьте, понимаете ли вы, как применять древовидные диаграммы для расчета вероятностей и учета всех возможных исходов. В этой главе я еще вернусь к таким диаграммам. Когда вы научитесь их использовать, вы будете удивлены, как много существует ситуаций, в которых они могут применяться.

Рис. 7.2. Платежная матрица с учетом вероятностей исходов событий

p i – вероятность i-ого варианта исхода событий.

M j – мат. ожидание критерия при выборе j -ого варианта альтернатив действий, определяемое по формуле:

Два вышеназванных подхода позволяют реализовать четыре различных алгоритма выбора решения.

1. Решение на основе правила максимальной вероятности - максимизация наиболее вероятных значений критерия (прибыли или дохода).

2. Решение на основе правила максимальной вероятности - минимизации наиболее вероятных значений критерия (возможных потерь или прямых убытков).

3. Решение на основе правила максимизации математического ожидания (среднего значения) критерия (прибыли или дохода).

4. Решение на основе правила минимизации математического ожидания (среднего значения) критерия (потерь или убытков).

Примеры, которые мы рассматривали до сих пор в этой главе, включали в себя единственное решение. Однако на практике результат одного решения заставляет нас принимать следующее и т.д. Эту последовательность нельзя выразить платежной матрицей, поэтому нужно использовать какой-то другой процесс принятия решений.

Схему"дерево" решений используют, когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исходов событий.

Состав­ляя "дерево" решений, нужно нарисовать "ствол" и "ветви", отображающие структуру проблемы.

· Располагаются "деревья" слева направо. "Ветви" обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возни­кающие в результате этих решений.

· "Ветви" выходят из узлов. Узлы бывают двух типов.

Квадратный узел обозначает место, где принимается решение.

Круглый узел обозначает место, где появляются различные варианты исходов.

· На схеме используются два вида "ветвей":

Первый - пунктирные линии, выходящие из квадратов возможных решений, движение по ним зависит от принимаемых решений. На соответствующей пунктирной "ветви" проставляются все расходы, вызван­ные решением.

Второй - сплош­ные линии, выходящие из кружков возможных исходов. Движение по ним определяется исходом событий. На сплошной линии указывается вероятность данного исхода.

узел принятия решения.

узел ветвления вариантов исходов событий.

ветви, движение по которым зависит от принимаемого решения.

ветви, движение по которым зависит от исхода событий.

Поиск решения разбивается на три этапа.

Этап 1. Строится "дерево" (пример будет рассмотрен на практических занятиях). Когда все решения и их исходы указаны на "дереве", просчитывается каждый из вариантов, и в конце проставляется его денежный доход.


Этап 2. Вычисляются и проставляются на соответствующих ветвях вероятности каждого исхода.

Этап 3. На этом этапе справа налево рассчитываются и проставляются денежные исходы каждого из "узлов". Любые встречаю­щиеся расходы вычитаются из ожидаемых доходов.

После того, как пройдены квадраты "решений", выбирается "ветвь", ведущая к наибольшему из возможных при данном решении ожидаемому доходу (на этой ветви проставляется стрелка).

Другая "ветвь" зачеркивается, а ожи­даемый доход проставляется над квадратом решения.

Таким образом, в конце третьего этапа оказывается сформированной последовательность решений, ведущая к максимальному доходу.

В принципе, в качестве критерия может выступать как максимизация мат. ожидания дохода, так и минимизация мат. ожидания потерь.

