Ako nájsť deriváciu komplexnej funkcie. Riešenie derivácie pre figuríny: definícia, ako nájsť, príklady riešení

Na ktorom sme analyzovali najjednoduchšie deriváty a tiež sme sa oboznámili s pravidlami diferenciácie a niektorými technikami na hľadanie derivátov. Ak teda nie ste veľmi dobrí s derivátmi funkcií alebo vám niektoré body tohto článku nie sú úplne jasné, prečítajte si najprv vyššie uvedenú lekciu. Prosím, nalaďte sa na vážnu náladu - materiál nie je jednoduchý, ale aj tak sa ho pokúsim podať jednoducho a zrozumiteľne.

V praxi sa musíte s deriváciou komplexnej funkcie zaoberať veľmi často, dokonca by som povedal, že takmer vždy, keď dostanete úlohy na nájdenie derivácií.

V tabuľke sa pozrieme na pravidlo (č. 5) na diferenciáciu komplexnej funkcie:

Rozumieme. Najprv sa pozrime na zápis. Tu máme dve funkcie - a , pričom funkcia je, obrazne povedané, vnorená do funkcie . Funkcia tohto druhu (keď je jedna funkcia vnorená do inej) sa nazýva komplexná funkcia.

Zavolám funkciu vonkajšia funkcia a funkciu – vnútorná (alebo vnorená) funkcia.

! Tieto definície nie sú teoretické a nemali by sa objaviť v konečnom návrhu zadaní. Neformálne výrazy „vonkajšia funkcia“, „vnútorná“ funkcia používam len preto, aby som vám uľahčil pochopenie látky.

Na objasnenie situácie zvážte:

Príklad 1

Nájdite deriváciu funkcie

Pod sínusom nemáme len písmeno "x", ale celý výraz, takže hľadanie derivátu okamžite z tabuľky nebude fungovať. Všimli sme si tiež, že nie je možné použiť prvé štyri pravidlá, zdá sa, že existuje rozdiel, ale faktom je, že nie je možné „roztrhnúť“ sínus:

V tomto príklade, už z mojich vysvetlení, je intuitívne jasné, že funkcia je komplexná funkcia a polynóm je vnútorná funkcia (vloženie) a vonkajšia funkcia.

Prvý krok, ktorý je potrebné vykonať pri hľadaní derivácie komplexnej funkcie je to pochopiť, ktorá funkcia je vnútorná a ktorá vonkajšia.

V prípade jednoduchých príkladov sa zdá jasné, že polynóm je vnorený pod sínus. Ale čo ak to nie je zrejmé? Ako presne určiť, ktorá funkcia je vonkajšia a ktorá vnútorná? Na tento účel navrhujem použiť nasledujúcu techniku, ktorú možno vykonať mentálne alebo na návrhu.

Predstavme si, že potrebujeme vypočítať hodnotu výrazu pomocou kalkulačky (namiesto jednotky môže byť ľubovoľné číslo).

Čo vypočítame ako prvé? Predovšetkým budete musieť vykonať nasledujúcu akciu: , takže polynóm bude internou funkciou:

Po druhé budete musieť nájsť, takže sínus - bude externá funkcia:

Po nás ROZUMIEŤ s vnútornými a vonkajšími funkciami je čas použiť pravidlo diferenciácie zložených funkcií .

Začíname sa rozhodovať. Z lekcie Ako nájsť derivát? pamätáme si, že návrh riešenia akejkoľvek derivácie vždy začína takto - výraz uzavrieme do zátvoriek a vpravo hore umiestnime ťah:

Najprv nájdeme deriváciu vonkajšej funkcie (sínus), pozrieme sa na tabuľku derivácií elementárnych funkcií a všimneme si, že . Všetky tabuľkové vzorce sú použiteľné, aj keď je "x" nahradené zložitým výrazom, v tomto prípade:

Všimnite si, že vnútorná funkcia sa nezmenil, nedotýkame sa ho.

No to je celkom zrejmé

Výsledok použitia vzorca čistý vyzerá takto:

Konštantný faktor je zvyčajne umiestnený na začiatku výrazu:

Ak dôjde k nejakému nedorozumeniu, zapíšte si rozhodnutie na papier a znova si prečítajte vysvetlenia.

Príklad 2

Nájdite deriváciu funkcie

Príklad 3

Nájdite deriváciu funkcie

Ako vždy píšeme:

Zisťujeme, kde máme vonkajšiu funkciu a kde vnútornú. Aby sme to dosiahli, snažíme sa (mentálne alebo na koncepte) vypočítať hodnotu výrazu pre . Čo je potrebné urobiť ako prvé? Najprv musíte vypočítať, čomu sa základ rovná:, čo znamená, že polynóm je vnútorná funkcia:

A až potom sa vykoná umocnenie, preto je výkonová funkcia vonkajšou funkciou:

Podľa vzorca , najprv musíte nájsť deriváciu vonkajšej funkcie, v tomto prípade stupeň. V tabuľke hľadáme požadovaný vzorec:. Znova opakujeme: akýkoľvek tabuľkový vzorec platí nielen pre "x", ale aj pre komplexný výraz. Teda výsledok uplatnenia pravidla diferenciácie komplexnej funkcie Ďalšie:

Opäť zdôrazňujem, že keď vezmeme deriváciu vonkajšej funkcie, vnútorná funkcia sa nemení:

Teraz zostáva nájsť veľmi jednoduchú deriváciu vnútornej funkcie a výsledok trochu „učesať“:

Príklad 4

Nájdite deriváciu funkcie

Toto je príklad na samoriešenie (odpoveď na konci hodiny).

Pre upevnenie pochopenia derivácie komplexnej funkcie uvediem príklad bez komentárov, skúste si na to prísť sami, rozumejte, kde je vonkajšia a kde vnútorná funkcia, prečo sa úlohy riešia tak?

