Paano makahanap ng mga halimbawa ng pag-unlad ng arithmetic. Paano makahanap ng pag-unlad ng aritmetika? Mga halimbawa ng pag-unlad ng aritmetika na may solusyon

Kapag nag-aaral ng algebra sa isang sekondaryang paaralan (grade 9), isa sa mga mahalagang paksa ay ang pag-aaral ng mga numerical sequence, na kinabibilangan ng mga progression - geometric at arithmetic. Sa artikulong ito, isasaalang-alang natin ang isang pag-unlad ng aritmetika at mga halimbawa na may mga solusyon.

Ano ang isang arithmetic progression?

Upang maunawaan ito, kinakailangang magbigay ng kahulugan ng pag-unlad na isinasaalang-alang, gayundin ang pagbibigay ng mga pangunahing pormula na higit pang gagamitin sa paglutas ng mga problema.

Arithmetic o isang set ng mga nakaayos na rational na numero, na ang bawat miyembro ay naiiba mula sa nauna sa pamamagitan ng ilang pare-parehong halaga. Ang halagang ito ay tinatawag na pagkakaiba. Iyon ay, alam mo ang sinumang miyembro ng isang nakaayos na serye ng mga numero at ang pagkakaiba, maaari mong ibalik ang buong pag-unlad ng aritmetika.

Kumuha tayo ng isang halimbawa. Ang susunod na sequence ng mga numero ay isang arithmetic progression: 4, 8, 12, 16, ..., dahil ang pagkakaiba sa kasong ito ay 4 (8 - 4 = 12 - 8 = 16 - 12). Ngunit ang hanay ng mga numero 3, 5, 8, 12, 17 ay hindi na maiuugnay sa itinuturing na uri ng pag-unlad, dahil ang pagkakaiba para dito ay hindi isang pare-parehong halaga (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Mahahalagang Formula

Ibinibigay na namin ngayon ang mga pangunahing formula na kakailanganin upang malutas ang mga problema gamit ang isang pag-unlad ng arithmetic. Hayaan ang isang n tukuyin ang ika-na miyembro ng sequence, kung saan ang n ay isang integer. Ang pagkakaiba ay tinutukoy ng letrang Latin na d. Kung gayon ang mga sumusunod na expression ay totoo:

  1. Upang matukoy ang halaga ng nth term, ang formula ay angkop: a n \u003d (n-1) * d + a 1.
  2. Upang matukoy ang kabuuan ng unang n termino: S n = (a n + a 1)*n/2.

Upang maunawaan ang anumang mga halimbawa ng isang pag-unlad ng aritmetika na may solusyon sa ika-9 na baitang, sapat na tandaan ang dalawang formula na ito, dahil ang anumang mga problema ng uri na pinag-uusapan ay binuo sa kanilang paggamit. Gayundin, huwag kalimutan na ang pagkakaiba sa pag-unlad ay tinutukoy ng formula: d = a n - a n-1 .

Halimbawa #1: Paghahanap ng Hindi Kilalang Miyembro

Nagbibigay kami ng isang simpleng halimbawa ng isang pag-unlad ng aritmetika at ang mga formula na dapat gamitin upang malutas.

Hayaang ibigay ang pagkakasunod-sunod na 10, 8, 6, 4, ..., kailangan na makahanap ng limang termino dito.

Ito ay sumusunod na mula sa mga kondisyon ng problema na ang unang 4 na termino ay kilala. Ang ikalima ay maaaring tukuyin sa dalawang paraan:

  1. Kalkulahin muna natin ang pagkakaiba. Mayroon kaming: d = 8 - 10 = -2. Katulad nito, ang isa ay maaaring tumagal ng anumang dalawang iba pang termino na nakatayo sa tabi ng isa't isa. Halimbawa, d = 4 - 6 = -2. Dahil alam na d \u003d a n - a n-1, pagkatapos ay d \u003d a 5 - a 4, mula sa kung saan kami makakakuha ng: a 5 \u003d a 4 + d. Pinapalitan namin ang mga kilalang halaga: a 5 = 4 + (-2) = 2.
  2. Ang pangalawang pamamaraan ay nangangailangan din ng kaalaman sa pagkakaiba ng pag-usad na pinag-uusapan, kaya kailangan mo munang matukoy ito, tulad ng ipinapakita sa itaas (d = -2). Alam na ang unang termino a 1 = 10, ginagamit namin ang formula para sa n bilang ng sequence. Mayroon kaming: a n \u003d (n - 1) * d + a 1 \u003d (n - 1) * (-2) + 10 \u003d 12 - 2 * n. Ang pagpapalit ng n = 5 sa huling expression, makukuha natin ang: a 5 = 12-2 * 5 = 2.

Tulad ng nakikita mo, ang parehong mga solusyon ay humahantong sa parehong resulta. Tandaan na sa halimbawang ito ang pagkakaiba d ng pag-unlad ay negatibo. Ang ganitong mga pagkakasunud-sunod ay tinatawag na bumababa dahil ang bawat sunud-sunod na termino ay mas mababa kaysa sa nauna.

Halimbawa #2: pagkakaiba sa pag-unlad

Ngayon pasimplehin natin nang kaunti ang gawain, magbigay ng isang halimbawa kung paano hanapin ang pagkakaiba ng isang pag-unlad ng aritmetika.

Ito ay kilala na sa ilang algebraic progression ang 1st term ay katumbas ng 6, at ang 7th term ay katumbas ng 18. Ito ay kinakailangan upang mahanap ang pagkakaiba at ibalik ang sequence na ito sa 7th term.

Gamitin natin ang formula upang matukoy ang hindi kilalang termino: a n = (n - 1) * d + a 1 . Pinapalitan namin ang kilalang data mula sa kundisyon dito, iyon ay, ang mga numero a 1 at 7, mayroon kami: 18 \u003d 6 + 6 * d. Mula sa expression na ito, madali mong makalkula ang pagkakaiba: d = (18 - 6) / 6 = 2. Kaya, ang unang bahagi ng problema ay nasagot.

Upang maibalik ang sequence sa ika-7 miyembro, dapat mong gamitin ang kahulugan ng isang algebraic progression, iyon ay, a 2 = a 1 + d, a 3 = a 2 + d, at iba pa. Bilang resulta, ibinabalik namin ang buong sequence: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 at 7 = 18.

Halimbawa #3: paggawa ng progreso

Lalo pa nating gawing kumplikado ang kalagayan ng problema. Ngayon ay kailangan mong sagutin ang tanong kung paano makahanap ng isang pag-unlad ng aritmetika. Maaari nating ibigay ang sumusunod na halimbawa: dalawang numero ang ibinigay, halimbawa, 4 at 5. Kinakailangang gumawa ng algebraic progression upang ang tatlo pang termino ay magkasya sa pagitan ng mga ito.

Bago simulan ang paglutas ng problemang ito, kinakailangang maunawaan kung anong lugar ang sasakupin ng mga ibinigay na numero sa pag-unlad sa hinaharap. Dahil magkakaroon ng tatlong higit pang mga termino sa pagitan nila, pagkatapos ay isang 1 \u003d -4 at isang 5 \u003d 5. Kapag naitatag ito, nagpapatuloy kami sa isang gawain na katulad ng nauna. Muli, para sa nth term, ginagamit namin ang formula, nakukuha namin: isang 5 \u003d isang 1 + 4 * d. Mula sa: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25. Dito, ang pagkakaiba ay hindi isang integer na halaga, ngunit ito ay isang rational na numero, kaya ang mga formula para sa algebraic progression ay nananatiling pareho.

Ngayon, idagdag natin ang nakitang pagkakaiba sa isang 1 at ibalik ang mga nawawalang miyembro ng progression. Nakukuha namin ang: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, isang 5 \u003d 2.75 + 2.25 \u,0,0 na kasabay ng kalagayan ng problema.

Halimbawa #4: Ang unang miyembro ng progression

Patuloy kaming nagbibigay ng mga halimbawa ng pag-unlad ng aritmetika na may solusyon. Sa lahat ng nakaraang problema, ang unang bilang ng algebraic progression ay kilala. Ngayon isaalang-alang ang isang problema ng ibang uri: hayaan ang dalawang numero na ibigay, kung saan ang isang 15 = 50 at isang 43 = 37. Ito ay kinakailangan upang mahanap mula sa kung anong numero ang sequence na ito ay nagsisimula.

Ang mga formula na ginamit hanggang ngayon ay may kaalaman sa isang 1 at d. Walang nalalaman tungkol sa mga numerong ito sa kondisyon ng problema. Gayunpaman, isulat natin ang mga expression para sa bawat termino kung saan mayroon tayong impormasyon: a 15 = a 1 + 14 * d at a 43 = a 1 + 42 * d. Nakakuha kami ng dalawang equation kung saan mayroong 2 hindi kilalang dami (a 1 at d). Nangangahulugan ito na ang problema ay nabawasan sa paglutas ng isang sistema ng mga linear equation.

Ang tinukoy na sistema ay pinakamadaling lutasin kung nagpapahayag ka ng 1 sa bawat equation, at pagkatapos ay ihambing ang mga resultang expression. Unang equation: a 1 = a 15 - 14 * d = 50 - 14 * d; pangalawang equation: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Ang equating mga expression na ito, makakakuha tayo ng: 50 - 14 * d \u003d 37 - 42 * d, kung saan ang pagkakaiba d \u003d (37 - 50) / (42 - 14) \u003d - 0.464 (3 decimal na lugar lamang ang ibinigay).

Alam ang d, maaari mong gamitin ang alinman sa 2 expression sa itaas para sa isang 1 . Halimbawa, una: isang 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0.464) \u003d 56.496.

Kung may mga pagdududa tungkol sa resulta, maaari mong suriin ito, halimbawa, matukoy ang ika-43 na miyembro ng pag-unlad, na tinukoy sa kondisyon. Nakukuha namin ang: isang 43 \u003d isang 1 + 42 * d \u003d 56.496 + 42 * (- 0.464) \u003d 37.008. Ang isang maliit na error ay dahil sa ang katunayan na ang rounding sa thousandths ay ginamit sa mga kalkulasyon.