Вечер постепенно окутывал величественный замок Змиулан. Постепенно зажигались в коридорах факелы, ученики спешили разойтись по комнатам. И вот, когда коридоры уже пустовали, из-за угла вышел человек: дорогой костюм чёрного цвета идеально сидел на его подтянутой фигуре, русые волосы были зачесаны назад, глаза фисташкового цвета смотрели только вперёд равнодушным взглядом. Нортон Огнев, а это был он, подошел к кабинету Великого Духа Осталы. Постучав и получив разрешение, мужчина вошел в помещение. -Итак, зачем ты пришел, Нортон? - спиной к отцу Василисы, смотря в окно, стоял сам хозяин замка. Равнодушие не исчезло с лица Огнева, но он внутренне напрягся. -Господин Астрагор, мне нужно отправиться в Черновод на несколько дней, - глава Драгоциев развернулся. -Как я понимаю, ты поедешь не один? - Нортон-старший медленно кивнул: -Да, господин Астрагор. Если вы не против, я возьму с собой свою дочь, Фэша и Захарру. -А зачем тебе, Нортон, брать с собой моих племянников? - с неким интересом взглянул на Огнева глава Драгоциев. -Василиса попросила, - будто нехотя ответил Нортон-старший. Астрагор задумчиво уставился на пламя в камине. Огнев терпеливо ожидал ответа… *** Ночь окутала величественный замок звездным полотном. Легкий ветерок шелестел листвой сада. В Зеленой комнате уже готовилась ко сну Василиса. -Ох, как же давно я тут не была… - протянула девушка, оглядывая комнату. Она уже даже не помнила, когда в последний раз была здесь, но видела, что всё находилось на своих местах. Неожиданно в распахнутое окно влетел парень. Огнева удивленно взглянула на нежданного гостя. Спрятав черные крылья, темноволосый улыбнулся хозяйке комнаты: -Привет совам! -Ты меня напугал! - воскликнула девушка, раздраженно смотря на парня. -Ой, да ладно тебе, - хмыкнул гость. - Думаю, ты всегда меня пугаться будешь. -Не говори глупостей! Стану я бояться такого заносчивого парня вроде тебя, - раздраженно проговорила Василиса. - Кстати, Фэш, а чего ты прилетел, тем более, так поздно? Опять не спится? -Ага, - кивнул Драгоций. - Решил себе экскурсию по Черноводу устроить… Но одному гулять не очень весело, да и опасно. По незнакомому замку всё-таки, - хитро блеснул глазами Фэш. -Предлагаешь, чтобы я провела тебе экскурсию? - недоуменно взглянула на друга Василиса. -А почему бы и нет? Ты же здесь всё знаешь? - вопросительно поднял бровь брюнет. -Почти, - уклончиво ответила рыжеволосая. -Ну вот и хорошо, - Драгоций направился к двери. Огневой ничего не осталось сделать, как последовать за ним. Ребята шли по темным коридорам, начасовав светильники. Василиса рассказывала Фэшу, что помнит в этом замке. Тот внимательно её слушал, иногда перебивая или ехидно фыркая на то или иное предложение. Вскоре ему наскучило просто ходить и слушать болтовню, и он, кое-что вспомнив, задал вопрос: -Кстати, а что там за башня, которую мы видели, когда в карете ехали? -Ты какую имеешь ввиду? - задумчиво спросила Огнева. -Кажется, Западную, - протянул Драгоций. -А, эту, - тут же поняла рыжеволосая. - У нас ее прозывают Одинокая, там когда-то содержались узники. -А давай заглянем туда? - в льдисто-голубых глазах брюнета блеснул азарт. -Ну, не знаю… - неуверенно протянула Василиса. -Боишься? - усмехнулся Драгоций. Как Фэш и предполагал, ее удалось взять на слабо: лицо девушки вспыхнуло, и она сжала кулаки: -Идем, - и Василиса повела довольно улыбнувшегося брюнета к этой башне. Без препятствий открыв дверь, ребята вошли в помещение. Дверь вскоре захлопнулась. Фэш подошел к распахнутому настежь окну и запрыгнул на подоконник, вдохнув морской бодрящий запах: -Эх, хорошо… - затем повернулся к рыжеволосой. - Давай, садись, - и стукнул ладонью по месту рядом с собой. Девушка тут же пристроилась рядом. Полная луна светила в вышине, а внизу волновалось море. Накатывали волна за волной, разбиваясь о скалы. -Какая яркая луна, - взглянула вновь на небо Василиса. -А у меня песня есть про луну. Давно еще сочинил, - вдруг сказал Фэш. -Так ты петь умеешь? - удивленно взглянула на Драгоция рыжеволосая. Тот молча кивнул. -А что, не веришь? - брюнет приблизился к лицу Огневой, с усмешкой глядя в глаза собеседницы. Заметил, что щеки её порозовели, и улыбка стала шире. -Да нет, просто… - запнулась покрасневшая Василиса, отведя взгляд от льдисто-голубых глаз, в которых отражался свет луны. - Просто не было возможности подтвердить твои слова, - она вновь взглянула в эти глаза. Фэш стал медленно наклоняться к рыжеволосой. Та пошла ему навстречу. Между их лицами остаются считанные миллиметры. Огнева уже чувствовала легкий ветерок выдохов на своих губах. Их губы почти соприкаснулись, и… -Ох, как же это мило! - Василиса тут же отстранилась от Драгоция и залилась румянцем похлеще прежнего. Фэш повернулся. Пред его ясные очи предстала… -Захарра?! - воскликнули удивленно двое голубков. -Что ты здесь делаешь? - раздраженно взглянул на сестру брюнет. -Да я видела, как ты летел куда-то, решила узнать. Вышла, смотрю, вы идете, болтаете. Главное, меня не замечаете. Ну, я за вами и пошла, - выложила всё куцехвостая. -Подлючая родная кровь… - пробурчал Фэш, слез с подоконника и ушел к себе. Василиса последовала его примеру. Захарра мигом прошмыгнула в коридор за Огневой и тоже вернулась в свою комнату…