Príklad 5

a) Nájdite deriváciu funkcie

b) Nájdite deriváciu funkcie

Príklad 6

Nájdite deriváciu funkcie

Tu máme koreň a na rozlíšenie koreňa musí byť reprezentovaný ako stupeň. Najprv teda uvedieme funkciu do správnej formy na diferenciáciu:

Pri analýze funkcie dospejeme k záveru, že súčet troch členov je vnútorná funkcia a umocňovanie je vonkajšia funkcia. Uplatňujeme pravidlo diferenciácie komplexnej funkcie :

Stupeň je opäť reprezentovaný ako radikál (odmocnina) a pre deriváciu vnútornej funkcie aplikujeme jednoduché pravidlo na diferenciáciu súčtu:

Pripravený. Môžete tiež uviesť výraz do spoločného menovateľa v zátvorkách a napísať všetko ako jeden zlomok. Je to, samozrejme, krásne, ale keď sa získajú ťažkopádne dlhé deriváty, je lepšie to nerobiť (je ľahké sa zmiasť, urobiť zbytočnú chybu a pre učiteľa bude nepohodlné to kontrolovať).

Príklad 7

Nájdite deriváciu funkcie

Toto je príklad na samoriešenie (odpoveď na konci hodiny).

Je zaujímavé poznamenať, že niekedy namiesto pravidla na diferenciáciu komplexnej funkcie možno použiť pravidlo na derivovanie kvocientu , ale takéto riešenie bude vyzerať ako zvrátenosť nezvyčajná. Tu je typický príklad:

Príklad 8

Nájdite deriváciu funkcie

Tu môžete použiť pravidlo diferenciácie kvocientu , ale je oveľa výnosnejšie nájsť deriváciu pomocou pravidla diferenciácie komplexnej funkcie:

Pripravíme funkciu na diferenciáciu - vyberieme znamienko mínus derivácie a zvýšime kosínus do čitateľa:

Kosínus je vnútorná funkcia, umocňovanie je vonkajšia funkcia.
Využime naše pravidlo :

Nájdeme deriváciu vnútornej funkcie, resetujeme kosínus späť nadol:

Pripravený. V uvažovanom príklade je dôležité nenechať sa zmiasť v znameniach. Mimochodom, skúste to vyriešiť pravidlom , odpovede sa musia zhodovať.

Príklad 9

Nájdite deriváciu funkcie

Toto je príklad na samoriešenie (odpoveď na konci hodiny).

Doteraz sme zvažovali prípady, keď sme mali len jedno hniezdenie v komplexnej funkcii. V praktických úlohách sa často dajú nájsť odvodeniny, kde sa ako hniezdiace bábiky jedna do druhej vnorí 3 alebo aj 4-5 funkcií naraz.

Príklad 10

Nájdite deriváciu funkcie

Rozumieme prílohám tejto funkcie. Výraz sa snažíme vyhodnotiť pomocou experimentálnej hodnoty . Ako by sme rátali s kalkulačkou?

Najprv musíte nájsť, čo znamená, že arcsínus je najhlbšie hniezdenie:

Tento arcsínus jednoty by sa potom mal odmocniť:

A nakoniec zdvihneme sedem k moci:

To znamená, že v tomto príklade máme tri rôzne funkcie a dve vnorenia, pričom najvnútornejšia funkcia je arcsínus a najvzdialenejšia funkcia je exponenciálna funkcia.

Začíname sa rozhodovať

Podľa pravidla najprv musíte vziať deriváciu vonkajšej funkcie. Pozrieme sa na tabuľku derivácií a nájdeme deriváciu exponenciálnej funkcie: Jediný rozdiel je v tom, že namiesto „x“ máme komplexný výraz, ktorý nepopiera platnosť tohto vzorca. Takže výsledok uplatnenia pravidla diferenciácie komplexnej funkcie Ďalšie.

Po predbežnej delostreleckej príprave budú príklady s 3-4-5 prílohami funkcií menej desivé. Možno sa niekomu budú zdať nasledujúce dva príklady komplikované, ale ak ich pochopí (niekto trpí), tak takmer všetko ostatné v diferenciálnom počte bude pôsobiť ako detský vtip.

Príklad 2

Nájdite deriváciu funkcie

Ako už bolo uvedené, pri hľadaní derivácie komplexnej funkcie je to potrebné predovšetkým správny ROZUMIEŤ INVESTÍCIÁM. V prípadoch, keď existujú pochybnosti, pripomínam užitočný trik: vezmeme napríklad experimentálnu hodnotu "x" a pokúsime sa (mentálne alebo na koncepte) dosadiť túto hodnotu do "strašného výrazu".

1) Najprv musíme vypočítať výraz, takže súčet je najhlbšie vnorenie.

2) Potom musíte vypočítať logaritmus:

4) Potom položte kosínusovú kocku:

5) V piatom kroku rozdiel:

6) A nakoniec najvzdialenejšia funkcia je druhá odmocnina:

Vzorec na diferenciáciu komplexných funkcií sa aplikujú v opačnom poradí, od vonkajšej funkcie po najvnútornejšiu. Rozhodujeme sa:

Zdá sa, že bez chýb:

1) Vezmeme deriváciu druhej odmocniny.

2) Zoberieme deriváciu rozdielu pomocou pravidla

3) Derivácia trojky sa rovná nule. V druhom člene vezmeme deriváciu stupňa (kocku).

4) Vezmeme deriváciu kosínusu.

6) A nakoniec vezmeme derivát najhlbšieho hniezdenia .

Môže sa to zdať príliš ťažké, ale toto nie je ten najbrutálnejší príklad. Vezmite si napríklad Kuznecovovu zbierku a oceníte všetko čaro a jednoduchosť analyzovaného derivátu. Všimol som si, že podobnú vec radi dávajú na skúške, aby si overili, či študent rozumie, ako nájsť deriváciu komplexnej funkcie, alebo nerozumie.

Nasledujúci príklad je pre samostatné riešenie.