Halimbawa #5: Sum

Ngayon tingnan natin ang ilang mga halimbawa na may mga solusyon para sa kabuuan ng isang pag-unlad ng arithmetic.

Hayaang magbigay ng numerical progression ng sumusunod na form: 1, 2, 3, 4, ...,. Paano makalkula ang kabuuan ng 100 ng mga numerong ito?

Salamat sa pag-unlad ng teknolohiya ng computer, maaaring malutas ang problemang ito, iyon ay, sunud-sunod na idagdag ang lahat ng mga numero, na gagawin ng computer sa sandaling pinindot ng isang tao ang Enter key. Gayunpaman, ang problema ay malulutas sa isip kung bibigyan mo ng pansin na ang ipinakita na serye ng mga numero ay isang algebraic progression, at ang pagkakaiba nito ay 1. Ang paglalapat ng formula para sa kabuuan, makukuha natin: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Nakakagulat na tandaan na ang problemang ito ay tinatawag na "Gaussian", dahil sa simula ng ika-18 siglo ang sikat na Aleman, na nasa edad na 10 taong gulang pa lamang, ay nagawang lutasin ito sa kanyang isip sa loob ng ilang segundo. Hindi alam ng batang lalaki ang formula para sa kabuuan ng isang algebraic progression, ngunit napansin niya na kung magdadagdag ka ng mga pares ng mga numero na matatagpuan sa mga gilid ng sequence, palagi kang makakakuha ng parehong resulta, iyon ay, 1 + 100 = 2 + 99 = 3 + 98 = ..., at dahil ang mga kabuuan na ito ay magiging eksaktong 50 (100/2), kung gayon upang makuha ang tamang sagot, sapat na upang i-multiply ang 50 sa 101.

Halimbawa #6: kabuuan ng mga termino mula n hanggang m

Ang isa pang tipikal na halimbawa ng kabuuan ng isang pag-unlad ng aritmetika ay ang mga sumusunod: binigyan ng isang serye ng mga numero: 3, 7, 11, 15, ..., kailangan mong hanapin kung ano ang magiging kabuuan ng mga termino nito mula 8 hanggang 14.

Ang problema ay nalutas sa dalawang paraan. Ang una sa mga ito ay nagsasangkot ng paghahanap ng mga hindi kilalang termino mula 8 hanggang 14, at pagkatapos ay pagbubuod ng mga ito nang sunud-sunod. Dahil kakaunti ang mga termino, ang pamamaraang ito ay hindi sapat na matrabaho. Gayunpaman, iminungkahi na lutasin ang problemang ito sa pamamagitan ng pangalawang paraan, na mas pangkalahatan.

Ang ideya ay upang makakuha ng formula para sa kabuuan ng isang algebraic progression sa pagitan ng mga terminong m at n, kung saan ang n > m ay mga integer. Para sa parehong mga kaso, sumulat kami ng dalawang expression para sa kabuuan:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Dahil n > m, halatang kasama sa 2 sum ang una. Ang huling konklusyon ay nangangahulugan na kung kukunin natin ang pagkakaiba sa pagitan ng mga kabuuan na ito, at idagdag ang terminong a m dito (sa kaso ng pagkuha ng pagkakaiba, ito ay ibabawas mula sa kabuuan S n), pagkatapos ay makukuha natin ang kinakailangang sagot sa problema. Mayroon kaming: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). Kinakailangang palitan ang mga formula para sa a n at a m sa expression na ito. Pagkatapos ay makukuha natin ang: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Ang resultang formula ay medyo mahirap, gayunpaman, ang kabuuan ng S mn ay nakasalalay lamang sa n, m, a 1 at d. Sa aming kaso, a 1 = 3, d = 4, n = 14, m = 8. Ang pagpapalit sa mga numerong ito, makakakuha tayo ng: S mn = 301.

Tulad ng makikita mula sa mga solusyon sa itaas, ang lahat ng mga problema ay batay sa kaalaman ng expression para sa ika-n na termino at ang formula para sa kabuuan ng hanay ng mga unang termino. Bago mo simulan ang paglutas ng alinman sa mga problemang ito, inirerekomenda na maingat mong basahin ang kondisyon, malinaw na maunawaan kung ano ang gusto mong hanapin, at pagkatapos ay magpatuloy sa solusyon.

Ang isa pang tip ay upang magsikap para sa pagiging simple, iyon ay, kung masasagot mo ang tanong nang hindi gumagamit ng kumplikadong mga kalkulasyon sa matematika, kailangan mong gawin iyon, dahil sa kasong ito ang posibilidad na magkamali ay mas mababa. Halimbawa, sa halimbawa ng isang pag-unlad ng aritmetika na may solusyon No. 6, maaaring huminto ang isa sa formula S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, at hatiin ang pangkalahatang gawain sa magkakahiwalay na mga subtask (sa kasong ito, hanapin muna ang mga terminong a n at a m).

Kung may mga pagdududa tungkol sa resulta, inirerekumenda na suriin ito, tulad ng ginawa sa ilan sa mga halimbawang ibinigay. Paano makahanap ng pag-unlad ng aritmetika, nalaman. Kapag naisip mo na, hindi na mahirap.

Unang antas

Arithmetic progression. Detalyadong teorya na may mga halimbawa (2019)

Numeric na pagkakasunud-sunod

Kaya't umupo tayo at magsimulang magsulat ng ilang mga numero. Halimbawa:
Maaari kang magsulat ng anumang mga numero, at maaaring mayroong kasing dami hangga't gusto mo (sa aming kaso, sila). Gaano man karaming numero ang ating isusulat, palagi nating masasabi kung alin sa mga ito ang una, alin ang pangalawa, at iba pa hanggang sa huli, ibig sabihin, maaari nating bilangin ang mga ito. Ito ay isang halimbawa ng pagkakasunod-sunod ng numero:

Numeric na pagkakasunud-sunod
Halimbawa, para sa aming sequence:

Ang nakatalagang numero ay partikular sa isang sequence number lamang. Sa madaling salita, walang tatlong segundong numero sa sequence. Ang pangalawang numero (tulad ng -th na numero) ay palaging pareho.
Ang numerong may numero ay tinatawag na -th na miyembro ng sequence.

Karaniwan naming tinatawag ang buong sequence ng ilang titik (halimbawa,), at bawat miyembro ng sequence na ito - ang parehong titik na may index na katumbas ng bilang ng miyembrong ito: .

Sa kaso natin:

Sabihin nating mayroon tayong numerical sequence kung saan ang pagkakaiba sa pagitan ng mga katabing numero ay pareho at pantay.
Halimbawa:

atbp.
Ang nasabing numerical sequence ay tinatawag na arithmetic progression.
Ang terminong "pag-unlad" ay ipinakilala ng Romanong may-akda na si Boethius noong ika-6 na siglo at naunawaan sa mas malawak na kahulugan bilang isang walang katapusang numerical sequence. Ang pangalan na "aritmetika" ay inilipat mula sa teorya ng tuluy-tuloy na mga proporsyon, kung saan ang mga sinaunang Griyego ay nakikibahagi sa.

Ito ay isang numerical sequence, ang bawat miyembro nito ay katumbas ng nauna, idinagdag na may parehong numero. Ang numerong ito ay tinatawag na pagkakaiba ng isang pag-unlad ng aritmetika at tinutukoy.

Subukang tukuyin kung aling mga pagkakasunud-sunod ng numero ang isang pag-unlad ng aritmetika at alin ang hindi:

a)
b)
c)
d)

Nakuha ko? Ihambing ang aming mga sagot:
Ay isang pag-unlad ng aritmetika - b, c.
Ay hindi pag-unlad ng aritmetika - a, d.

Bumalik tayo sa ibinigay na pag-unlad () at subukang hanapin ang halaga ng ika-miyembro nito. Umiiral dalawa paraan upang mahanap ito.

1. Pamamaraan

Maaari tayong magdagdag sa dating value ng progression number hanggang sa maabot natin ang -th term ng progression. Mabuti na wala tayong gaanong ibuod - tatlong value lang:

Kaya, ang -ika miyembro ng inilarawang pag-unlad ng aritmetika ay katumbas ng.

2. Pamamaraan

Paano kung kailangan nating hanapin ang halaga ng ika-taon ng pag-unlad? Ang pagsusuma ay aabutin kami ng higit sa isang oras, at hindi isang katotohanan na hindi kami magkakamali sa pagdaragdag ng mga numero.
Siyempre, ang mga mathematician ay gumawa ng isang paraan kung saan hindi mo kailangang idagdag ang pagkakaiba ng isang pag-unlad ng aritmetika sa nakaraang halaga. Tingnang mabuti ang iginuhit na larawan ... Tiyak na napansin mo na ang isang tiyak na pattern, katulad:

Halimbawa, tingnan natin kung ano ang bumubuo sa halaga ng -th miyembro ng arithmetic progression na ito:


Sa ibang salita:

Subukang independyenteng mahanap sa ganitong paraan ang halaga ng isang miyembro ng pag-unlad ng arithmetic na ito.

Kinakalkula? Ihambing ang iyong mga entry sa sagot:

Bigyang-pansin na nakuha mo ang eksaktong parehong numero tulad ng sa nakaraang pamamaraan, nang sunud-sunod naming idinagdag ang mga miyembro ng isang pag-unlad ng aritmetika sa nakaraang halaga.
Subukan nating "i-depersonalize" ang formula na ito - dinadala natin ito sa isang pangkalahatang anyo at makuha ang:

Arithmetic progression equation.

Ang mga pag-unlad ng aritmetika ay tumataas o bumababa.