Для построения дерева вероятностей прежде всего необходимо нарисовать са­мо дерево, затем записать на рисунке всю известную для данной задачи инфор­мацию и, наконец, воспользоваться основными правилами, чтобы вычислить не­достающие числа и закончить дерево.

1. Вероятности указываются в каждой из конечных точек и обводятся кружоч­ками. На каждом уровне дерева сумма этих вероятностей должна равняться 1 (или 100%). Так, например, на рис. 6.5.1 сумма вероятностей на первом уров­не составляет 0,20 + 0,80 = 1,00 и на втором уровне - 0,03 + 0,17 + 0,56 + 0,24 = 1,00. Это правило помогает заполнить один пустой кружок в столбце, если значения всех остальных вероятностей этого уровня известны.

Рис. 6.5.1

2. Условные вероятности указываются рядом с каждой из ветвей (кроме,
возможно, ветвей первого уровня). Для каждой из групп ветвей, выходящих из одной точки, сумма этих вероятностей также равна 1 (или 100%).
Например, на рис. 6.5.1 для первой группы ветвей получаем 0,15 + 0,85 =
1,00 и для второй группы - 0,70 + 0,30 = 1,00. Это правило позволяет
вычислить одно неизвестное значение условной вероятности в группе вет­вей, исходящих из одной точки.

3. Обведенная кругом в начале ветви вероятность, умноженная на условную
вероятность рядом с этой ветвью, дает вероятность, записанную в круге в
конце ветви. Например, на рис. 6.5.1 для верхней ведущей вправо ветви
имеем 0,20 х 0,15 = 0,03, для следующей ветви - 0,20 х 0,85 = 0,17; аналогичные соотношения выполняются и для других двух ветвей. Это правило можно использовать для вычисления одного неизвестного значения
вероятности из трех, соответствующих некоторой ветви.

4. Записанное в круге значение вероятности равно сумме обведенных кружками вероятностей на концах всех ветвей, выходящих из этого круга
вправо. Так, например, для рис. 6.5.1 из круга со значением 0,20 выходят
две ветви, на концах которых находятся обведенные кружками вероятности, сумма которых равна этому значению: 0,03 + 0,17 = 0,20. Это правило позволяет найти одно неизвестное значение вероятности в группе,
включающей эту вероятность и все вероятности на концах ветвей дерева,
выходящих из соответствующего круга.

Используя эти правила можно, зная все, кроме одного значения вероятности для некоторой ветви или на некотором уровне, находить это неизвестное значение.

37. Какая выборка называется репрезентативной? Каким образом можно извлечь репрезентативную выборку?