Príklad 3

Nájdite deriváciu funkcie

Pomôcka: Najprv použijeme pravidlá linearity a pravidlo diferenciácie súčinu

Úplné riešenie a odpoveď na konci hodiny.

Je čas prejsť na niečo kompaktnejšie a krajšie.
Nie je nezvyčajné, že v príklade je uvedený súčin nie dvoch, ale troch funkcií. Ako nájsť deriváciu súčinu troch faktorov?

Príklad 4

Nájdite deriváciu funkcie

Najprv sa pozrieme, ale je možné premeniť súčin troch funkcií na súčin dvoch funkcií? Napríklad, ak by sme v súčine mali dva polynómy, mohli by sme otvoriť zátvorky. Ale v tomto príklade sú všetky funkcie odlišné: stupeň, exponent a logaritmus.

V takýchto prípadoch je to nevyhnutné postupne uplatniť pravidlo diferenciácie produktov dvakrát

Trik je v tom, že pre "y" označujeme súčin dvoch funkcií: a pre "ve" - ​​logaritmus:. Prečo sa to dá urobiť? je to? - to nie je súčin dvoch faktorov a pravidlo nefunguje?! Nie je nič zložité:


Teraz zostáva použiť pravidlo druhýkrát do zátvorky:

Stále môžete prevrátiť a niečo vyňať zo zátvoriek, ale v tomto prípade je lepšie ponechať odpoveď v tejto forme - bude to jednoduchšie skontrolovať.

Vyššie uvedený príklad možno vyriešiť druhým spôsobom:

Obe riešenia sú absolútne ekvivalentné.

Príklad 5

Nájdite deriváciu funkcie

Toto je príklad na nezávislé riešenie, v ukážke je to riešené prvým spôsobom.

Zvážte podobné príklady so zlomkami.

Príklad 6

Nájdite deriváciu funkcie

Tu môžete ísť niekoľkými spôsobmi:

Alebo takto:

Riešenie však možno napísať kompaktnejšie, ak najskôr použijeme pravidlo diferenciácie kvocientu , pričom za celého čitateľa:

V zásade je príklad vyriešený a ak sa nechá v tejto podobe, nebude to chyba. Ale ak máte čas, vždy je vhodné skontrolovať návrh, ale je možné zjednodušiť odpoveď?

Vyjadrenie čitateľa privedieme na spoločného menovateľa a zbavíme sa trojposchodového zlomku:

Nevýhodou dodatočných zjednodušení je, že existuje riziko, že sa pomýlime nie pri hľadaní derivátu, ale pri banálnych transformáciách škôl. Na druhej strane učitelia často úlohu odmietajú a žiadajú, aby im „pripomenuli“ derivát.

Jednoduchší príklad riešenia „urob si sám“:

Príklad 7

Nájdite deriváciu funkcie

Pokračujeme v ovládaní techník na nájdenie derivácie a teraz zvážime typický prípad, keď sa na diferenciáciu navrhuje „strašný“ logaritmus.

komplexné deriváty. Logaritmická derivácia.
Derivácia exponenciálnej funkcie

Pokračujeme v zlepšovaní našej techniky diferenciácie. V tejto lekcii si skonsolidujeme preberaný materiál, zvážime zložitejšie deriváty a tiež sa oboznámime s novými trikmi a trikmi na nájdenie derivátu, najmä s logaritmickou deriváciou.

Tí čitatelia, ktorí majú nízku úroveň prípravy, by si mali prečítať článok Ako nájsť derivát? Príklady riešeníčo vám umožní zvýšiť svoje zručnosti takmer od nuly. Ďalej musíte starostlivo preštudovať stránku Derivácia komplexnej funkcie, pochopiť a vyriešiť všetky príklady, ktoré som uviedol. Táto lekcia je logicky tretia v poradí a po jej zvládnutí s istotou odlíšite dosť zložité funkcie. Je nežiaduce držať sa polohy „Kde inde? Áno, a to stačí! “, Pretože všetky príklady a riešenia sú prevzaté zo skutočných testov a často sa nachádzajú v praxi.

Začnime opakovaním. Na lekcii Derivácia komplexnej funkcie zvážili sme množstvo príkladov s podrobnými komentármi. V priebehu štúdia diferenciálneho počtu a iných častí matematickej analýzy budete musieť veľmi často rozlišovať a nie je vždy vhodné (a nie vždy potrebné) maľovať príklady veľmi podrobne. Preto sa precvičíme v ústnom zisťovaní derivátov. Najvhodnejšími „kandidátmi“ na to sú deriváty najjednoduchších alebo komplexných funkcií, napríklad:

Podľa pravidla diferenciácie komplexnej funkcie :

Pri štúdiu iných matanských tém v budúcnosti sa takýto podrobný záznam najčastejšie nevyžaduje, predpokladá sa, že študent je schopný nájsť podobné deriváty na autopilotovi. Predstavme si, že o 3. hodine ráno zazvonil telefón a príjemný hlas sa spýtal: „Aká je derivácia tangensu dvoch x?“. Potom by mala nasledovať takmer okamžitá a zdvorilá odpoveď: .

Prvý príklad bude okamžite určený na nezávislé riešenie.

Príklad 1

Nájdite nasledujúce deriváty ústne, v jednom kroku, napríklad: . Na dokončenie úlohy stačí použiť tabuľka derivácií elementárnych funkcií(ak si už nespomenula). Ak máte nejaké ťažkosti, odporúčam si lekciu znovu prečítať Derivácia komplexnej funkcie.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Odpovede na konci hodiny

Komplexné deriváty

Po predbežnej delostreleckej príprave budú príklady s 3-4-5 prílohami funkcií menej desivé. Možno sa niekomu budú zdať nasledujúce dva príklady komplikované, ale ak ich pochopí (niekto trpí), tak takmer všetko ostatné v diferenciálnom počte bude pôsobiť ako detský vtip.

