Как решать дроби с одинаковыми знаменателями. Сложение дробей, имеющих одинаковый знаменатель

Предмет: математика

Класс: 5

Тема урока: Сложение и вычитание обыкновенных дробей с одинаковыми знаменателями

Базовый учебник: И.И. Зубарева, А.Г. Мордкович «Математика. 5 класс»

Тип урока: Урок изучения нового материала

Цели урока:

  • Обучающая : научить выполнять сложение и вычитание дробей с одинаковыми знаменателями; повторить понятия “Правильная, неправильная дробь”, обобщить и закрепить знания учащихся по сравнению дробей.
  • Развивающая: развивать внимание; познавательную активность.
  • Воспитательная: в оспитывать аккуратность при записи примеров и задач с обыкновенными дробями.

Задачи: обобщить и систематизировать знания: Сложение и вычитание дробей с одинаковыми знаменателями; учиться работать самостоятельно, делать выводы.

Планируемый результат обучения, в том числе и формирование УУД:

Познавательные УУД: формировать навыки сложения и вычитания дробей с одинаковыми знаменателями; научить правильно читать и записывать выражения, содержащие обыкновенные дроби; формировать умение решать задачи на сложение и вычитание дробей с одинаковыми знаменателями; применять полученные знания при решении задач.

Коммуникативные УУД: воспитывать любовь к математике, коллективизм, уважение друг к другу, умение слушать, дисциплинированность, самостоятельность мышления.

Регулятивные УУД: понимать учебную задачу урока, осуществлять решение учебной задачи под руководством учителя, определять цель учебного задания, контролировать свои действия в процессе его выполнения, обнаруживать и исправлять ошибки, отвечать на итоговые вопросы и оценивать свои достижения

Личностные УУД: формировать учебную мотивацию, адекватную самооценку, необходимость приобретения новых знаний.

Формы работы: индивидуальная, фронтальная, беседа

Организация деятельности учащихся на уроке:

  • самостоятельно выходят на проблему и решают её;
  • самостоятельно определяют тему, цели урока;
  • выводят определение и правило сложения и вычитания дробей с одинаковыми знаменателями;
  • работают с текстом учебника;
  • отвечают на вопросы;
  • решают самостоятельно задачи;
  • оценивают себя и друг друга;
  • рефлектируют.

Методы обучения: словесный, наглядно-иллюстративный, практический

Участники: обучающиеся 5 класса

Ресурсы: мультимедийный проектор, презентация.

Учебно-методическое обеспечение : учебник “Математика. 5 класс” авторов И.И. Зубарева А.Г.Мордкович

Этап урока,

время

Название используемых ЭОР

Деятельность учителя

(с указанием действий с ЭОР, например, демонстрация)

Деятельность ученика

Формируемые УУД

Познавательные

Регулятивные

Коммуникативные

Личностные

Определение потребностей и мотивов.

Орг. Момент

1 мин.

Слайд 1

приветствие учащихся; проверка учителем готовности класса к уроку; организация внимания.

Включаются в деловой ритм урока

осознанное и произвольное построение речевого высказывания

планирование учебного сотрудничества с учителем и сверстниками.

Самоопределение.

умение выделять нравственный аспект поведения

Мотивация к учебной деятельности

3 мин.

Слайд 2

Координирует деятельность учащихся.

Устно решают примеры, повторяют теорию.

логический анализ объектов с целью выделения признаков.

Прогнозирование своей деятельности

Умение слушать и вступать в диалог

Самоопределение.

Актуализация знаний, постановка проблемы и ее решение

2 мин.

Слайд 3

Мотивирует учащихся. Учитель задает вопросы

Участвуют в работе по повторению, в беседе с учителем, отвечают на поставленные вопросы

Поиск и выделение необходимой информации

Выделение и осознание того, что уже пройдено.

Постановка цели учебной задачи, синтез

Умение с достаточной полнотой и точностью выражать свои мысли, слушать и вступать в диалог

Смысло-образование

Принятие учебных целей и условий их достижения

Организация познавательной деятельности.

5 мин.

Слайд 4-5

Учитель задает вопросы

отвечают на вопросы.

анализ, аналогия, осознанное построение речевого высказывания.

Смысло-образование.

Побуждение учащихся к выдвижению гипотезы.

3 мин.

Слайд 6-7

Выполнив работу, Вы можете сказать тему сегодняшнего урока?