Tumataas- mga pag-unlad kung saan ang bawat kasunod na halaga ng mga termino ay mas malaki kaysa sa nauna.
Halimbawa:

Pababa- mga pag-unlad kung saan ang bawat kasunod na halaga ng mga termino ay mas mababa kaysa sa nauna.
Halimbawa:

Ang hinangong formula ay ginagamit sa pagkalkula ng mga termino sa parehong pagtaas at pagbaba ng mga termino ng isang pag-unlad ng arithmetic.
Tingnan natin ito sa pagsasanay.
Binigyan kami ng aritmetika na pag-unlad na binubuo ng mga sumusunod na numero:


Simula noon:

Kaya, kami ay kumbinsido na ang formula ay gumagana kapwa sa pagpapababa at sa pagtaas ng pag-unlad ng aritmetika.
Subukang hanapin ang -th at -th na miyembro ng arithmetic progression na ito nang mag-isa.

Ihambing natin ang mga resulta:

Arithmetic progression property

Gawin nating kumplikado ang gawain - nakukuha natin ang ari-arian ng isang pag-unlad ng aritmetika.
Ipagpalagay na binibigyan tayo ng sumusunod na kondisyon:
- pag-unlad ng aritmetika, hanapin ang halaga.
Madali lang, sabi mo, at simulang magbilang ayon sa formula na alam mo na:

Hayaan, a, pagkatapos:

Ganap na tama. Ito ay lumiliko na una naming mahanap, pagkatapos ay idagdag ito sa unang numero at makuha ang aming hinahanap. Kung ang pag-unlad ay kinakatawan ng maliliit na halaga, kung gayon walang kumplikado tungkol dito, ngunit paano kung bibigyan tayo ng mga numero sa kondisyon? Sumang-ayon, may posibilidad na magkamali sa mga kalkulasyon.
Ngayon isipin, posible bang malutas ang problemang ito sa isang hakbang gamit ang anumang formula? Siyempre, oo, at susubukan naming ilabas ito ngayon.

Tukuyin natin ang nais na termino ng pag-unlad ng aritmetika bilang, alam natin ang pormula para sa paghahanap nito - ito ang parehong pormula na hinango natin sa simula:
, pagkatapos:

  • ang dating miyembro ng progression ay:
  • ang susunod na termino ng pag-unlad ay:

Isama natin ang nakaraan at susunod na mga miyembro ng progression:

Lumalabas na ang kabuuan ng nauna at kasunod na mga miyembro ng progression ay dalawang beses ang halaga ng miyembro ng progression na matatagpuan sa pagitan nila. Sa madaling salita, upang mahanap ang halaga ng isang miyembro ng pag-unlad na may kilalang dati at sunud-sunod na mga halaga, kinakailangang idagdag ang mga ito at hatiin sa.

Ayun, pareho kami ng number. Ayusin natin ang materyal. Kalkulahin ang halaga para sa pag-unlad sa iyong sarili, dahil ito ay hindi mahirap sa lahat.

Magaling! Alam mo halos lahat tungkol sa pag-unlad! Ito ay nananatiling alamin lamang ang isang pormula, na, ayon sa alamat, isa sa mga pinakadakilang mathematician sa lahat ng oras, ang "hari ng mga mathematician" - si Karl Gauss, madaling matukoy para sa kanyang sarili ...

Noong si Carl Gauss ay 9 na taong gulang, ang guro, na abala sa pagsuri sa gawain ng mga mag-aaral mula sa iba pang mga klase, ay nagtanong ng sumusunod na gawain sa aralin: "Kalkulahin ang kabuuan ng lahat ng natural na mga numero mula hanggang sa (ayon sa iba pang mga mapagkukunan hanggang sa) kasama. " Ano ang sorpresa ng guro nang ang isa sa kanyang mga mag-aaral (ito ay si Karl Gauss) pagkatapos ng isang minuto ay nagbigay ng tamang sagot sa gawain, habang ang karamihan sa mga kaklase ng daredevil pagkatapos ng mahabang kalkulasyon ay nakatanggap ng maling resulta ...

Napansin ng batang si Carl Gauss ang isang pattern na madali mong mapapansin.
Sabihin nating mayroon tayong arithmetic progression na binubuo ng -ti na mga miyembro: Kailangan nating hanapin ang kabuuan ng mga ibinigay na miyembro ng arithmetic progression. Siyempre, maaari nating manu-manong buod ang lahat ng mga halaga, ngunit paano kung kailangan nating hanapin ang kabuuan ng mga termino nito sa gawain, tulad ng hinahanap ni Gauss?

Ilarawan natin ang pag-unlad na ibinigay sa atin. Tingnang mabuti ang mga naka-highlight na numero at subukang magsagawa ng iba't ibang mga operasyong matematika sa kanila.


Sinubukan? Ano ang napansin mo? Tama! Ang kanilang mga kabuuan ay pantay


Ngayon sagutin mo, ilang pares ang magkakaroon sa progression na ibinigay sa atin? Siyempre, eksaktong kalahati ng lahat ng mga numero, iyon ay.
Batay sa katotohanan na ang kabuuan ng dalawang termino ng isang pag-unlad ng aritmetika ay pantay, at magkatulad na magkaparehong mga pares, nakuha namin na ang kabuuang kabuuan ay katumbas ng:
.
Kaya, ang formula para sa kabuuan ng mga unang termino ng anumang pag-unlad ng arithmetic ay magiging:

Sa ilang mga problema, hindi namin alam ang ika-katawagan, ngunit alam namin ang pagkakaiba ng pag-unlad. Subukang palitan sa sum formula, ang formula ng ika-miyembro.
Ano ang nakuha mo?

Magaling! Ngayon bumalik tayo sa problema na ibinigay kay Carl Gauss: kalkulahin para sa iyong sarili kung ano ang kabuuan ng mga numero na nagsisimula sa -th ay, at ang kabuuan ng mga numero na nagsisimula sa -th.

Magkano ang nakuha mo?
Napag-alaman ni Gauss na ang kabuuan ng mga termino ay pantay, at ang kabuuan ng mga termino. Ganyan ka ba nagdesisyon?

Sa katunayan, ang pormula para sa kabuuan ng mga miyembro ng isang pag-unlad ng aritmetika ay pinatunayan ng sinaunang siyentipikong Griyego na si Diophantus noong ika-3 siglo, at sa buong panahong ito, ginamit ng mga matalinong tao ang mga katangian ng isang pag-unlad ng aritmetika nang may lakas at pangunahing.
Halimbawa, isipin ang Sinaunang Ehipto at ang pinakamalaking lugar ng pagtatayo noong panahong iyon - ang pagtatayo ng isang pyramid ... Ang pigura ay nagpapakita ng isang bahagi nito.

Nasaan ang progression dito na sinasabi mo? Tumingin ng mabuti at maghanap ng pattern sa bilang ng mga bloke ng buhangin sa bawat hilera ng pyramid wall.


Bakit hindi isang arithmetic progression? Bilangin kung gaano karaming mga bloke ang kailangan upang makabuo ng isang pader kung ang mga bloke ng brick ay inilalagay sa base. Sana hindi ka magbilang sa pamamagitan ng paggalaw ng iyong daliri sa monitor, naaalala mo ba ang huling formula at lahat ng sinabi namin tungkol sa pag-unlad ng aritmetika?

Sa kasong ito, ang pag-unlad ay ganito ang hitsura:
Pagkakaiba sa pag-unlad ng aritmetika.
Ang bilang ng mga miyembro ng isang arithmetic progression.
Palitan natin ang aming data sa mga huling formula (binibilang namin ang bilang ng mga bloke sa 2 paraan).

Paraan 1.

Paraan 2.

At ngayon maaari mo ring kalkulahin sa monitor: ihambing ang mga halaga na nakuha sa bilang ng mga bloke na nasa aming pyramid. Pumayag ba ito? Magaling, pinagkadalubhasaan mo ang kabuuan ng mga tuntunin ng isang pag-unlad ng arithmetic.
Siyempre, hindi ka makakagawa ng isang pyramid mula sa mga bloke sa base, ngunit mula sa? Subukang kalkulahin kung gaano karaming mga sand brick ang kailangan upang makabuo ng pader na may ganitong kondisyon.
Inayos mo ba?
Ang tamang sagot ay mga bloke:

Pag-eehersisyo

Mga gawain:

  1. Si Masha ay nasa hugis para sa tag-araw. Araw-araw dinadagdagan niya ang bilang ng mga squats. Ilang beses mag-squat si Masha sa mga linggo kung nag-squats siya sa unang ehersisyo.
  2. Ano ang kabuuan ng lahat ng mga kakaibang numero na nakapaloob sa.
  3. Kapag nag-iimbak ng mga log, ang mga magtotroso ay nagsasalansan ng mga ito sa paraang ang bawat tuktok na layer ay naglalaman ng isang mas kaunting log kaysa sa nauna. Ilang troso ang nasa isang masonerya, kung ang base ng masonerya ay troso.

Mga sagot:

  1. Tukuyin natin ang mga parameter ng pag-unlad ng arithmetic. Sa kasong ito
    (linggo = araw).

    Sagot: Sa dalawang linggo, dapat maglupasay si Masha isang beses sa isang araw.

  2. Unang odd na numero, huling numero.
    Pagkakaiba sa pag-unlad ng aritmetika.
    Ang bilang ng mga kakaibang numero sa - kalahati, gayunpaman, suriin ang katotohanang ito gamit ang formula para sa paghahanap ng -ika miyembro ng isang pag-unlad ng arithmetic:

    Ang mga numero ay naglalaman ng mga kakaibang numero.
    Pinapalitan namin ang magagamit na data sa formula:

    Sagot: Ang kabuuan ng lahat ng mga kakaibang numero na nakapaloob sa ay katumbas ng.

  3. Alalahanin ang problema tungkol sa mga pyramids. Para sa aming kaso, a , dahil ang bawat tuktok na layer ay nababawasan ng isang log, mayroon lamang isang bungkos ng mga layer, iyon ay.
    Palitan ang data sa formula:

    Sagot: May mga troso sa pagmamason.

Summing up

  1. - isang numerical sequence kung saan ang pagkakaiba sa pagitan ng mga katabing numero ay pareho at pantay. Ito ay tumataas at bumababa.
  2. Paghahanap ng formula ika-miyembro ng isang arithmetic progression ay isinulat ng formula - , kung saan ang bilang ng mga numero sa progression.
  3. Pag-aari ng mga miyembro ng isang arithmetic progression- - kung saan - ang bilang ng mga numero sa progression.
  4. Ang kabuuan ng mga miyembro ng isang arithmetic progression ay matatagpuan sa dalawang paraan:

    , kung saan ang bilang ng mga halaga.