Príklad 2

Nájdite deriváciu funkcie

Ako už bolo uvedené, pri hľadaní derivácie komplexnej funkcie je to potrebné predovšetkým správny ROZUMIEŤ INVESTÍCIÁM. V prípadoch, keď existujú pochybnosti, pripomínam užitočný trik: vezmeme napríklad experimentálnu hodnotu "x" a pokúsime sa (mentálne alebo na koncepte) dosadiť túto hodnotu do "strašného výrazu".

1) Najprv musíme vypočítať výraz, takže súčet je najhlbšie vnorenie.

2) Potom musíte vypočítať logaritmus:

4) Potom položte kosínusovú kocku:

5) V piatom kroku rozdiel:

6) A nakoniec najvzdialenejšia funkcia je druhá odmocnina:

Vzorec na diferenciáciu komplexných funkcií sa aplikujú v opačnom poradí, od vonkajšej funkcie po najvnútornejšiu. Rozhodujeme sa:

Zdá sa, že bez chyby...

(1) Vezmeme deriváciu druhej odmocniny.

(2) Zoberieme deriváciu rozdielu pomocou pravidla

(3) Derivácia trojky sa rovná nule. V druhom člene vezmeme deriváciu stupňa (kocku).

(4) Vezmeme deriváciu kosínusu.

(5) Zoberieme deriváciu logaritmu.

(6) Nakoniec vezmeme derivát najhlbšieho hniezdenia .

Môže sa to zdať príliš ťažké, ale toto nie je ten najbrutálnejší príklad. Vezmite si napríklad Kuznecovovu zbierku a oceníte všetko čaro a jednoduchosť analyzovaného derivátu. Všimol som si, že podobnú vec radi dávajú na skúške, aby si overili, či študent rozumie, ako nájsť deriváciu komplexnej funkcie, alebo nerozumie.

Nasledujúci príklad je pre samostatné riešenie.

Príklad 3

Nájdite deriváciu funkcie

Pomôcka: Najprv použijeme pravidlá linearity a pravidlo diferenciácie súčinu

Úplné riešenie a odpoveď na konci hodiny.

Je čas prejsť na niečo kompaktnejšie a krajšie.
Nie je nezvyčajné, že v príklade je uvedený súčin nie dvoch, ale troch funkcií. Ako nájsť deriváciu súčinu troch faktorov?

Príklad 4

Nájdite deriváciu funkcie

Najprv sa pozrieme, ale je možné premeniť súčin troch funkcií na súčin dvoch funkcií? Napríklad, ak by sme v súčine mali dva polynómy, mohli by sme otvoriť zátvorky. Ale v tomto príklade sú všetky funkcie odlišné: stupeň, exponent a logaritmus.

V takýchto prípadoch je to nevyhnutné postupne uplatniť pravidlo diferenciácie produktov dvakrát

Trik je v tom, že pre "y" označujeme súčin dvoch funkcií: a pre "ve" - ​​logaritmus:. Prečo sa to dá urobiť? je to? - to nie je súčin dvoch faktorov a pravidlo nefunguje?! Nie je nič zložité:

Teraz zostáva použiť pravidlo druhýkrát do zátvorky:

Stále môžete prevrátiť a niečo vyňať zo zátvoriek, ale v tomto prípade je lepšie ponechať odpoveď v tejto forme - bude to jednoduchšie skontrolovať.

Vyššie uvedený príklad možno vyriešiť druhým spôsobom:

Obe riešenia sú absolútne ekvivalentné.

Príklad 5

Nájdite deriváciu funkcie

Toto je príklad na nezávislé riešenie, v ukážke je to riešené prvým spôsobom.

Zvážte podobné príklady so zlomkami.

Príklad 6

Nájdite deriváciu funkcie

Tu môžete ísť niekoľkými spôsobmi:

Alebo takto:

Riešenie však možno napísať kompaktnejšie, ak najskôr použijeme pravidlo diferenciácie kvocientu , pričom za celého čitateľa:

V zásade je príklad vyriešený a ak sa nechá v tejto podobe, nebude to chyba. Ale ak máte čas, vždy je vhodné skontrolovať návrh, ale je možné zjednodušiť odpoveď? Vyjadrenie čitateľa prinášame do spoločného menovateľa a zbaviť sa trojposchodového zlomku:

Nevýhodou dodatočných zjednodušení je, že existuje riziko, že sa pomýlime nie pri hľadaní derivátu, ale pri banálnych transformáciách škôl. Na druhej strane učitelia často úlohu odmietajú a žiadajú, aby im „pripomenuli“ derivát.

Jednoduchší príklad riešenia „urob si sám“:

Príklad 7

Nájdite deriváciu funkcie

Pokračujeme v ovládaní techník na nájdenie derivácie a teraz zvážime typický prípad, keď sa na diferenciáciu navrhuje „strašný“ logaritmus.

Príklad 8

Nájdite deriváciu funkcie

Tu môžete prejsť dlhú cestu pomocou pravidla diferenciácie komplexnej funkcie:

Ale hneď prvý krok vás okamžite uvrhne do skľúčenosti - musíte si vziať nepríjemný derivát zlomkového stupňa a potom aj zlomku.

Takže predtým ako vziať derivát „fantastického“ logaritmu, bol predtým zjednodušený pomocou dobre známych školských vlastností:



! Ak máte po ruke cvičný zošit, skopírujte si tieto vzorce priamo tam. Ak nemáte zošit, nakreslite si ich na papier, pretože zvyšok príkladov na lekcii sa bude točiť okolo týchto vzorcov.

Samotné riešenie môže byť formulované takto:

Transformujme funkciu:

Nájdeme derivát:

Predbežná transformácia samotnej funkcie značne zjednodušila riešenie. Preto, keď sa na diferenciáciu navrhuje podobný logaritmus, vždy sa odporúča „rozbiť“.

A teraz pár jednoduchých príkladov pre nezávislé riešenie:

Príklad 9

Nájdite deriváciu funkcie

Príklad 10

Nájdite deriváciu funkcie

Všetky transformácie a odpovede na konci lekcie.

logaritmická derivácia

Ak je derivácia logaritmov taká sladká hudba, potom vyvstáva otázka, či je možné v niektorých prípadoch logaritmus umelo usporiadať? Môcť! A dokonca nevyhnutné.