Репрезентативность - это способность выборки представлять изучаемую совокупность. Чем точнее состав выборки представляет совокупность по изучаемым вопросам, тем выше ее репрезентативность.



Репрезентативная выборка (representative sample) - одно из ключевых понятий анализа данных. Репрезентативная выборка - это выборка из генеральной совокупности с распределением F (x ), представляющая основные особенности генеральной совокупности. Например, если в городе проживает 100 000 человек, половина из которых мужчины и половина женщины, то выборка 1000 человек из которых 10 мужчин и 990 женщин, конечно, не будет репрезентативной. Построенный на ее основе опрос общественного мнения, конечно, будет содержать смещение оценок и приводит к фальсификации результатов.

Необходимым условием построения репрезентативной выборки является равная вероятность включения в нее каждого элемента генеральной совокупности.

Выборочная (эмпирическая) функция распределения дает при большом объеме выборки достаточно хорошее представление о функции распределения F (x ) исходной генеральной совокупности.

Ведущий принцип, лежащий в основе такой процедуры, - это принцип рандомизации, случайности. Выборка называется случайной (иногда мы будем говорить простая случайная или чистая случайная выборка), если выполняется два условия. Во-первых, выборка должна быть построена таким образом, чтобы любой человек или объект в пределах совокупности имел равные возможности быть отобранным для анализа. Во-вторых, выборка должна быть сформирована так, чтобы любое сочетание из n объектов (где n - просто количество объектов, или случаев, в выборке) имело равные возможности быть отобранным для анализа.

При исследовании совокупностей, которые слишком велики, для того чтобы можно было осуществить настоящую лотерею, часто используются простые случайные выборки. Выписать имена нескольких сотен тысяч объектов, сложить их в барабан и выбрать несколько тысяч - это все же нелегкая работа. В таких случаях используется другой, однако столь же надежный способ. Каждому объекту в совокупности присваивается номер. Последовательность чисел в таких таблицах обычно задается компьютерной программой, называемой генератором случайных чисел, который, в сущности, помещает в барабан большое количество чисел, случайным образом вытаскивает их и выпечатывает в порядке получения. Иными словами, имеет место все тот же процесс, характерный для лотереи, однако компьютер, используя не имена, а числа, осуществляет универсальный выбор. Этим выбором можно пользоваться, просто присвоив каждому из наших объектов номер.

Таблица случайных чисел типа той, может использоваться несколькими разными способами, и в каждом случае необходимо принять три Решения. Во-первых, следует решить, сколько разрядов Мы будем использовать, во-вторых, необходимо разработать решающее правило для их использования; в-третьих нужно выбрать исходную точку и способ прохождения по таблице.

Как только это сделано, мы должны разработать правило, которое бы связывало числа в таблице с номерами наших объектов. Здесь существуют две возможности. Самый простой способ (хотя и не обязательно самый правильный) - использовать лишь те числа, которые попадают в число номеров, приписанных нашим объектам. Так, если мы имеем совокупность, состоящую из 250 объектов (и, таким образом, используем трехзначные числа), и решаем начать с левого верхнего угла таблицы и двигаться вниз по столбцам, мы включим в нашу выборку объекты с номерами 100, 084 и 128 и пропустим числа 375 и 990, не соответствующие нашим объектам. Этот процесс будет продолжаться до тех пор, пока не будет определено число объектов, нужных для нашей выборки.

Более трудоемкая, однако методически более правильная процедура основывается на положении, что для сохранения случайности, характерной для таблицы, должно быть использовано каждое число данной размерности (например, каждое трехзначное число). Следуя данной логике и вновь имея дело с совокупностью из 250 объектов, мы должны разбить область трехзначных чисел от 000 до 999 на 250 одинаковых промежутков. Поскольку таких чисел 1000, мы делим 1000 на 250 и находим, что каждая из частей содержит четыре числа. Таким образом, числа таблицы от 000 до 003 будут соответствовать объекту от 004 до 007 - объекту 2 и т.д. Теперь, чтобы установить, какой номер объекта соответствует числу таблицы, следует разделить трехзначное число из таблицы и округлить до ближайшего целого числа.