ARITMETIKONG PAG-UNLAD. GITNANG ANTAS

Numeric na pagkakasunud-sunod

Umupo tayo at magsimulang magsulat ng ilang mga numero. Halimbawa:

Maaari kang magsulat ng anumang mga numero, at maaaring mayroong kasing dami hangga't gusto mo. Ngunit palagi mong masasabi kung alin sa kanila ang una, alin ang pangalawa, at iba pa, iyon ay, maaari nating bilangin sila. Ito ay isang halimbawa ng pagkakasunod-sunod ng numero.

Numeric na pagkakasunud-sunod ay isang hanay ng mga numero, ang bawat isa ay maaaring magtalaga ng isang natatanging numero.

Sa madaling salita, ang bawat numero ay maaaring iugnay sa isang tiyak na natural na numero, at isa lamang. At hindi namin itatalaga ang numerong ito sa anumang iba pang numero mula sa set na ito.

Ang numerong may numero ay tinatawag na -th na miyembro ng sequence.

Karaniwan naming tinatawag ang buong sequence ng ilang titik (halimbawa,), at bawat miyembro ng sequence na ito - ang parehong titik na may index na katumbas ng bilang ng miyembrong ito: .

Ito ay lubos na maginhawa kung ang -th miyembro ng sequence ay maaaring ibigay sa pamamagitan ng ilang formula. Halimbawa, ang formula

nagtatakda ng pagkakasunud-sunod:

At ang formula ay ang sumusunod na pagkakasunud-sunod:

Halimbawa, ang isang pag-unlad ng aritmetika ay isang pagkakasunud-sunod (ang unang termino dito ay pantay, at ang pagkakaiba). O (, pagkakaiba).

pormula ng ika-apat na termino

Tinatawag namin ang isang paulit-ulit na pormula tulad ng isang pormula kung saan, upang malaman ang ika-apat na termino, kailangan mong malaman ang nauna o ilang mga nauna:

Upang mahanap, halimbawa, ang ika-kataga ng pag-unlad gamit ang gayong formula, kailangan nating kalkulahin ang nakaraang siyam. Halimbawa, hayaan. Pagkatapos:

Well, ngayon malinaw na kung ano ang formula?

Sa bawat linya, idinaragdag namin sa, pinarami ng ilang numero. Para saan? Napakasimple: ito ang bilang ng kasalukuyang miyembro na binawasan:

Mas komportable ngayon, tama ba? Sinusuri namin:

Magpasya para sa iyong sarili:

Sa isang pag-usad ng arithmetic, hanapin ang formula para sa ika-10 termino at hanapin ang ika-100 termino.

Desisyon:

Ang unang termino ay pantay. At ano ang pagkakaiba? At narito kung ano:

(pagkatapos ng lahat, ito ay tinatawag na pagkakaiba dahil ito ay katumbas ng pagkakaiba ng mga sunud-sunod na miyembro ng pag-unlad).

Kaya ang formula ay:

Pagkatapos ang ika-daang termino ay:

Ano ang kabuuan ng lahat ng natural na numero mula hanggang?

Ayon sa alamat, ang mahusay na matematiko na si Carl Gauss, bilang isang 9 na taong gulang na batang lalaki, ay kinakalkula ang halagang ito sa loob ng ilang minuto. Napansin niya na ang kabuuan ng una at huling numero ay pantay, ang kabuuan ng pangalawa at penultimate ay pareho, ang kabuuan ng ikatlo at ang ika-3 mula sa dulo ay pareho, at iba pa. Ilan ang ganoong pares? Tama, eksaktong kalahati ng bilang ng lahat ng numero, kumbaga. Kaya,

Ang pangkalahatang formula para sa kabuuan ng mga unang termino ng anumang pag-unlad ng arithmetic ay:

Halimbawa:
Hanapin ang kabuuan ng lahat ng dalawang-digit na multiple.

Desisyon:

Ang unang ganoong numero ay ito. Ang bawat susunod ay nakuha sa pamamagitan ng pagdaragdag ng isang numero sa nauna. Kaya, ang mga bilang ng interes sa amin ay bumubuo ng isang pag-unlad ng aritmetika na may unang termino at ang pagkakaiba.

Ang pormula para sa ika-taon para sa pag-unlad na ito ay:

Ilang termino ang nasa progress kung dapat silang lahat ay dalawang digit?

Napakadaling: .

Magiging pantay ang huling termino ng pag-unlad. Pagkatapos ang kabuuan:

Sagot: .

Ngayon magpasya para sa iyong sarili:

  1. Araw-araw ang atleta ay tumatakbo ng 1m higit pa kaysa sa nakaraang araw. Ilang kilometro ang kanyang tatakbo sa mga linggo kung tumakbo siya ng km m sa unang araw?
  2. Ang isang siklista ay sumasakay ng mas maraming milya bawat araw kaysa sa nauna. Sa unang araw ay naglakbay siya ng km. Ilang araw ang kailangan niyang magmaneho para maabot ang isang kilometro? Ilang kilometro ang lalakbayin niya sa huling araw ng paglalakbay?
  3. Ang presyo ng refrigerator sa tindahan ay binabawasan ng parehong halaga bawat taon. Tukuyin kung magkano ang presyo ng isang refrigerator na nabawasan bawat taon kung, ilagay para sa pagbebenta para sa rubles, anim na taon mamaya ito ay ibinebenta para sa rubles.

Mga sagot:

  1. Ang pinakamahalagang bagay dito ay kilalanin ang pag-unlad ng aritmetika at matukoy ang mga parameter nito. Sa kasong ito, (linggo = araw). Kailangan mong tukuyin ang kabuuan ng mga unang tuntunin ng pag-unlad na ito:
    .
    Sagot:
  2. Narito ito ay ibinigay:, ito ay kinakailangan upang mahanap.
    Malinaw, kailangan mong gumamit ng parehong sum formula tulad ng sa nakaraang problema:
    .
    Palitan ang mga halaga:

    Ang ugat ay halatang hindi magkasya, kaya ang sagot.
    Kalkulahin natin ang distansyang nilakbay sa huling araw gamit ang formula ng -th na miyembro:
    (km).
    Sagot:

  3. Ibinigay: . Hanapin: .
    Hindi ito nagiging mas madali:
    (kuskusin).
    Sagot:

ARITMETIKONG PAG-UNLAD. MAIKLING TUNGKOL SA PANGUNAHING

Ito ay isang numerical sequence kung saan ang pagkakaiba sa pagitan ng mga katabing numero ay pareho at pantay.

Ang pag-unlad ng aritmetika ay tumataas () at bumababa ().

Halimbawa:

Ang formula para sa paghahanap ng n-th na miyembro ng isang arithmetic progression

ay nakasulat bilang isang formula, kung saan ang bilang ng mga numero sa pag-unlad.

Pag-aari ng mga miyembro ng isang arithmetic progression

Pinapadali nito ang paghahanap ng miyembro ng progression kung kilala ang mga kalapit na miyembro nito - nasaan ang bilang ng mga numero sa progression.

Ang kabuuan ng mga miyembro ng isang arithmetic progression

Mayroong dalawang paraan upang mahanap ang kabuuan:

Nasaan ang bilang ng mga halaga.

Nasaan ang bilang ng mga halaga.


Halimbawa, ang sequence \(2\); \(5\); \(walo\); \(labing-isa\); Ang \(14\)… ay isang pag-unlad ng aritmetika, dahil ang bawat susunod na elemento ay naiiba sa nauna nang tatlo (maaaring makuha mula sa nauna sa pamamagitan ng pagdaragdag ng tatlo):

Sa pag-unlad na ito, ang pagkakaiba \(d\) ay positibo (katumbas ng \(3\)), at samakatuwid ang bawat susunod na termino ay mas malaki kaysa sa nauna. Ang ganitong mga pag-unlad ay tinatawag dumarami.

Gayunpaman, ang \(d\) ay maaari ding negatibong numero. Halimbawa, sa arithmetic progression \(16\); \(sampu\); \(4\); \(-2\); \(-8\)… ang pagkakaiba sa pag-unlad \(d\) ay katumbas ng minus anim.

At sa kasong ito, ang bawat susunod na elemento ay magiging mas mababa kaysa sa nauna. Ang mga pag-unlad na ito ay tinatawag bumababa.

Arithmetic progression notation

Ang pag-unlad ay tinutukoy ng isang maliit na letrang Latin.

Ang mga numero na bumubuo ng isang pag-unlad ay tinatawag na ito mga miyembro(o mga elemento).

Ang mga ito ay tinutukoy ng parehong titik bilang ang pag-unlad ng arithmetic, ngunit may isang numerical index na katumbas ng numero ng elemento sa pagkakasunud-sunod.

Halimbawa, ang arithmetic progression \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) ay binubuo ng mga elementong \(a_1=2\); \(a_2=5\); \(a_3=8\) at iba pa.

Sa madaling salita, para sa pag-unlad \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Paglutas ng mga problema sa isang pag-unlad ng aritmetika

Sa prinsipyo, ang impormasyon sa itaas ay sapat na upang malutas ang halos anumang problema sa isang pag-unlad ng arithmetic (kabilang ang mga inaalok sa OGE).

Halimbawa (OGE). Ang pag-unlad ng arithmetic ay ibinibigay ng mga kundisyon \(b_1=7; d=4\). Hanapin ang \(b_5\).
Desisyon:

Sagot: \(b_5=23\)

Halimbawa (OGE). Ang unang tatlong termino ng isang pag-usad ng aritmetika ay ibinigay: \(62; 49; 36…\) Hanapin ang halaga ng unang negatibong termino ng pag-usad na ito..
Desisyon:

Ibinigay sa amin ang mga unang elemento ng pagkakasunud-sunod at alam na ito ay isang pag-unlad ng aritmetika. Iyon ay, ang bawat elemento ay naiiba mula sa kalapit na isa sa pamamagitan ng parehong numero. Alamin kung alin sa pamamagitan ng pagbabawas ng nauna sa susunod na elemento: \(d=49-62=-13\).