Príklad 11

Nájdite deriváciu funkcie

Podobné príklady sme nedávno zvažovali. Čo robiť? Postupne možno aplikovať pravidlo diferenciácie kvocientu a potom pravidlo diferenciácie produktu. Nevýhodou tejto metódy je, že získate obrovský trojposchodový zlomok, s ktorým sa vôbec nechcete zaoberať.

Ale v teórii a praxi existuje taká úžasná vec ako logaritmická derivácia. Logaritmy možno umelo organizovať ich „zavesením“ na obe strany:

Poznámka : pretože funkcia môže nadobúdať záporné hodnoty, potom vo všeobecnosti musíte použiť moduly: , ktoré v dôsledku diferenciácie zanikajú. Prijateľný je však aj súčasný dizajn, kde je štandardne komplexný hodnoty. Ale ak so všetkou prísnosťou, potom v oboch prípadoch je potrebné urobiť rezerváciu.

Teraz musíte čo najviac „rozložiť“ logaritmus pravej strany (vzorce pred vašimi očami?). Popíšem tento proces veľmi podrobne:

Začnime s diferenciáciou.
Obe časti uzatvárame ťahom:

Odvodenie pravej strany je celkom jednoduché, nebudem sa k tomu vyjadrovať, pretože ak čítate tento text, mali by ste ho s istotou zvládnuť.

A čo ľavá strana?

Na ľavej strane máme komplexná funkcia. Predpokladám otázku: „Prečo, je pod logaritmom jedno písmeno „y“?

Faktom je, že toto "jedno písmeno y" - JE FUNKCIOU SAMA SAMOU(ak to nie je veľmi jasné, pozrite si článok Derivácia implicitne špecifikovanej funkcie). Preto je logaritmus vonkajšia funkcia a "y" je vnútorná funkcia. A používame pravidlo diferenciácie zložených funkcií :

Na ľavej strane akoby kúzlom máme derivát. Ďalej, podľa pravidla proporcie, hodíme „y“ z menovateľa ľavej strany do hornej časti pravej strany:

A teraz si spomenieme, o akej „hernej“ funkcii sme hovorili pri rozlišovaní? Pozrime sa na stav:

Konečná odpoveď:

Príklad 12

Nájdite deriváciu funkcie

Toto je príklad „urob si sám“. Vzorový návrh príkladu tohto typu na konci lekcie.

Pomocou logaritmickej derivácie bolo možné vyriešiť ktorýkoľvek z príkladov č. 4-7, ďalšia vec je, že funkcie sú tam jednoduchšie a možno použitie logaritmickej derivácie nie je veľmi opodstatnené.

Derivácia exponenciálnej funkcie

O tejto funkcii sme zatiaľ neuvažovali. Exponenciálna funkcia je funkcia, ktorá má a stupeň a základ závisia od "x". Klasický príklad, ktorý dostanete v ktorejkoľvek učebnici alebo na ktorejkoľvek prednáške:

Ako nájsť deriváciu exponenciálnej funkcie?

Je potrebné použiť práve uvažovanú techniku ​​- logaritmickú deriváciu. Logaritmy zavesíme na obe strany:

Stupeň sa spravidla odoberá spod logaritmu na pravej strane:

Výsledkom je, že na pravej strane máme súčin dvoch funkcií, ktoré budú diferencované podľa štandardného vzorca .

Nájdeme deriváciu, preto obe časti uzatvoríme pod ťahy:

Nasledujúce kroky sú jednoduché:

Nakoniec:

Ak niektorá transformácia nie je úplne jasná, prečítajte si prosím pozorne vysvetlenia príkladu 11.

V praktických úlohách bude exponenciálna funkcia vždy komplikovanejšia ako uvažovaný príklad z prednášky.

Príklad 13

Nájdite deriváciu funkcie

Používame logaritmickú deriváciu.

Na pravej strane máme konštantu a súčin dvoch faktorov - "x" a "logaritmus logaritmu x" (ďalší logaritmus je vnorený pod logaritmus). Pri derivovaní konštanty, ako si pamätáme, je lepšie ju hneď vyňať zo znamienka derivácie, aby neprekážala; a samozrejme použiť známe pravidlo :


Keďže ste sem prišli, pravdepodobne ste už tento vzorec stihli vidieť v učebnici

a urobte tvár takto:

Priateľ, neboj sa! V skutočnosti je všetko jednoduché zahanbiť. Určite všetko pochopíte. Iba jedna žiadosť - prečítajte si článok pomaly snažte sa pochopiť každý krok. Napísal som čo najjednoduchšie a najzrozumiteľnejšie, ale stále sa musíte ponoriť do myšlienky. A nezabudnite vyriešiť úlohy z článku.

Čo je to komplexná funkcia?

Predstavte si, že sa sťahujete do iného bytu a preto balíte veci do veľkých krabíc. Nech je potrebné zbierať nejaké drobnosti, napríklad školské písacie potreby. Ak ich len hodíte do obrovskej krabice, okrem iného sa stratia. Aby ste tomu zabránili, najskôr ich vložíte napríklad do vrecka, ktoré potom vložíte do veľkej škatule, ktorú následne zalepíte. Tento „najťažší“ proces je znázornený na obrázku nižšie:

Zdalo by sa, kde je matematika? A okrem toho sa komplexná funkcia tvorí PRESNE ROVNAKÝM spôsobom! Len my „balíme“ nie zošity a perá, ale \ (x \), pričom slúžia rôzne „balíky“ a „škatule“.

Vezmime si napríklad x a „zabalíme“ ho do funkcie:


Výsledkom je, samozrejme, \(\cos⁡x\). Toto je naša „taška vecí“. A teraz to dáme do „škatuľky“ – balíme napríklad do kubickej funkcie.


