Диссоциация воды. Водородный показатель

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):

H 2 O ↔ H + + OH -

Примерно на 556 000 000 не диссоциированных молекул воды диссоциирует только 1 молекула, однако это 60 000 000 000 диссоциированных молекул в 1мм 3 . Диссоциация обратима, то есть ионы H + и OH - могут снова образовать молекулу воды. В итоге наступает динамическое равновесие при котором количество распавшихся молекул равно количеству образовавшихся из H + и OH - ионов. Другими словами скорости обоих процессов будут равны. Для нашего случая, уравнение скорости химической реакции можно написать так:

υ 1 = κ 1 (для диссоциации воды)

υ 2 = κ 2 (для обратного процесса)

где υ - скорость реакции; κ - константа скорости реакции (зависящая от природы реагирующих веществ и температуры); , и - концентрации (моль/л).

В состоянии равновесия υ 1 = υ 2 , следовательно:

κ 1 = κ 2

Проведем нехитрые математические действия и получим:

κ 1 /κ 2 = /

κ 1 /κ 2 = K

K - константа равновесия, а в нашем случаи константа диссоциации, которая зависит от температуры и природы веществ, и не зависящая от концентраций (также как κ 1 и κ 2). K для воды 1,8 10 -16 при 25 °C (справочная величина).

Вследствие очень малого количества продиссоциированных молекул концентрацию можно принять равной общей концентрации воды, а общую концентрацию воды в разбавленных растворах как величину постоянную: =1000(г/л)/18(г/моль)=55,6 моль/л.

Заменяя κ 1 /κ 2 на K и используя величину , определяем чему равно произведение концентраций и , которое называется - ионное произведение воды :

K = /55,6 моль/л
1,8 10 -16 55,6 моль/л =
10 -14 =

Так как, при определенной температуре, величины используемые в расчете ионного произведения воды (K , ) постоянны, значение ионного произведения воды так же постоянно. А поскольку при диссоциации молекулы воды образуется одинаковое количество ионов и , получается что для чистой воды концентрации и будут равны 10 -7 моль/л . Из постоянства ионного произведения воды следует, что если количество ионов H + становится больше, то количество ионов HO - становится меньше. Например, если к чистой воде добавить сильную кислоту HCl, она как сильный электролит вся продиссоциирует на H + и Cl - , в результате концентрация ионов H + резко увеличится, и это приведет к увеличению скорости процесса противоположного диссоциации, так как она зависит от концентраций ионов H + и OH - :

υ 2 = κ 2

В ходе ускорившегося процесса противоположного диссоциации, концентрация ионов HO - уменьшится до величины соответствующей новому равновесию, при котором их будет так мало, что скорости диссоциации воды и обратного процесса снова будут равны. Если концентрация получившегося раствора HCl равна 0,1моль/л, равновесная концентрация будет равна:

= 10 -14 /0,1 = 10 -13 моль/л

При добавлении сильного основания NaOH сдвиг будет в сторону уменьшения концентрации H + .

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):

H 2 O ↔ H + + OH -

Примерно на 556 000 000 не диссоциированных молекул воды диссоциирует только 1 молекула, однако это 60 000 000 000 диссоциированных молекул в 1мм 3 . Диссоциация обратима, то есть ионы H + и OH - могут снова образовать молекулу воды. В итоге наступает динамическое равновесие при котором количество распавшихся молекул равно количеству образовавшихся из H + и OH - ионов. Другими словами скорости обоих процессов будут равны. Для нашего случая, уравнение скорости химической реакции можно написать так:

υ 1 = κ 1 (для диссоциации воды)

υ 2 = κ 2 (для обратного процесса)

где υ - скорость реакции; κ - константа скорости реакции (зависящая от природы реагирующих веществ и температуры); , и - концентрации (моль/л).

В состоянии равновесия υ 1 = υ 2 , следовательно:

κ 1 = κ 2

Проведем нехитрые математические действия и получим:

κ 1 /κ 2 = /

κ 1 /κ 2 = K

K - константа равновесия, а в нашем случаи константа диссоциации, которая зависит от температуры и природы веществ, и не зависящая от концентраций (также как κ 1 и κ 2). K для воды 1,8 10 -16 при 25 °C (справочная величина).