И наконец, мы должны выбрать в таблице исходную точку и способ прохождения. Исходной точкой может быть верхний левый угол (как в предыдущем примере), нижний правый угол, левый край второй строки или любое другое место. Этот выбор абсолютно произволен. Однако, работая с таблицей, мы должны действовать систематически. Мы могли бы взять три первых знака из каждой пятизначной последовательности, три средних знака, три последних знака или даже первый, второй и четвертый знаки. (Из первой пятизначной последовательности с помощью этих различных процедур получаются, соответственно, числа 100, 009, 097 и 109.) Мы могли бы применить эти процедуры в направлении справа налево, получив 790, 900, 001 и 791. Мы могли бы идти вдоль рядов, рассматривая поочередно каждую следующую цифру и игнорируя разбиение на пятерки (для первого ряда будут получены числа 100, 973, 253, 376 и 520). Мы могли бы иметь дело лишь с каждой третьей группой цифр (например, с 10097, 99019, 04805, 99970). Существует множество самых разнообразных возможностей, и каждая следующая ничуть не хуже предыдущей. Однако как только мы приняли решение о том, или ином способе работы, мы должны систематически следовать ему, чтобы в максимальной степени соблюдать случайность элементов в таблице.

38. Какой интервал мы называем доверительным?

Доверительный интервал - это допустимое отклонение наблюдаемых значений от истинных. Размер этого допущения определяется исследователем с учетом требований к точности информации. Если увеличивается допустимая ошибка, размер выборки уменьшается, даже если уровень доверительной вероятности останется равным 95%.

Доверительный интервал показывает, в каком диапазоне расположатся результаты выборочных наблюдений (опросов). Если мы проведем 100 одинаковых опросов в одинаковых выборках из единой генеральной совокупности (например, 100 выборок по 1000 человек в каждой в городе с населением 5 миллионов человек), то при 95%-й доверительной вероятности, 95 из 100 результатов попадут в пределы доверительного интервала (например, от 28% до 32% при истинном значении 30%).

Например, истинное количество курящих жителей города составляет 30%. Если мы 100 раз подряд выберем по 1000 человек и в этих выборках зададим вопрос "курите ли Вы?", в 95 из этих 100 выборок при 2%-м доверительном интервале значение составит от 28% до 32%.

39 Что называется уровнем доверительности (confidence level)?

Доверительный уровень отражает количество данных, необходимых оценщику для того, чтобы утверждать, что обследуемая программа имеет должный эффект. В общественных науках традиционно используется 95% доверительный уровень. Однако для большинства общественных программ уровень в 95% является излишним. Доверительный уровень в интервале 80-90% является достаточным для адекватной оценки программы. Таким образом, можно уменьшить размер репрезентативной группы, тем самым уменьшив и затраты на проведение оценки.

В процессе статистической оценки проверяется нулевая гипотеза, которая состоит в том, что программа не имела должного эффекта. Если полученные результаты значительно отличаются от изначальных предположений о правильности нулевой гипотезы, то последняя отклоняется.

40. Какой из двух доверительных интервалов больше: двусторонний 99% или двусторонний 95%? Объясните.

Двусторонний доверительный интервал 99% больше, чем 95%, так как в него попадает больше значений. Док-во:

С помощью z-значений можно точнее оценить доверительный интервал и определить общую форму доверительного интервала. Точная формулировка доверительного интервала для выборочного среднего имеет следующий вид:

Таким образом, для случайной выборки 25 наблюдений, удовлетворяющих нормальному распределению, с доверительный интервал выборочного среднего имеет следующий вид:

Таким образом, на 95% можно быть уверенным, что значение лежит в пределах ±1,568 единицы от выборочного среднего. С помощью такого же метода можно определить, что 99%-ный доверительный интервал лежит в пределах ±2,0608 единицы от выборочного среднего

значение Таким образом, имеем и отсюда , Аналогично получаем нижний предел, который равен