Čo sa nakoniec stane? Áno, je to tak, bude tam "balík s vecami v krabici", teda "kosínus x kociek."

Výsledná konštrukcia má komplexnú funkciu. V tom sa líši od jednoduchého NIEKOĽKO „dopadov“ (balíčkov) sa aplikuje na jeden X v rade a ukázalo sa, ako to bolo, „funkcia z funkcie“ - „balík v balíku“.

V školskom kurze existuje len veľmi málo typov tých istých „balíčkov“, iba štyri:

Poďme teraz „zabaliť“ x najprv do exponenciálnej funkcie so základom 7 a potom do goniometrickej funkcie. Dostaneme:

\(x → 7^x → tg⁡(7^x)\)

A teraz „zabalíme“ x dvakrát do goniometrických funkcií, najprv do a potom do:

\(x → sin⁡x → ctg⁡ (sin⁡x)\)

Jednoduché, však?

Teraz napíšte funkcie sami, kde x:
- najprv sa „zabalí“ do kosínusu a potom do exponenciálnej funkcie so základom \(3\);
- najprv k piatej mocnine a potom k dotyčnici;
- najprv k základnému logaritmu \(4\) , potom na mocninu \(-2\).

Pozrite si odpovede na túto otázku na konci článku.

Môžeme sa však „zbaliť“ x nie dva, ale trikrát? Žiaden problém! A štyri, päť a dvadsaťpäťkrát. Tu je napríklad funkcia, v ktorej je x "zbalené" \(4\)-krát:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

Ale takéto vzorce sa v školskej praxi nenájde (študenti majú viac šťastia - môžu byť náročnejší☺).

"Rozbalenie" komplexnej funkcie

Znova sa pozrite na predchádzajúcu funkciu. Dokážete zistiť postupnosť „balenia“? Do čoho sa X napchalo ako prvé, do čoho potom a tak ďalej až do úplného konca. To znamená, ktorá funkcia je vnorená do ktorej? Vezmite si kus papiera a napíšte, čo si myslíte. Môžete to urobiť reťazou šípok, ako sme písali vyššie, alebo akýmkoľvek iným spôsobom.

Teraz je správna odpoveď: najprv sa x „zabalilo“ do \(4\)-tej mocniny, potom sa výsledok zabalil do sínusu, ten sa zase umiestnil do logaritmickej základne \(2\) a v koniec sa celá konštrukcia šupla do presilových pätiek.

To znamená, že je potrebné rozvinúť sekvenciu V OPAČNOM PORADÍ. A tu je návod, ako to urobiť jednoduchšie: stačí sa pozrieť na X - musíte z neho tancovať. Pozrime sa na pár príkladov.

Napríklad tu je funkcia: \(y=tg⁡(\log_2⁡x)\). Pozeráme sa na X – čo sa mu stane ako prvé? Prevzaté od neho. A potom? Zoberie sa tangens výsledku. A postupnosť bude rovnaká:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Ďalší príklad: \(y=\cos⁡((x^3))\). Analyzujeme - najprv bolo x kubické a potom bol z výsledku prevzatý kosínus. Takže postupnosť bude: \(x → x^3 → \cos⁡((x^3))\). Venujte pozornosť, funkcia sa zdá byť podobná úplne prvej (kde s obrázkami). Ale toto je úplne iná funkcia: tu v kocke x (to znamená \(\cos⁡((x x x)))\) a tam v kocke kosínus \(x\) (teda \(\ cos⁡ x·\cos⁡x·\cos⁡x\)). Tento rozdiel vyplýva z rôznych „baliacich“ sekvencií.

Posledný príklad (s dôležitými informáciami v ňom): \(y=\sin⁡((2x+5))\). Je jasné, že tu sme najprv robili aritmetické operácie s x, potom z výsledku zobrali sínus: \(x → 2x+5 → \sin⁡((2x+5))\). A to je dôležitý bod: napriek tomu, že aritmetické operácie nie sú samy osebe funkciami, tu fungujú aj ako spôsob „zbalenia“. Poďme sa ponoriť trochu hlbšie do tejto jemnosti.

Ako som povedal vyššie, v jednoduchých funkciách je x "zabalené" raz a v zložitých funkciách - dva alebo viac. Navyše, každá kombinácia jednoduchých funkcií (to znamená ich súčet, rozdiel, násobenie alebo delenie) je tiež jednoduchou funkciou. Napríklad \(x^7\) je jednoduchá funkcia, rovnako ako \(ctg x\). Všetky ich kombinácie sú teda jednoduché funkcie:

\(x^7+ ctg x\) - jednoduché,
\(x^7 ctg x\) je jednoduché,
\(\frac(x^7)(ctg x)\) je jednoduché a tak ďalej.

Ak sa však na takúto kombináciu použije ešte jedna funkcia, bude to už komplexná funkcia, pretože budú existovať dva „balíky“. Pozri diagram:



Dobre, poďme na to. Napíšte postupnosť „baliacich“ funkcií:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Odpovede sú opäť na konci článku.

Vnútorné a vonkajšie funkcie

Prečo musíme rozumieť vnoreniu funkcií? Čo nám to dáva? Ide o to, že bez takejto analýzy nebudeme schopní spoľahlivo nájsť deriváty funkcií, o ktorých sme hovorili vyššie.

A aby sme sa pohli ďalej, budeme potrebovať ešte dva pojmy: interné a externé funkcie. Je to veľmi jednoduchá vec, navyše sme ich už analyzovali vyššie: ak si spomenieme na našu analógiu na úplnom začiatku, potom vnútorná funkcia je „balík“ a vonkajšia je „škatuľka“. Tie. to, v čom je X „zabalené“ ako prvé, je vnútorná funkcia a to, do čoho je „zabalené“ interné, je už externé. Je pochopiteľné, prečo - je to vonku, to znamená vonkajšie.

Tu v tomto príklade: \(y=tg⁡(log_2⁡x)\), funkcia \(\log_2⁡x\) je interná a
- vonkajší.