Как сложить дроби с одинаковыми знаменателями? Как вычесть?

Формулируют тему урока: “Сложение и вычитание дробей с одинаковыми знаменателями”.

Формулируют правила сложения и вычитания дробей с одинаковыми знаменателями.

самостоятельное выделение-формулирование познавательной цели, подведение подпонятие, постановка и формулирование проблемы.

инициативное сотрудничество.

Самоопределение

3.1.

Проверка принятой гипотезы.

Организация

познавательной деятельности. Первичное закрепление. Установление правильности и осознанности изучения темы.

3 мин.

Слайд 8 - 10

Учитель предлагает рассмотреть решение задач на слайдах

Слушают и смотрят примеры задач, комментируют решение, проверяют друг у друга, работая в паре.

Решение на слайдах.

самостоятельное выделение- формулирование познавательной цели; логическое формулирование проблемы, решение проблемы, построение логической цепи рассуждений.

планирование, прогнозирование.

постановка вопросов, инициативное сотрудничество.

Самоопределение

Выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение закрепления в памяти детей знаний и способов действий, которые им необходимы для самостоятельной работы по новому материалу

5 мин.

Слайд 11

Учитель предлагает работу с заданиями из учебника

Несколько обучающихся записывают решения заданий на доске, комментируя ход решения, остальные записывают в тетрадях эти задания

построение логической цепи рассуждений.

волевая саморегуляция в ситуации затруднения.

выражение своих мыслей, аргументация

Смысло-образование.

3.2.

Динамическая пауза

3 мин.

Слайд 12-13

Сменить деятельность, обеспечить эмоциональную разгрузку учащихся.

Учащиеся сменили вид деятельности (отдохнули) и готовы продолжать работу.

4.1.

Итоговый самоконтроль и самооценка.

Организация первичного контроля.

Выявление качества и уровня усвоения знаний и способов действий, а также выявление недостатков в знаниях и способах действий, установление причин выявленных недостатков

10 мин

Слайд 14

Организует самостоятельную деятельность учащихся, взаимопроверку.

Воспитывает способность принимать самостоятельные решения; развивает навыки самоконтроля.

Самостоятельно выполняют задания, затем проверяют в парах по ключу.

Выделение и формулирование познавательной цели, рефлексия способов и условий действия.

Анализ и синтез объектов

контроль, коррекция, выделение и осознание того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения;

Интегрироваться в группу

самоопределение.

4.2.

Подведение итогов урока.

Дать качественную оценку работы класса и отдельных обучаемых

2 мин.

Какую тему мы сегодня изучали?

Какие задачи мы сегодня ставили?

Наши задачи выполнены?

Отвечают на вопросы: сложение и вычитание дробей с одинаковыми знаменателями, научиться складывать и вычитать дроби с одинаковыми знаменателями.

Планирование своей деятельности для решения поставленной задачи, контроль полученного результата, коррекция полученного результата, саморегуляция

оценка-осознание уровня и качества усвоения; контроль

Умение слушать и вступать в диалог,

Интегрироваться в группу

4.3.

Информация о домашнем задании.

Обеспечение понимания детьми цели, содержания и способов выполнения домашнего задания.1 мин

Слайд 15

Задает дозированное домашнее задание

Учащиеся записывают домашнее задание в зависимости от уровня освоения темы урока

4.4.

Рефлексия.

Инициировать рефлексию детей по поводу психоэмоционального состояния, мотивации их собственной деятельности и взаимодействия с учителем и другими детьми в классе.

2 мин.

Слайд 16

Если вы считаете, что не достаточно усвоили материал, то нарисуйте не улыбающийся смайлик.

Если вы считаете, что не поняли тему урока, нарисуйте грустный смайлик

(Учитель проходит по рядам и просматривает)

Мы здорово потрудились. Большое спасибо за урок!

рисуют смайлики в тетрадях

рефлексия способ и условий действия, контроль и оценка процессов результата деятельности, адекватное понимание причин успеха и неуспеха.

Оценка промежуточных результатов и саморегуляция для повышения мотивации учебной деятельности

аргументация своего мнения.

нравственно-этическая ориентация

Этапы урока:

1. Определение потребностей и мотивов.

1.1. Орг. Момент

1.2. Мотивация к учебной деятельности

Мотивационная беседа.