Вследствие очень малого количества продиссоциированных молекул концентрацию можно принять равной общей концентрации воды, а общую концентрацию воды в разбавленных растворах как величину постоянную:

=1000(г/л)/18(г/моль)=55,6 моль/л.

Заменяя κ 1 /κ 2 на K и используя величину , определяем чему равно произведение концентраций и , которое называется - ионное произведение воды :

K = /55,6 моль/л
1,8 10 -16 55,6 моль/л =
10 -14 =

Так как, при определенной температуре, величины используемые в расчете ионного произведения воды (K , ) постоянны, значение ионного произведения воды так же постоянно. А поскольку при диссоциации молекулы воды образуется одинаковое количество ионов и , получается что для чистой воды концентрации и будут равны 10 -7 моль/л . Из постоянства ионного произведения воды следует, что если количество ионов H + становится больше, то количество ионов HO - становится меньше. Например, если к чистой воде добавить сильную кислоту HCl, она как сильный электролит вся продиссоциирует на H + и Cl - , в результате концентрация ионов H + резко увеличится, и это приведет к увеличению скорости процесса противоположного диссоциации, так как она зависит от концентраций ионов H + и OH - :

υ 2 = κ 2

В ходе ускорившегося процесса противоположного диссоциации, концентрация ионов HO - уменьшится до величины соответствующей новому равновесию, при котором их будет так мало, что скорости диссоциации воды и обратного процесса снова будут равны. Если концентрация получившегося раствора HCl равна 0,1моль/л, равновесная концентрация будет равна:

= 10 -14 /0,1 = 10 -13 моль/л

При добавлении сильного основания NaOH сдвиг будет в сторону уменьшения концентрации H + .

Конец работы -

Эта тема принадлежит разделу:

Электронные облака орбиталей с разными значениями l имеют разную конфигурацию, а с одинаковыми l похожую

Современная квантово механическая теория гласит что атом любого элемента имеет сложную структуру положительная часть атома положительный заряд.. квантовая теория подразумевает что энергия электрона может принимать только.. так при l s орбиталь для электрона с любым значением главного квантового числа n электронное облако ограничено..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Строение атомов и принцип Паули
Принцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химичес

Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Сигма- и Пи- ковалентные связи
атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металл

Sp-гибридизация
Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома уг

Геометрическая форма и полярность молекул
Гибридизация Геометрическая форма Угол между связями sp Линейная 180° sp

Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов
Ионная связь - очень прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара

Химические свойства основных оксидов
1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания: Na2O + H2O → 2NaOH. 2. Взаимодействуют с кислотными оксидами, обра

Химические свойства кислотных оксидов
1. Взаимодействуют с водой, образуя кислоту: SO3 + H2O → H2SO4. Но не все кислотные оксиды непосредственно реагируют с водой (SiO

Химические свойства амфотерных оксидов
1. Взаимодействуют с кислотами, образуя соль и воду: ZnO + 2HCl → ZnCl2 + H2O. 2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате

Основания. Химические свойства оснований. Амфотерные состояния,реакции их взаимодействия с кислотами и щелочами
Основание - это химическое соединение, способное образовывать ковалентную связь с протоном (основание Брёнстеда

Характерные реакции
Амфотерные оксиды реагируют с сильными кислотами, образуя соли этих кислот. Такие реакции являются проявлением основных свойств амфотерных оксидов, например: ZnO + H2SO4

Кислоты. Бескислородные и кислородные кислоты. Свойства кислот (серная,соляная,азотная)
Кислоты – это сложные вещества, молекулы которых состоят из атомов водорода, способных замещаться, и кислотных остатков. Кислотный остаток имеет отрицательный заряд.

Серная кислота
Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная

Нитраты
Азотная кислота является сильной кислотой. Её соли - нитраты - получают действием HNO3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в во

Гомогенный катализ
Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии: H2О2 + I → H2О + IO

Гетерогенный катализ
При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела - катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практик

Влияние концентрации на скорость химической реакции. Закон действующих масс
Чтобы вещества прореагировали, необходимо, чтобы их молекулы столкнулись. Вероятность столкновения двух людей на оживленной улице гораздо выше, чем на пустынной. Так и с молекулами. Очевидно, что в

Влияние температуры на скорость химической реакции. Энергия активации
Влияние температуры на количество столкновений молекул может быть показано с помощью модели. В первом приближении влияние температуры на скорость реакций определяется правилом Вант-Гоффа (сформулир