A v tomto: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) je interné a
- vonkajší.

Vykonajte poslednú prax analýzy komplexných funkcií a nakoniec prejdime k bodu, pre ktorý sa všetko začalo - nájdeme deriváty komplexných funkcií:

Doplňte medzery v tabuľke:


Derivácia komplexnej funkcie

Bravo, ešte sme sa dostali k "šéfovi" tejto témy - vlastne k derivácii komplexnej funkcie a konkrétne k tej strašnej formulke z úvodu článku.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Tento vzorec znie takto:

Derivácia komplexnej funkcie sa rovná súčinu derivácie vonkajšej funkcie vzhľadom na konštantnú vnútornú funkciu a deriváciu vnútornej funkcie.

A okamžite sa pozrite na schému analýzy „slovami“, aby ste pochopili, k čomu sa má vzťahovať:

Dúfam, že výrazy „derivát“ a „produkt“ nespôsobujú ťažkosti. "Komplexná funkcia" - už sme demontovali. Háčik je v „deriváte vonkajšej funkcie vzhľadom na konštantu internú“. Čo to je?

Odpoveď: toto je obvyklá derivácia vonkajšej funkcie, pri ktorej sa mení iba vonkajšia funkcia, zatiaľ čo vnútorná zostáva rovnaká. Stále nejasné? Dobre, zoberme si príklad.

Povedzme, že máme funkciu \(y=\sin⁡(x^3)\). Je jasné, že vnútorná funkcia je tu \(x^3\) a vonkajšia
. Nájdime teraz deriváciu vonkajšieho vzhľadom na konštantu vnútorné.

Operácia hľadania derivátu sa nazýva diferenciácia.

V dôsledku riešenia problémov hľadania derivácií najjednoduchších (a nie veľmi jednoduchých) funkcií definovaním derivácie ako limity pomeru prírastku k prírastku argumentu sa objavila tabuľka derivácií a presne definované pravidlá diferenciácie. . Isaac Newton (1643-1727) a Gottfried Wilhelm Leibniz (1646-1716) ako prví pracovali v oblasti hľadania derivátov.

Preto v našej dobe, aby sme našli deriváciu akejkoľvek funkcie, nie je potrebné vypočítať vyššie uvedenú hranicu pomeru prírastku funkcie k prírastku argumentu, ale stačí použiť tabuľku derivátov a pravidlá diferenciácie. Na nájdenie derivácie je vhodný nasledujúci algoritmus.

Na nájdenie derivátu, potrebujete výraz pod znakom ťahu rozobrať jednoduché funkcie a určiť, aké akcie (produkt, súčet, podiel) tieto funkcie spolu súvisia. Ďalej nájdeme derivácie elementárnych funkcií v tabuľke derivácií a vzorce pre derivácie súčinu, súčtu a kvocientu - v pravidlách diferenciácie. Tabuľka derivácií a pravidlá diferenciácie sú uvedené po prvých dvoch príkladoch.

Príklad 1 Nájdite deriváciu funkcie

rozhodnutie. Z pravidiel diferenciácie zistíme, že derivácia súčtu funkcií je súčtom derivácií funkcií, t.j.

Z tabuľky derivácií zistíme, že derivácia „X“ sa rovná jednej a derivácia sínusu je kosínus. Tieto hodnoty dosadíme do súčtu derivácií a nájdeme deriváciu požadovanú podmienkou problému:

Príklad 2 Nájdite deriváciu funkcie

rozhodnutie. Diferencovať ako deriváciu súčtu, v ktorej druhý člen s konštantným faktorom, možno vyňať zo znamienka derivácie:

Ak stále existujú otázky o tom, odkiaľ niečo pochádza, spravidla sa vyjasnia po prečítaní tabuľky derivátov a najjednoduchších pravidiel diferenciácie. Práve k nim ideme.

Tabuľka derivácií jednoduchých funkcií

1. Derivácia konštanty (čísla). Akékoľvek číslo (1, 2, 5, 200...), ktoré je vo výraze funkcie. Vždy nula. Toto je veľmi dôležité si zapamätať, pretože sa to vyžaduje veľmi často
2. Derivát nezávisle premennej. Najčastejšie „x“. Vždy sa rovná jednej. Toto je tiež dôležité mať na pamäti
3. Derivácia stupňa. Pri riešení problémov musíte previesť iné ako odmocniny na mocninu.
4. Derivácia premennej na mocninu -1
5. Derivácia odmocniny
6. Sínusová derivácia
7. Kosínový derivát
8. Tangentová derivácia
9. Derivácia kotangens
10. Derivácia arksínusu
11. Derivácia oblúkového kosínusu
12. Derivácia arkustangens
13. Derivácia inverznej tangenty
14. Derivácia prirodzeného logaritmu
15. Derivácia logaritmickej funkcie
16. Derivácia exponentu
17. Derivácia exponenciálnej funkcie

Pravidlá diferenciácie

1. Derivát súčtu alebo rozdielu
2. Derivát produktu
2a. Derivát výrazu vynásobený konštantným faktorom
3. Derivácia kvocientu
4. Derivácia komplexnej funkcie

Pravidlo 1Ak funkcie

sú v určitom bode diferencovateľné, potom v tom istom bode funkcie

a

tie. derivácia algebraického súčtu funkcií sa rovná algebraickému súčtu derivácií týchto funkcií.

Dôsledok. Ak sa dve diferencovateľné funkcie líšia konštantou, potom ich derivácie sú, t.j.

Pravidlo 2Ak funkcie

sú v určitom bode diferencovateľné, potom je ich produkt v rovnakom bode tiež diferencovateľný

a

tie. derivácia súčinu dvoch funkcií sa rovná súčtu súčinov každej z týchto funkcií a derivácie druhej.

Dôsledok 1. Konštantný faktor možno vyňať zo znamienka derivácie:

Dôsledok 2. Derivácia súčinu niekoľkých diferencovateľných funkcií sa rovná súčtu súčinov derivácie každého z faktorov a všetkých ostatných.