Ngayon ay maaari nating ibalik ang ating pag-unlad sa nais na (unang negatibo) na elemento.

handa na. Maaari kang sumulat ng sagot.

Sagot: \(-3\)

Halimbawa (OGE). Ilang sunud-sunod na elemento ng isang arithmetic progression ang ibinibigay: \(...5; x; 10; 12.5...\) Hanapin ang halaga ng elemento na tinutukoy ng titik \(x\).
Desisyon:


Upang mahanap ang \(x\), kailangan nating malaman kung gaano kalaki ang pagkakaiba ng susunod na elemento sa nauna, sa madaling salita, ang pagkakaiba sa pag-unlad. Hanapin natin ito mula sa dalawang kilalang kalapit na elemento: \(d=12.5-10=2.5\).

At ngayon nakita namin ang aming hinahanap nang walang anumang mga problema: \(x=5+2.5=7.5\).


handa na. Maaari kang sumulat ng sagot.

Sagot: \(7,5\).

Halimbawa (OGE). Ang arithmetic progression ay ibinibigay ng mga sumusunod na kondisyon: \(a_1=-11\); \(a_(n+1)=a_n+5\) Hanapin ang kabuuan ng unang anim na termino ng progression na ito.
Desisyon:

Kailangan nating hanapin ang kabuuan ng unang anim na termino ng pag-unlad. Ngunit hindi natin alam ang kanilang mga kahulugan, binibigyan lamang tayo ng unang elemento. Samakatuwid, una naming kinakalkula ang mga halaga, gamit ang ibinigay sa amin:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
At nang makalkula ang anim na elemento na kailangan namin, nakita namin ang kanilang kabuuan.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Nahanap na ang hiniling na halaga.

Sagot: \(S_6=9\).

Halimbawa (OGE). Sa arithmetic progression \(a_(12)=23\); \(a_(16)=51\). Hanapin ang pagkakaiba ng pag-unlad na ito.
Desisyon:

Sagot: \(d=7\).

Mahahalagang Arithmetic Progression Formula

Tulad ng nakikita mo, maraming mga problema sa pag-unlad ng aritmetika ay maaaring malutas sa pamamagitan lamang ng pag-unawa sa pangunahing bagay - na ang isang pag-unlad ng aritmetika ay isang hanay ng mga numero, at ang bawat susunod na elemento sa kadena na ito ay nakuha sa pamamagitan ng pagdaragdag ng parehong numero sa nauna (ang pagkakaiba ng pag-unlad).

Gayunpaman, kung minsan may mga sitwasyon kung kailan napakahirap na malutas ang "sa noo". Halimbawa, isipin na sa pinakaunang halimbawa, kailangan nating hanapin hindi ang ikalimang elemento \(b_5\), ngunit ang tatlong daan at walumpu't anim na \(b_(386)\). Ano ito, namin \ (385 \) beses na magdagdag ng apat? O isipin na sa penultimate na halimbawa, kailangan mong hanapin ang kabuuan ng unang pitumpu't tatlong elemento. Nakakalito ang pagbibilang...

Samakatuwid, sa ganitong mga kaso, hindi nila nalulutas ang "sa noo", ngunit gumagamit ng mga espesyal na formula na nagmula para sa pag-unlad ng aritmetika. At ang mga pangunahing ay ang pormula para sa ika-n na termino ng pag-unlad at ang pormula para sa kabuuan ng \(n\) ng mga unang termino.

Formula para sa \(n\)th miyembro: \(a_n=a_1+(n-1)d\), kung saan ang \(a_1\) ay ang unang miyembro ng progression;
\(n\) – numero ng kinakailangang elemento;
Ang \(a_n\) ay isang miyembro ng progression na may numerong \(n\).


Ang formula na ito ay nagbibigay-daan sa amin upang mabilis na mahanap ang hindi bababa sa tatlong daan, kahit na ang ika-milyong elemento, alam lamang ang una at ang pagkakaiba ng pag-unlad.

Halimbawa. Ang pag-unlad ng arithmetic ay ibinibigay ng mga kondisyon: \(b_1=-159\); \(d=8,2\). Hanapin ang \(b_(246)\).
Desisyon:

Sagot: \(b_(246)=1850\).

Ang formula para sa kabuuan ng unang n termino ay: \(S_n=\frac(a_1+a_n)(2) \cdot n\), kung saan



Ang \(a_n\) ay ang huling summed term;


Halimbawa (OGE). Ang pag-unlad ng arithmetic ay ibinibigay ng mga kondisyon \(a_n=3.4n-0.6\). Hanapin ang kabuuan ng unang \(25\) mga tuntunin ng pag-usad na ito.
Desisyon:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Upang kalkulahin ang kabuuan ng unang dalawampu't limang elemento, kailangan nating malaman ang halaga ng una at dalawampu't limang termino.
Ang aming pag-unlad ay ibinibigay ng pormula ng ika-n na termino depende sa bilang nito (tingnan ang mga detalye). I-compute natin ang unang elemento sa pamamagitan ng pagpapalit ng \(n\) ng isa.

\(n=1;\) \(a_1=3.4 1-0.6=2.8\)

Ngayon, hanapin natin ang ikadalawampu't limang termino sa pamamagitan ng pagpapalit ng dalawampu't lima sa halip na \(n\).

\(n=25;\) \(a_(25)=3.4 25-0.6=84.4\)

Kaya, ngayon ay kinakalkula namin ang kinakailangang halaga nang walang anumang mga problema.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Handa na ang sagot.

Sagot: \(S_(25)=1090\).

Para sa kabuuan ng \(n\) ng mga unang termino, maaari kang makakuha ng isa pang formula: kailangan mo lang na \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) sa halip na \(a_n\) palitan ang formula para dito \(a_n=a_1+(n-1)d\). Nakukuha namin:

Ang formula para sa kabuuan ng unang n termino ay: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), kung saan

\(S_n\) – ang kinakailangang kabuuan \(n\) ng mga unang elemento;
Ang \(a_1\) ay ang unang termino na susumahin;
\(d\) – pagkakaiba sa pag-unlad;
\(n\) - ang bilang ng mga elemento sa kabuuan.

Halimbawa. Hanapin ang kabuuan ng unang \(33\)-ex terms ng arithmetic progression: \(17\); \(15,5\); \(labing-apat\)…
Desisyon:

Sagot: \(S_(33)=-231\).

Mas kumplikadong mga problema sa pag-unlad ng aritmetika

Ngayon ay mayroon ka na ng lahat ng impormasyong kailangan mo upang malutas ang halos anumang problema sa pag-unlad ng arithmetic. Tapusin natin ang paksa sa pamamagitan ng pagsasaalang-alang ng mga problema kung saan kailangan mong hindi lamang maglapat ng mga formula, ngunit mag-isip din ng kaunti (sa matematika, maaari itong maging kapaki-pakinabang ☺)

Halimbawa (OGE). Hanapin ang kabuuan ng lahat ng negatibong termino ng progression: \(-19.3\); \(-labinsiyam\); \(-18.7\)…
Desisyon:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Ang gawain ay halos kapareho sa nauna. Sinimulan namin ang paglutas sa parehong paraan: una naming mahanap ang \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Ngayon ay papalitan namin ang \(d\) sa pormula para sa kabuuan ... at narito ang isang maliit na nuance ay nagpa-pop up - hindi namin alam \(n\). Sa madaling salita, hindi natin alam kung ilang termino ang kailangang idagdag. Paano malalaman? Tayo'y mag isip. Hihinto kami sa pagdaragdag ng mga elemento kapag nakarating na kami sa unang positibong elemento. Iyon ay, kailangan mong malaman ang bilang ng elementong ito. paano? Isulat natin ang formula para sa pagkalkula ng anumang elemento ng isang arithmetic progression: \(a_n=a_1+(n-1)d\) para sa aming kaso.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

Kailangan natin ang \(a_n\) na mas malaki sa zero. Alamin natin kung ano \(n\) ang mangyayari.

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|:0.3\)

Hinahati namin ang magkabilang panig ng hindi pagkakapantay-pantay sa \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Inilipat namin ang minus one, hindi nakakalimutang baguhin ang mga palatandaan

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Nagko-compute...

\(n>65,333…\)

…at lumalabas na ang unang positibong elemento ay magkakaroon ng numerong \(66\). Alinsunod dito, ang huling negatibo ay mayroong \(n=65\). Kung sakali, tingnan natin ito.

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

Kaya, kailangan nating idagdag ang unang \(65\) na mga elemento.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

Handa na ang sagot.

Sagot: \(S_(65)=-630.5\).

Halimbawa (OGE). Ang pag-unlad ng arithmetic ay ibinibigay ng mga kondisyon: \(a_1=-33\); \(a_(n+1)=a_n+4\). Hanapin ang kabuuan mula sa \(26\)th hanggang \(42\) kasama ang elemento.
Desisyon:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Sa problemang ito, kailangan mo ring hanapin ang kabuuan ng mga elemento, ngunit hindi nagsisimula sa una, ngunit mula sa \(26\)th. Wala kaming formula para dito. Paano magdesisyon?
Madali - upang makuha ang kabuuan mula sa \(26\)th hanggang \(42\)th, kailangan mo munang hanapin ang kabuuan mula sa \(1\)th hanggang \(42\)th, at pagkatapos ay ibawas mula dito ang kabuuan mula sa ang una sa \ (25 \) ika (tingnan ang larawan).


Para sa aming pag-unlad \(a_1=-33\), at ang pagkakaiba \(d=4\) (pagkatapos ng lahat, nagdaragdag kami ng apat sa nakaraang elemento upang mahanap ang susunod). Sa pag-alam nito, makikita natin ang kabuuan ng unang \(42\)-uh elemento.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Ngayon ang kabuuan ng unang \(25\)-th na mga elemento.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

At sa wakas, kinakalkula namin ang sagot.

\(S=S_(42)-S_(25)=2058-375=1683\)

Sagot: \(S=1683\).