Реакции без участия и с участием электронов. Ионно-обменные и окислительно-восстановительные реакции
Валентные электроны определяют поведение химического элемента в химических реакциях. Чем меньше валентных электронов имеет элемент, тем легче он отдаёт эти электроны (проявляет свойства восстановит

Изображение реакций ионного обмена
Реакцию обмена в растворе принято изображать тремя уравнениями: молекулярным, полным ионным и сокращённым ионным. В ионном уравнении слабые электролиты, газы и малорастворимые вещества изображают м

Правила написания реакций ионного обмена
При написании ионных уравнений следует обязательно руководствоваться таблицей растворимости кислот, оснований и солей в воде, то есть обязательно проверять растворимость реагентов и продуктов

Окисление
Окисление - процесс отдачи электронов, с увеличением степени окисления. При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Ат

Восстановление
Восстановле́нием называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается. При восстановлении атомы или ионы присоединяю

Окислительно-восстановительная пара
Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-во

Виды окислительно-восстановительных реакций
Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например: Н2S + Cl2 → S + 2HCl Внут

Окисление, восстановление
В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

Взаимодействие с простыми веществами
Взаимодействие с металлами: 2Na + Cl2 = 2NaCl, Fe + S = FeS, 6Li + N2 = 2Li3N, 2Ca + O2

Массовая доля
Массовая доля - отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах:

Моляльность (молярная весовая концентрация, моляльная концентрация)
Моляльность - количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,

Титр раствора
Основная статья: Титр раствора Титр раствора - масса растворённого вещества в 1 мл раствора.

Растворимость. Равновесие в гетерогенных системах. Произведение растворимости малорастворимых неорганических веществ
Раствори́мость - способность вещества образовывать с другими веществами однородные системы - растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или

Водные растворы электролитов. Сильные и слабые электролиты. Константа и степень диссоциации. Закон разбавления Оствальда
РАСТВОРЫ ЭЛЕКТРОЛИТОВ РАСТВОРЫ ЭЛЕКТРОЛИТОВ, содержат в заметных концентрациях ионы-катионы и анионы, образующиеся в результате электролитической диссоциации мол

PH воды
Для удобства, концентрации и выражают в виде водородного показателя pH и гидроксильного показателя pOH

Диссоциация сильных электролитов. Активность ионов в растворах. Коэффициент активности. Представление об ионной силе растворов
Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. Степень диссоциации таких электролитов близка к

Степень гидролиза
Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр);

Электродный потенциал. Возникновение скачка потенциала на межфазной границе. Водородный электрод. Стандартный водородный электрод
Электро́дный потенциа́л - разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электроли

Электрохимическая коррозия металлов в различных средах
Контактная биметаллическая коррозия является разновидностью электрохимической коррозии, вызванной контактом металлов, имеющих разные электродные потенциалы в электролите. При этом коррозия метала с

Химическое взаимодействие металлов с растворами обычных кислот и кислот окислителей
Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl. Ввиду невысокой его растворимости в воде, концентрация со

Разбавленная серная кислота
В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют: H2SO4

Концентрированная серная кислота
В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера

Процесс электролиза. Катодные и анодные процессы. Порядок разряда частиц на аноде и катоде в зависимости от значения их электродного потенциала
Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных

Катодные реакции
Последняя реакция протекает свыделением водорода. При элек

Математический вид
Законы Фарадея можно записать в виде следующей формулы: где:

Конфигурацией атомов и ионов
Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодич


Типы титрования
Различают прямое, обратное титрование и титрование заместителя. При прямом титровании к раствору определяемого вещества (аликвоте или навеске, титруемому веществу) д

Виды титриметрического анализа
Титриметрический анализ может быть основан на различных типах химических реакций: кислотно-основное титрование - реакции нейтрализации; окислительно-восстановительное титров

Эквивалентная молярная масса вещества
Молярная масса эквивалентов обычно обозначается как или

Число эквивалентности
Число эквивалентности z представляет собой небольшое положительное целое число, равное числу эквивалентов некоторого вещества, содержащихся в 1 моль этого вещества. Фактор эквивале

Особенности строения атома углерода. Неорганические соединения углерода (оксиды,карбонаты и гидрокарбонаты,карбиды) и их свойства
Углерод – основа органических, биоорганических соединений и многих полимеров. Большинство соединений углерода относятся к органическим веществам, но в этой работе мы уделим внимание, так н

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Книга:

<<< Назад
Вперед >>>

Чистая вода очень плохо проводит электрический ток, но все же обладает измеримой электрической проводимостью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы:

По величине электрической проводимости чистой воды можно вычислить концентрацию ионов водорода и гидроксид-ионов в воде. При 25°C она равна 10 -7 моль/л.