Napríklad pre tri multiplikátory:

Pravidlo 3Ak funkcie

v určitom bode rozlíšiteľné a , potom je v tomto bode ich kvocient tiež diferencovateľný.u/v a

tie. derivácia kvocientu dvoch funkcií sa rovná zlomku, ktorého čitateľ je rozdielom medzi súčinmi menovateľa a derivácie čitateľa a čitateľa a derivácie menovateľa, a menovateľ je druhá mocnina predchádzajúceho čitateľa .

Kde hľadať na iných stránkach

Pri hľadaní derivácie súčinu a kvocientu v reálnych úlohách je vždy potrebné aplikovať viacero pravidiel diferenciácie naraz, preto je v článku viac príkladov na tieto derivácie."Derivácia produktu a kvocient".

Komentujte. Konštantu (čiže číslo) by ste si nemali zamieňať za člen v súčte a za konštantný faktor! V prípade člena sa jeho derivácia rovná nule a v prípade konštantného faktora je vyňatá zo znamienka derivácií. Ide o typickú chybu, ktorá sa vyskytuje v počiatočnom štádiu štúdia derivátov, ale keďže priemerný študent rieši niekoľko jedno-dvojzložkových príkladov, táto chyba sa už nerobí.

A ak pri rozlišovaní produktu alebo kvocientu máte termín u"v, kde u- číslo, napríklad 2 alebo 5, to znamená konštanta, potom sa derivácia tohto čísla bude rovnať nule, a preto sa celý člen bude rovnať nule (takýto prípad je analyzovaný v príklade 10) .

Ďalšou častou chybou je mechanické riešenie derivácie komplexnej funkcie ako derivácie jednoduchej funkcie. Takže derivácia komplexnej funkcie venovaný samostatnému článku. Najprv sa však naučíme nájsť derivácie jednoduchých funkcií.

Po ceste sa nezaobídete bez transformácií výrazov. Ak to chcete urobiť, možno budete musieť otvoriť príručky v novom systéme Windows Akcie so silami a koreňmi a Akcie so zlomkami .

Ak hľadáte riešenia na derivácie s mocninou a odmocninou, teda keď funkcia vyzerá , potom postupujte podľa lekcie "Derivácia súčtu zlomkov s mocninami a odmocninami".

Ak máte úlohu napr , potom ste na lekcii "Derivácie jednoduchých goniometrických funkcií".

Príklady krok za krokom - ako nájsť derivát

Príklad 3 Nájdite deriváciu funkcie

rozhodnutie. Určujeme časti výrazu funkcie: celý výraz predstavuje súčin a jeho faktory sú súčty, v druhom z nich jeden z členov obsahuje konštantný faktor. Aplikujeme pravidlo diferenciácie produktu: derivácia produktu dvoch funkcií sa rovná súčtu produktov každej z týchto funkcií a derivácie druhej:

Ďalej aplikujeme pravidlo diferenciácie súčtu: derivácia algebraického súčtu funkcií sa rovná algebraickému súčtu derivácií týchto funkcií. V našom prípade v každom súčte druhý člen so znamienkom mínus. V každom súčte vidíme ako nezávislú premennú, ktorej derivácia sa rovná jednej, tak aj konštantu (číslo), ktorej derivácia sa rovná nule. Takže "x" sa zmení na jeden a mínus 5 - na nulu. V druhom výraze sa "x" vynásobí 2, takže dva vynásobíme rovnakou jednotkou ako derivácia "x". Získame nasledujúce hodnoty derivátov:

Nájdené derivácie dosadíme do súčtu súčinov a získame deriváciu celej funkcie, ktorú vyžaduje podmienka úlohy:

A môžete skontrolovať riešenie problému na derivácii na .

Príklad 4 Nájdite deriváciu funkcie

rozhodnutie. Musíme nájsť deriváciu kvocientu. Aplikujeme vzorec na derivovanie kvocientu: derivácia kvocientu dvoch funkcií sa rovná zlomku, ktorého čitateľ je rozdielom medzi súčinmi menovateľa a derivácie čitateľa a čitateľa a derivácie menovateľa a menovateľ je druhá mocnina bývalého čitateľa. Dostaneme:

Deriváciu faktorov v čitateli sme už našli v príklade 2. Nezabudnime tiež, že súčin, ktorý je druhým faktorom v čitateli, sa v aktuálnom príklade berie so znamienkom mínus:

Ak hľadáte riešenia na také úlohy, v ktorých potrebujete nájsť deriváciu funkcie, kde je súvislá kopa koreňov a stupňov, ako napr. potom vitaj v triede "Derivácia súčtu zlomkov s mocninami a odmocninami" .

Ak sa potrebujete dozvedieť viac o deriváciách sínusov, kosínusov, dotyčníc a iných goniometrických funkcií, teda keď funkcia vyzerá , potom máte lekciu "Derivácie jednoduchých goniometrických funkcií" .

Príklad 5 Nájdite deriváciu funkcie

rozhodnutie. V tejto funkcii vidíme súčin, ktorého jedným z faktorov je druhá odmocnina nezávisle premennej, s ktorej deriváciou sme sa oboznámili v tabuľke derivácií. Podľa pravidla diferenciácie produktu a tabuľkovej hodnoty derivácie druhej odmocniny dostaneme:

Riešenie problému s odvodením si môžete skontrolovať na derivačná kalkulačka online .

Príklad 6 Nájdite deriváciu funkcie

rozhodnutie. V tejto funkcii vidíme kvocient, ktorého dividenda je druhá odmocnina nezávislej premennej. Podľa pravidla diferenciácie kvocientu, ktoré sme zopakovali a aplikovali v príklade 4 a tabuľkovej hodnoty derivácie odmocniny, dostaneme:

Ak sa chcete zbaviť zlomku v čitateľovi, vynásobte čitateľa a menovateľa číslom .