Para sa isang pag-unlad ng aritmetika, may ilan pang mga formula na hindi namin isinasaalang-alang sa artikulong ito dahil sa kanilang mababang praktikal na pagiging kapaki-pakinabang. Gayunpaman, madali mong mahahanap ang mga ito.


Oo, oo: ang pag-unlad ng aritmetika ay hindi isang laruan para sa iyo :)

Buweno, mga kaibigan, kung binabasa mo ang tekstong ito, kung gayon ang ebidensya ng panloob na takip ay nagsasabi sa akin na hindi mo pa rin alam kung ano ang pag-unlad ng aritmetika, ngunit talagang (hindi, tulad nito: SOOOOO!) gusto mong malaman. Samakatuwid, hindi kita pahihirapan ng mahabang pagpapakilala at agad na bumaba sa negosyo.

Upang magsimula, isang pares ng mga halimbawa. Isaalang-alang ang ilang hanay ng mga numero:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ano ang pagkakatulad ng lahat ng set na ito? Sa unang tingin, wala. Pero sa totoo lang may something. Namely: bawat susunod na elemento ay naiiba mula sa nauna sa pamamagitan ng parehong numero.

Maghusga para sa iyong sarili. Ang unang set ay magkakasunod na numero lamang, bawat isa ay higit pa kaysa sa nauna. Sa pangalawang kaso, ang pagkakaiba sa pagitan ng mga katabing numero ay katumbas na ng lima, ngunit ang pagkakaibang ito ay pare-pareho pa rin. Sa ikatlong kaso, may mga ugat sa pangkalahatan. Gayunpaman, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, habang $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, ibig sabihin. kung saan ang bawat susunod na elemento ay tumataas lamang ng $\sqrt(2)$ (at huwag matakot na ang numerong ito ay hindi makatwiran).

Kaya: ang lahat ng gayong mga pagkakasunud-sunod ay tinatawag lamang na mga pag-unlad ng aritmetika. Bigyan natin ng mahigpit na kahulugan:

Kahulugan. Ang isang pagkakasunud-sunod ng mga numero kung saan ang bawat susunod ay naiiba mula sa nauna sa pamamagitan ng eksaktong parehong halaga ay tinatawag na aritmetika na pag-unlad. Ang mismong halaga kung saan naiiba ang mga numero ay tinatawag na pagkakaiba sa pag-unlad at kadalasang tinutukoy ng titik $d$.

Notation: $\left(((a)_(n)) \right)$ ang mismong progression, $d$ ang difference nito.

At ilan lamang sa mahahalagang komento. Una, ang pag-unlad ay isinasaalang-alang lamang maayos pagkakasunud-sunod ng mga numero: pinapayagan silang basahin nang mahigpit sa pagkakasunud-sunod kung saan nakasulat ang mga ito - at wala nang iba pa. Hindi ka maaaring muling ayusin o magpalit ng mga numero.

Pangalawa, ang pagkakasunud-sunod mismo ay maaaring may hangganan o walang katapusan. Halimbawa, ang set (1; 2; 3) ay malinaw na isang may hangganang pag-unlad ng arithmetic. Ngunit kung sumulat ka ng isang bagay tulad ng (1; 2; 3; 4; ...) - isa na itong walang katapusang pag-unlad. Ang ellipsis pagkatapos ng apat, kumbaga, ay nagpapahiwatig na marami pang mga numero ang nagpapatuloy. Walang hanggan marami, halimbawa. :)

Gusto ko ring tandaan na ang mga pag-unlad ay dumarami at bumababa. Nakita na natin ang mga dumarami - ang parehong set (1; 2; 3; 4; ...). Narito ang mga halimbawa ng bumababang pag-unlad:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Okay, okay: ang huling halimbawa ay maaaring mukhang masyadong kumplikado. Ngunit ang natitira, sa palagay ko, naiintindihan mo. Samakatuwid, ipinakilala namin ang mga bagong kahulugan:

Kahulugan. Ang pag-unlad ng aritmetika ay tinatawag na:

  1. pagtaas kung ang bawat susunod na elemento ay mas malaki kaysa sa nauna;
  2. bumababa, kung, sa kabaligtaran, ang bawat kasunod na elemento ay mas mababa kaysa sa nauna.

Bilang karagdagan, may mga tinatawag na "nakatigil" na mga pagkakasunud-sunod - binubuo sila ng parehong umuulit na numero. Halimbawa, (3; 3; 3; ...).

Isang tanong na lang ang natitira: paano makilala ang isang pagtaas ng pag-unlad mula sa isang bumababa? Sa kabutihang palad, ang lahat dito ay nakasalalay lamang sa tanda ng numerong $d$, i.e. mga pagkakaiba sa pag-unlad:

  1. Kung $d \gt 0$, kung gayon ang pag-unlad ay tumataas;
  2. Kung $d \lt 0$, kung gayon ang pag-unlad ay malinaw na bumababa;
  3. Sa wakas, mayroong kaso $d=0$ — sa kasong ito ang buong pag-unlad ay nabawasan sa isang nakatigil na pagkakasunud-sunod ng magkaparehong mga numero: (1; 1; 1; 1; ...), atbp.

Subukan nating kalkulahin ang pagkakaiba $d$ para sa tatlong bumababa na pag-unlad sa itaas. Upang gawin ito, sapat na kumuha ng anumang dalawang katabing elemento (halimbawa, ang una at pangalawa) at ibawas mula sa numero sa kanan, ang numero sa kaliwa. Magiging ganito ang hitsura:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Tulad ng nakikita mo, sa lahat ng tatlong mga kaso ang pagkakaiba ay talagang naging negatibo. At ngayon na higit pa o hindi gaanong nalaman natin ang mga kahulugan, oras na para malaman kung paano inilarawan ang mga pag-unlad at kung anong mga katangian ang mayroon sila.

Mga miyembro ng progression at ang paulit-ulit na formula

Dahil ang mga elemento ng aming mga sequence ay hindi maaaring palitan, maaari silang bilangin:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Ang mga indibidwal na elemento ng set na ito ay tinatawag na mga miyembro ng progression. Ang mga ito ay ipinahiwatig sa ganitong paraan sa tulong ng isang numero: ang unang miyembro, ang pangalawang miyembro, at iba pa.

Bilang karagdagan, tulad ng alam na natin, ang mga kalapit na miyembro ng pag-unlad ay nauugnay sa pamamagitan ng pormula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Sa madaling salita, upang mahanap ang $n$th term ng progression, kailangan mong malaman ang $n-1$th term at ang pagkakaiba $d$. Ang ganitong pormula ay tinatawag na paulit-ulit, dahil sa tulong nito maaari kang makahanap ng anumang numero, alam lamang ang nauna (at sa katunayan, ang lahat ng mga nauna). Ito ay napaka-inconvenient, kaya mayroong isang mas nakakalito na formula na binabawasan ang anumang pagkalkula sa unang termino at ang pagkakaiba:

\[((a)_(n))=((a)_(1))+\kaliwa(n-1 \kanan)d\]

Marahil ay nakita mo na ang formula na ito dati. Gusto nilang ibigay ito sa lahat ng uri ng mga reference na libro at reshebnik. At sa anumang matinong aklat-aralin sa matematika, isa ito sa una.

Gayunpaman, iminumungkahi kong magsanay ka ng kaunti.

Gawain bilang 1. Isulat ang unang tatlong termino ng arithmetic progression $\left(((a)_(n)) \right)$ kung $((a)_(1))=8,d=-5$.

Desisyon. Kaya, alam natin ang unang termino na $((a)_(1))=8$ at ang pagkakaiba sa pag-unlad $d=-5$. Gamitin natin ang formula na ibinigay at palitan ang $n=1$, $n=2$ at $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\kaliwa(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\kaliwa(2-1 \kanan)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\kaliwa(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Sagot: (8; 3; -2)

Iyon lang! Tandaan na ang aming pag-unlad ay bumababa.

Siyempre, hindi maaaring palitan ang $n=1$ - alam na natin ang unang termino. Gayunpaman, sa pamamagitan ng pagpapalit sa yunit, tiniyak namin na kahit sa unang termino ay gumagana ang aming formula. Sa ibang mga kaso, ang lahat ay bumaba sa banal na aritmetika.

Gawain bilang 2. Isulat ang unang tatlong termino ng isang pag-unlad ng aritmetika kung ang ikapitong termino nito ay −40 at ang ikalabimpitong termino nito ay −50.

Desisyon. Isinulat namin ang kondisyon ng problema sa karaniwang mga termino:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \tama.\]

Inilagay ko ang sign ng system dahil ang mga kinakailangan na ito ay dapat matugunan nang sabay-sabay. At ngayon tandaan natin na kung ibawas natin ang unang equation mula sa pangalawang equation (may karapatan tayong gawin ito, dahil mayroon tayong sistema), makukuha natin ito:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(align)\]

Kaya lang, nakita namin ang pagkakaiba ng pag-unlad! Ito ay nananatiling palitan ang nahanap na numero sa alinman sa mga equation ng system. Halimbawa, sa una:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Ngayon, alam ang unang termino at ang pagkakaiba, nananatili itong hanapin ang pangalawa at pangatlong termino:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

handa na! Nalutas ang problema.

Sagot: (-34; -35; -36)

Bigyang-pansin ang isang kakaibang pag-aari ng progression na aming natuklasan: kung kukunin namin ang $n$th at $m$th na mga termino at ibawas ang mga ito sa isa't isa, pagkatapos ay makukuha namin ang pagkakaiba ng progression na na-multiply sa bilang na $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \kaliwa(n-m \kanan)\]

Isang simple ngunit napaka-kapaki-pakinabang na ari-arian na dapat mong tiyak na malaman - sa tulong nito, maaari mong makabuluhang mapabilis ang solusyon ng maraming mga problema sa pag-unlad. Narito ang isang pangunahing halimbawa nito:

Gawain bilang 3. Ang ikalimang termino ng pag-unlad ng arithmetic ay 8.4, at ang ikasampung termino nito ay 14.4. Hanapin ang ikalabinlimang termino ng pag-unlad na ito.