Напишем выражение для константы диссоциации воды:

Перепишем это уравнение следующим образом:

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул H 2 O в воде практически равна общей концентрации воды, т. е. 55,55 моль/л (1 л. содержит 1000 г. воды, т. е. 1000:18.02=55.55 моль). В разбавленных водных растворах концентрацию воды можно считать такой же. Поэтому, заменив в последнем уравнении произведение новой константой K H 2 O будем иметь:

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение концентрата ионов водорода и гидроксид-ионов есть величина постоянная, Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид-ионов. В чистой воде при 25°C ==1·10 -7 моль/л. Поэтому для указанной температуры:

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами. При 25°C, как уже сказано, в нейтральных растворах концентрация как ионов водорода, так и гидроксид-ионов равна 10 -7 моль/л. В кислых растворах больше концентрация ионов водорода, в щелочных - концентрация гидроксид-ионов. Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным.

Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода повысилась до 10 -3 моль/л, то концентрация гидроксид-ионов понизится так, что произведение останется равным 10 -14 . Следовательно, в этом растворе концентрация гидроксид-ионов будет:

10 -14 /10 -3 =10 -11 моль/л

Наоборот, если добавить к воде щелочи и тем повысить концентрацию гидроксид-ионов, например, до 10 -5 моль/л, то концентрация ионов водорода составит:

10 -14 /10 -5 =10 -9 моль/л

Эти примеры показывают, что если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щелочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через pH:

Например, если =10 -5 моль/л, то pH=5 ; если =10 -9 моль/л, то pH=9 и т. д. Отсюда ясно, что в нейтральном растворе (=10 -7 моль/л) pH=7. В кислых растворах pH<7 и тем меньше, чем кислее раствор. Наоборот, в щелочных растворах pH>7 и тем больше, чем больше щелочность раствора.

Для измерения pH существуют различные методы. Приближенно реакцию раствора можно определить с помощью специальных реактивов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространенные индикаторы - метиловый оранжевый, метиловый красный, фенолфталеин. В табл. 17 дана характеристика некоторых индикаторов.

Для многих процессов значение pH играет важную роль. Так, pH крови человека и животных имеет строго постоянное значение. Растения могут нормально произрастать лишь при значениях pH почвенного раствора, лежащих в определенном интервале, характерном для данного вида растения. Свойства природных вод, в частности их коррозионная активность, сильно зависят от их pH.

Таблица 17. Важнейшие индикаторы

<<< Назад
Вперед >>>

Чистая вода очень плохо проводит электрический ток, но все же обладает измеримой электрической проводимостью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы:

По величине электрической проводимости чистой воды можно вычислить концентрацию ионов водорода и гидроксид-ионов в воде. При она равна моль/л.

Напишем выражение для константы диссоциации воды:

Перепишем это уравнение следующим образом:

Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул в воде практически равно общей концентрации воды, т. е. 55,55 моль/л (1 л. содержит 1000 г. воды, т. е. моль). В разбавленных водных растворах концентрацию зоды можно считать такой же. Поэтому, заменив в последнем уравнении произведение новой константой будем иметь:

Полученное уравнение показывает, что для воды и разбавленных водных растворов при неизменной температуре произведение концентрата ионов водорода и гидроксид-ионов есть величина постоянная, Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид-ионов. В чистой воде при моль/л. Поэтому для указанной температуры:

Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами. При , как уже сказано, в нейтральных растворах концентрация как ионов водорода, так и гидроксид-ионов равна моль/л. В кислых растзорах больше концентрация ионов водорода, в щелочных - концентрация гидроксид-ионов. Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным.

Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода повысилась до моль/л, то концентрация гидроксид-ионов понизится так, что произведение останется равным . Следовательно, в этом растворе концентрация гидроксид-ионов будет:

Наоборот, если добавить к воде щелочи и тем повысить концентрацию гидроксид-ионов, например, до моль/л, то концентрация ионов водорода составит:

Эти примеры показывают, что если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щелочности раствора можно количественно охарактеризовать концентрацией ионов водорода:

Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через :

Например, если моль/л, то ; если моль/л, то и т. д. Отсюда ясно, что в нейтральном растворе ( моль/л) . В кислых растворах и тем меньше, чем кислее раствор. Наоборот, в щелочных растворах и тем больше, чем больше щелочность раствора.

Частным случаем диссоциации (процесса распада более крупных частиц вещества — молекул ионов или радикалов — на частицы меньшего размера) является электролитическая диссоциация, при которой нейтральные молекулы вещества, называемого электролитом, в растворе (в результате воздействия молекул полярного растворителя) распадаются на заряженные частицы: катионы и анионы. Этим объясняется способность проводить ток.

Принято делить все электролиты на две группы: слабые и сильные. Вода относится к слабым электролитам, диссоциация воды характеризуется небольшим количеством диссоциированных молекул, так как они достаточно стойкие и практически не распадаются на ионы. Чистая (без примесей) вода слабо проводит электрический ток. Это обусловлено химической природой самой молекулы, когда положительно поляризованные атомы водорода внедрены в электронную оболочку сравнительно небольшого атома кислорода, который поляризован отрицательно.

Сила и слабость электролитов характеризуется (обозначается α, часто эта величина выражается в % от 0 до 100 или в долях единицы от 0 до 1) — способностью распадаться на ионы, то есть отношением количества распавшихся частиц к числу частиц до распада. Такие вещества, как кислоты, соли и основания под действием полярных распадаются на ионы полностью. Диссоциация воды сопровождается распадом молекул Н2О на протон Н+ и гидроксильную группу ОН-. Если представить уравнение диссоциации электролита в виде: М=К++А- , тогда диссоциация воды может быть выражена уравнением: Н2О↔Н++ОН-, а уравнение, с помощью которого рассчитывается степень диссоциации воды, можно представить в двух видах (через концентрацию образовавшихся протонов или концентрацию образовавшихся гидроксильных групп): α=[Н+]/[Н2О] или α=[ОН-]/[Н2О]. Так как на величину α влияет не только химическая природа вещества, но и концентрация раствора или его температура, то принято говорить о кажущейся (мнимой) степени диссоциации.

Склонность молекул слабых электролитов, включая воду, распадаться на ионы в большей степени характеризуется константой диссоциации (частный случай константы равновесия), которую принято обозначать, как Кд. Для расчета этой величины применяется закон действующих масс, который устанавливает соотношение между массами полученных и исходных веществ. Электролитическая диссоциация воды — это распад исходных молекул воды на протоны водорода и гидроксильную группу, поэтому выражается уравнением: Кд = [Н+] . [ОН-]/[Н2О]. Эта величина для воды является постоянной и зависит только от температуры, при температуре, равной 25оС, Кд=1.86.10-16.

Зная молярную массу воды (18 грамм/моль), а также пренебрегая концентрацией диссоциированных молекул и принимая массу 1 дм3 воды за 1000 г, можно рассчитать концентрацию недиссоциированных молекул в 1 дм3 воды: [Н2О]=1000/18,0153=55,51 моль/дм3. Тогда из уравнения константы диссоциации можно найти произведение концентраций протонов и гидроксильных групп: [Н+].[ОН-]=1,86.10-16.55,51=1.10-14. При извлечении квадратного корня из полученной величины получают концентрацию протонов (ионов водорода), определяющую кислотность раствора и равную концентрации гидроксильных групп: [Н+]=[ОН-]=1.10-7.

Но в природе воды такой чистоты не существует из-за присутствия в ней растворенных газов или загрязнения воды другими веществами (фактически вода — это раствор различных электролитов), поэтому при 25оС концентрация протонов водорода или концентрация гидроксильных групп отличается от величины 1.10-7. То есть кислотность воды обусловлена протеканием не только такого процесса, как диссоциация воды. является отрицательным логарифмом концентрации водородных ионов (рН), он введен для оценки кислотности или щелочности воды и водных растворов, так как числами с отрицательными степенями пользоваться затруднительно. Для чистой воды рН=7, но так как в природе чистой воды нет, и диссоциация воды протекает наряду с распадом других растворенных электролитов, то водородный показатель может быть меньше или больше 7, то есть для воды, практически, рН≠7.