Desisyon. Dahil $((a)_(5))=8.4$, $((a)_(10))=14.4$, at kailangan naming hanapin ang $((a)_(15))$, tandaan namin ang sumusunod:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ at ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Ngunit sa pamamagitan ng kundisyon $((a)_(10))-((a)_(5))=14.4-8.4=6$, kaya $5d=6$, kung saan mayroon tayong:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(align)\]

Sagot: 20.4

Iyon lang! Hindi namin kailangan na bumuo ng anumang mga sistema ng mga equation at kalkulahin ang unang termino at ang pagkakaiba - ang lahat ay napagpasyahan sa loob lamang ng ilang linya.

Ngayon isaalang-alang natin ang isa pang uri ng problema - ang paghahanap ng mga negatibo at positibong miyembro ng pag-unlad. Ito ay hindi lihim na kung ang pag-unlad ay tumaas, habang ang unang termino nito ay negatibo, sa kalaunan ay lilitaw ang mga positibong termino dito. At kabaligtaran: ang mga tuntunin ng isang bumababa na pag-unlad ay malaon o huli ay magiging negatibo.

Kasabay nito, malayo sa laging posible na mahanap ang sandaling ito "sa noo", sunud-sunod na pag-uuri sa mga elemento. Kadalasan, ang mga problema ay idinisenyo sa paraang nang hindi nalalaman ang mga formula, ang mga kalkulasyon ay kukuha ng ilang mga sheet - matutulog lang kami hanggang sa matagpuan namin ang sagot. Samakatuwid, susubukan naming lutasin ang mga problemang ito sa mas mabilis na paraan.

Gawain bilang 4. Ilang negatibong termino sa isang pag-unlad ng aritmetika -38.5; -35.8; …?

Desisyon. Kaya, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, kung saan agad naming makikita ang pagkakaiba:

Tandaan na ang pagkakaiba ay positibo, kaya ang pag-unlad ay tumataas. Ang unang termino ay negatibo, kaya't sa isang punto ay makakaranas tayo ng mga positibong numero. Ang tanging tanong ay kung kailan ito mangyayari.

Subukan nating alamin: gaano katagal (i.e., hanggang sa kung anong natural na bilang na $n$) ang negatibiti ng mga termino ay napanatili:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \kanan. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Ang huling linya ay nangangailangan ng paglilinaw. Kaya alam natin na $n \lt 15\frac(7)(27)$. Sa kabilang banda, ang mga integer value lang ng numero ang babagay sa amin (bukod dito: $n\in \mathbb(N)$), kaya ang pinakamalaking pinapayagang numero ay tiyak na $n=15$, at sa anumang kaso 16.

Gawain bilang 5. Sa arithmetic progression $(()_(5))=-150,(()_(6))=-147$. Hanapin ang bilang ng unang positibong termino ng pag-unlad na ito.

Ito ay magiging eksaktong parehong problema tulad ng nauna, ngunit hindi namin alam ang $((a)_(1))$. Ngunit ang mga kalapit na termino ay kilala: $((a)_(5))$ at $((a)_(6))$, kaya madali nating mahanap ang pagkakaiba sa pag-unlad:

Bilang karagdagan, subukan nating ipahayag ang ikalimang termino sa mga tuntunin ng una at ang pagkakaiba gamit ang karaniwang formula:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ at ((a)_(1))=-150-12=-162. \\ \end(align)\]

Ngayon ay nagpapatuloy kami sa pamamagitan ng pagkakatulad sa nakaraang problema. Nalaman namin kung saang punto sa aming sequence ang mga positibong numero ay lilitaw:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Ang pinakamababang integer na solusyon ng hindi pagkakapantay-pantay na ito ay ang bilang na 56.

Pakitandaan na sa huling gawain ang lahat ay nabawasan sa mahigpit na hindi pagkakapantay-pantay, kaya ang opsyon na $n=55$ ay hindi angkop sa amin.

Ngayon na natutunan natin kung paano lutasin ang mga simpleng problema, lumipat tayo sa mas kumplikado. Ngunit una, alamin natin ang isa pang napaka-kapaki-pakinabang na katangian ng mga pag-unlad ng aritmetika, na magliligtas sa atin ng maraming oras at hindi pantay na mga cell sa hinaharap. :)

Arithmetic mean at equal indents

Isaalang-alang ang ilang magkakasunod na termino ng tumataas na pag-unlad ng arithmetic $\left(((a)_(n)) \right)$. Subukan nating markahan ang mga ito sa isang linya ng numero:

Mga miyembro ng pag-unlad ng aritmetika sa linya ng numero

Partikular kong binanggit ang mga arbitraryong miyembro $((a)_(n-3)),...,((a)_(n+3))$, at hindi anumang $((a)_(1)) , \ ((a)_(2)),\ ((a)_(3))$ atbp. Dahil ang panuntunan, na sasabihin ko ngayon sa iyo, ay gumagana nang pareho para sa anumang "mga segment".

At ang panuntunan ay napaka-simple. Tandaan natin ang recursive formula at isulat ito para sa lahat ng minarkahang miyembro:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Gayunpaman, ang mga pagkakapantay-pantay na ito ay maaaring muling isulat sa ibang paraan:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Well, ano? Ngunit ang katotohanan na ang mga terminong $((a)_(n-1))$ at $((a)_(n+1))$ ay nasa parehong distansya mula sa $((a)_(n)) $ . At ang distansyang ito ay katumbas ng $d$. Ang parehong ay masasabi tungkol sa mga terminong $((a)_(n-2))$ at $((a)_(n+2))$ - inalis din ang mga ito sa $((a)_(n) )$ sa parehong distansya na katumbas ng $2d$. Maaari kang magpatuloy nang walang katiyakan, ngunit ang larawan ay naglalarawan ng kahulugan


Ang mga miyembro ng progreso ay nakahiga sa parehong distansya mula sa gitna

Ano ang ibig sabihin nito para sa atin? Nangangahulugan ito na mahahanap mo ang $((a)_(n))$ kung kilala ang mga kalapit na numero:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Nahinuha namin ang isang kahanga-hangang pahayag: ang bawat miyembro ng isang pag-unlad ng arithmetic ay katumbas ng arithmetic mean ng mga kalapit na miyembro! Bukod dito, maaari tayong lumihis mula sa ating $((a)_(n))$ sa kaliwa at pakanan hindi sa pamamagitan ng isang hakbang, ngunit sa pamamagitan ng $k$ na mga hakbang — at magiging tama pa rin ang formula:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Yung. madali tayong makakahanap ng ilang $((a)_(150))$ kung alam natin ang $((a)_(100))$ at $((a)_(200))$, dahil $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Sa unang sulyap, maaaring mukhang ang katotohanang ito ay hindi nagbibigay sa amin ng anumang kapaki-pakinabang. Gayunpaman, sa pagsasagawa, maraming mga gawain ang espesyal na "pinatalas" para sa paggamit ng arithmetic mean. Tingnan mo:

Gawain bilang 6. Hanapin ang lahat ng value ng $x$ na ang mga numerong $-6((x)^(2))$, $x+1$ at $14+4((x)^(2))$ ay magkakasunod na miyembro ng isang pag-unlad ng aritmetika (sa tinukoy na pagkakasunud-sunod).

Desisyon. Dahil ang mga numerong ito ay miyembro ng isang progression, ang arithmetic mean na kondisyon ay nasiyahan para sa kanila: ang gitnang elemento na $x+1$ ay maaaring ipahayag sa mga tuntunin ng mga kalapit na elemento:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ at ((x)^(2))+x-6=0. \\ \end(align)\]

Ang resulta ay isang klasikong quadratic equation. Ang mga ugat nito: $x=2$ at $x=-3$ ang mga sagot.

Sagot: -3; 2.

Gawain bilang 7. Hanapin ang mga halaga ng $$ upang ang mga numerong $-1;4-3;(()^(2))+1$ ay bumubuo ng isang arithmetic progression (sa ganoong pagkakasunud-sunod).

Desisyon. Muli, ipinapahayag namin ang gitnang termino sa mga tuntunin ng arithmetic mean ng mga kalapit na termino:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\kanan.; \\ & 8x-6=((x)^(2))+x; \\ at ((x)^(2))-7x+6=0. \\ \end(align)\]

Isa pang quadratic equation. At muli dalawang ugat: $x=6$ at $x=1$.

Sagot: 1; 6.

Kung sa proseso ng paglutas ng isang problema nakakakuha ka ng ilang mga brutal na numero, o hindi ka lubos na sigurado sa tama ng mga sagot na natagpuan, kung gayon mayroong isang kahanga-hangang trick na nagbibigay-daan sa iyo upang suriin: nalutas ba namin nang tama ang problema?

Sabihin nating sa suliranin 6 ay nakakuha tayo ng mga sagot -3 at 2. Paano natin masusuri kung tama ang mga sagot na ito? Isaksak lang natin ang mga ito sa orihinal na kundisyon at tingnan kung ano ang mangyayari. Hayaan mong ipaalala ko sa iyo na mayroon kaming tatlong numero ($-6(()^(2))$, $+1$ at $14+4(()^(2))$), na dapat bumuo ng arithmetic progression. Palitan ang $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Nakuha namin ang mga numero -54; −2; Ang 50 na naiiba ng 52 ay walang alinlangan na isang pag-unlad ng aritmetika. Ang parehong bagay ay nangyayari para sa $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Muli isang pag-unlad, ngunit may pagkakaiba na 27. Kaya, ang problema ay nalutas nang tama. Ang mga nais ay maaaring suriin ang pangalawang gawain sa kanilang sarili, ngunit sasabihin ko kaagad: lahat ay tama din doon.

Sa pangkalahatan, habang nilulutas ang mga huling problema, natitisod kami sa isa pang kawili-wiling katotohanan na kailangan ding tandaan:

Kung ang tatlong numero ay tulad na ang pangalawa ay ang average ng una at huli, ang mga numerong ito ay bumubuo ng isang pag-unlad ng aritmetika.

Sa hinaharap, ang pag-unawa sa pahayag na ito ay magbibigay-daan sa amin na literal na "buuin" ang mga kinakailangang pag-unlad batay sa kondisyon ng problema. Ngunit bago tayo makisali sa ganitong "konstruksyon", dapat nating bigyang pansin ang isa pang katotohanan, na direktang sumusunod sa kung ano ang napag-isipan na.

Pagpapangkat at kabuuan ng mga elemento

Balik tayo ulit sa number line. Napansin namin doon ang ilang miyembro ng pag-unlad, kung saan, marahil. nagkakahalaga ng maraming iba pang mga miyembro:

6 na elemento na minarkahan sa linya ng numero

Subukan nating ipahayag ang "kaliwang buntot" sa mga tuntunin ng $((a)_(n))$ at $d$, at ang "kanang buntot" sa mga tuntunin ng $((a)_(k))$ at $ d$. Ito ay napaka-simple:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Ngayon tandaan na ang mga sumusunod na kabuuan ay pantay-pantay:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Sa madaling salita, kung isasaalang-alang natin bilang panimula ang dalawang elemento ng pag-unlad, na sa kabuuan ay katumbas ng ilang bilang na $S$, at pagkatapos ay magsisimula tayong humakbang mula sa mga elementong ito sa magkasalungat na direksyon (patungo sa isa't isa o vice versa upang lumayo), pagkatapos magkakapantay din ang kabuuan ng mga elementong ating madadapa$S$. Ito ay maaaring pinakamahusay na kinakatawan sa graphic na paraan:


Ang parehong mga indent ay nagbibigay ng pantay na mga kabuuan

Ang pag-unawa sa katotohanang ito ay magbibigay-daan sa amin na lutasin ang mga problema sa panimula na mas mataas na antas ng pagiging kumplikado kaysa sa mga isinasaalang-alang namin sa itaas. Halimbawa, ang mga ito:

Gawain bilang 8. Tukuyin ang pagkakaiba ng isang pag-unlad ng aritmetika kung saan ang unang termino ay 66, at ang produkto ng ikalawa at ikalabindalawang termino ay ang pinakamaliit na posible.

Desisyon. Isulat natin ang lahat ng ating nalalaman:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Kaya, hindi natin alam ang pagkakaiba ng progression $d$. Sa totoo lang, ang buong solusyon ay bubuuin sa paligid ng pagkakaiba, dahil ang produkto na $((a)_(2))\cdot ((a)_(12))$ ay maaaring muling isulat tulad ng sumusunod:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Para sa mga nasa tangke: Inalis ko ang karaniwang kadahilanan 11 sa pangalawang bracket. Kaya, ang gustong produkto ay isang quadratic function na may paggalang sa variable na $d$. Samakatuwid, isaalang-alang ang function na $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - ang graph nito ay magiging isang parabola na may mga sanga sa itaas, dahil kung bubuksan natin ang mga bracket, makakakuha tayo ng:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Tulad ng nakikita mo, ang koepisyent na may pinakamataas na termino ay 11 - ito ay isang positibong numero, kaya talagang nakikipag-usap tayo sa isang parabola na may mga sanga sa itaas:


graph ng isang quadratic function - parabola

Pakitandaan: kinukuha ng parabola na ito ang pinakamababang halaga nito sa vertex nito na may abscissa $((d)_(0))$. Siyempre, maaari nating kalkulahin ang abscissa na ito ayon sa karaniwang pamamaraan (mayroong formula $((d)_(0))=(-b)/(2a)\;$), ngunit mas makatwiran ang tandaan na ang gustong vertex ay nasa axis symmetry ng parabola, kaya ang puntong $((d)_(0))$ ay katumbas ng layo mula sa mga ugat ng equation $f\left(d \right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

Iyon ang dahilan kung bakit hindi ako nagmamadaling buksan ang mga bracket: sa orihinal na anyo, ang mga ugat ay napakadaling mahanap. Samakatuwid, ang abscissa ay katumbas ng arithmetic mean ng mga numero −66 at −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ano ang nagbibigay sa amin ng natuklasang numero? Sa pamamagitan nito, ang kinakailangang produkto ay tumatagal ng pinakamaliit na halaga (nga pala, hindi namin nakalkula ang $((y)_(\min ))$ - hindi ito kinakailangan sa amin). Kasabay nito, ang bilang na ito ay ang pagkakaiba ng paunang pag-unlad, i.e. nakita namin ang sagot. :)

Sagot: -36

Gawain bilang 9. Magpasok ng tatlong numero sa pagitan ng mga numerong $-\frac(1)(2)$ at $-\frac(1)(6)$ upang kasama ang mga ibinigay na numero ay bumuo sila ng arithmetic progression.

Desisyon. Sa katunayan, kailangan nating gumawa ng pagkakasunod-sunod ng limang numero, na alam na ang una at huling numero. Tukuyin ang mga nawawalang numero ng mga variable na $x$, $y$ at $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Tandaan na ang numerong $y$ ay ang "gitna" ng aming sequence - ito ay katumbas ng distansya mula sa mga numerong $x$ at $z$, at mula sa mga numerong $-\frac(1)(2)$ at $-\frac (1)( 6)$. At kung mula sa mga numerong $x$ at $z$ tayo ay nasa sa sandaling ito hindi namin makuha ang $y$, kung gayon ang sitwasyon ay iba sa mga dulo ng pag-unlad. Tandaan ang ibig sabihin ng aritmetika:

Ngayon, alam ang $y$, makikita natin ang natitirang mga numero. Tandaan na ang $x$ ay nasa pagitan ng $-\frac(1)(2)$ at $y=-\frac(1)(3)$ na kakahanap lang. Kaya

Sa parehong pagtatalo, nakita namin ang natitirang numero:

handa na! Natagpuan namin ang lahat ng tatlong numero. Isulat natin ang mga ito sa sagot sa pagkakasunud-sunod kung saan dapat silang ipasok sa pagitan ng mga orihinal na numero.

Sagot: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Gawain bilang 10. Sa pagitan ng mga numero 2 at 42, magpasok ng ilang mga numero na, kasama ang mga ibinigay na numero, ay bumubuo ng isang pag-unlad ng aritmetika, kung alam na ang kabuuan ng una, pangalawa, at huli ng mga ipinasok na numero ay 56.

Desisyon. Ang isang mas mahirap na gawain, na, gayunpaman, ay nalutas sa parehong paraan tulad ng mga nauna - sa pamamagitan ng arithmetic mean. Ang problema ay hindi namin alam kung gaano karaming mga numero ang ilalagay. Samakatuwid, para sa katiyakan, ipinapalagay namin na pagkatapos ng pagpasok ay magkakaroon ng eksaktong $n$ na mga numero, at ang una sa mga ito ay 2, at ang huli ay 42. Sa kasong ito, ang nais na pag-unlad ng aritmetika ay maaaring katawanin bilang:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \kanan\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Tandaan, gayunpaman, na ang mga numerong $((a)_(2))$ at $((a)_(n-1))$ ay nakuha mula sa mga numero 2 at 42 na nakatayo sa mga gilid sa pamamagitan ng isang hakbang patungo sa isa't isa , ibig sabihin. sa gitna ng pagkakasunod-sunod. At ito ay nangangahulugan na

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ngunit ang expression sa itaas ay maaaring muling isulat tulad nito:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ at ((a)_(3))=56-44=12. \\ \end(align)\]

Alam ang $((a)_(3))$ at $((a)_(1))$, madali nating mahahanap ang pagkakaiba sa pag-unlad:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\kaliwa(3-1 \kanan)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end(align)\]

Ito ay nananatiling lamang upang mahanap ang natitirang mga miyembro:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Kaya, nasa ika-9 na hakbang na tayo ay darating sa kaliwang dulo ng pagkakasunud-sunod - ang numero 42. Sa kabuuan, 7 numero lamang ang kailangang ipasok: 7; 12; 17; 22; 27; 32; 37.

Sagot: 7; 12; 17; 22; 27; 32; 37

I-text ang mga gawain na may mga progression

Sa konklusyon, nais kong isaalang-alang ang ilang medyo simpleng problema. Well, bilang simple: para sa karamihan ng mga mag-aaral na nag-aaral ng matematika sa paaralan at hindi pa nababasa kung ano ang nakasulat sa itaas, ang mga gawaing ito ay maaaring mukhang isang kilos. Gayunpaman, tiyak na ganoong mga gawain ang makikita sa OGE at ang PAGGAMIT sa matematika, kaya inirerekumenda ko na pamilyar ka sa kanila.

Gawain bilang 11. Ang koponan ay gumawa ng 62 na bahagi noong Enero, at sa bawat kasunod na buwan ay gumawa sila ng 14 pang bahagi kaysa sa nauna. Ilang bahagi ang ginawa ng brigada noong Nobyembre?

Desisyon. Malinaw, ang bilang ng mga bahagi, na pininturahan ng buwan, ay magiging isang pagtaas ng pag-unlad ng aritmetika. At:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Ang Nobyembre ay ang ika-11 buwan ng taon, kaya kailangan nating hanapin ang $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Samakatuwid, 202 bahagi ang gagawin sa Nobyembre.

Gawain bilang 12. Ang bookbinding workshop ay nagbubuklod ng 216 na aklat noong Enero, at bawat buwan ay nagbubuklod ito ng 4 pang aklat kaysa sa nakaraang buwan. Ilang mga libro ang bind ng workshop noong Disyembre?

Desisyon. Lahat pare-pareho:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Ang Disyembre ay ang huling, ika-12 buwan ng taon, kaya hinahanap namin ang $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Ito ang sagot - 260 na libro ang ibubulid sa Disyembre.

Buweno, kung nabasa mo na ito, nagmamadali akong batiin ka: matagumpay mong nakumpleto ang "young fighter course" sa mga pag-unlad ng aritmetika. Maaari tayong ligtas na magpatuloy sa susunod na aralin, kung saan pag-aaralan natin ang formula ng progression sum, pati na rin ang mahalaga at lubhang kapaki-pakinabang na mga kahihinatnan mula rito.