Слайд 1

Великий педагог Василий Александрович Сухомлинский говорил:«У мственный труд на уроках математики - пробный камень мышления" Поэтому мы с вами сегодня на уроке будем пробовать размышлять, ставит пере собой цели, решать поставленные задачи

Чем же мы будем сегодня с вами заниматься? О чем пойдет беседа на уроке? Для это мы устно посчитаем, а затем из полученных ответов составим ключевые слова

Правильно, о дробях. Но, каких? Узнаете позже.

1.3. Актуализация знаний, постановка проблемы и ее решение.

Слайд 2 -4.

2. Принятие учебных целей и условий их достижения.

2.1. Организация познавательной деятельности.

Работа со слайдом 4: не глядя на рисунок, мы можем сказать, какая часть закрашена красным и зеленым цветом? Каким образом?

Какая часть закрашена красным и зеленым?

Работа со слайдом 5: глядя на рисунок, мы можем сказать, какая часть останется не закрашена, если закрасить синим цветом 4 части, 2 части, 1 часть, 3 части. Какие действия нам пришлось выполнять?

2.2. Побуждение учащихся к выдвижению гипотезы.

А вот теперь скажите: “Как по- вашему, какая сегодня тема урока?”

Правильно. Слайд 6 Запишите тему урока.

Слайд 7-9 Сформулируйте правила сложения и вычитания дробей с одинаковыми знаменателями. Как складывают дроби с одинаковыми знаменателями? Как вычитают дроби с одинаковыми знаменателями?

3. Проверка принятой гипотезы.

3.1. Организация познавательной деятельности. Первичное закрепление. Установление правильности и осознанности изучения темы. Выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение закрепления в памяти детей знаний и способов действий, которые им необходимы для самостоятельной работы по новому материалу.

  • Слайд 8
  • Слайд 10

Решение проверяют друг у друга.

Молодцы! Хорошее начало.

Работа с учебником № 422, № 426

3.2Динамическая пауза слайд 11

Пока занимались мы, тихо, но прытко

В класс к нам пробралась сеньора ошибка.

Чтоб убралась она без оглядки

Сделать придется

математическую зарядку.

Правильно – вверх, неверно – вперед,

Ответ посчитаем- ошибка уйдет .

На экране будут появляться математические выражения, если вы считаете, что выражение верное, то руки вверх, если нет, то вперед

4. Итоговый самоконтроль и самооценка.

4.1. Организация первичного контроля.

Выявление качества и уровня усвоения знаний и способов действий, а также выявление недостатков в знаниях и способах действий, установление причин выявленных недостатков.

Самостоятельно по вариантам решите примеры.

Проверка друг у друга по ключу. Слайд 14

4.2. Подведение итогов урока. Дать качественную оценку работы класса и отдельных обучаемых. Слайд № 15

4.3. Информация о домашнем задании. Слайд 16

1)с. 118-119 (правила),

№ № 425, № 427

2).Найти загадки про дроби(по желанию)

4.4. Рефлексия. Инициировать рефлексию детей по поводу психоэмоционального состояния, мотивации их собственной деятельности и взаимодействия с учителем и другими детьми в классе. Слайд 17

  • Если вы считаете, что поняли тему урока, то нарисуйте улыбающийся смайлик
  • Если вы считаете, что не достаточно усвоили материал, то нарисуйте неулыбающийся смайлик.
  • Если вы считаете, что не поняли тему урока, то нарисуйте грустный смайлик

Закончить урок словами

"Человек подобен дроби:

  • в знаменателе – то, что он о себе думает,
  • в числителе – то, что он есть на самом деле.

Чем больше знаменатель, тем меньше дробь".

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

" Умственный труд на уроках математики - пробный камень мышления" Сухомлинский В. А.

37 ? -12 +47: 9 -20 25 72 100 120 8 140 ? : 7 +134 -94 20 8 240 60 154 Решите правильно примеры и составьте слова 8 - О 154 - И 25 - Д 240 - Л 120 - Б 100 - Ь 72 - Р 20 - Ч 60 - С Д Р О Б Ь Ч И С Л О

Как называется? 1. Дробь, в которой числитель меньше знаменателя 2. Дробь, в которой числитель больше знаменателя 3. Число, стоящее над чертой 4. Число, стоящее под чертой дроби

Какая часть фигуры закрашена зеленым закрашена красным закрашена красным и зеленым 6 1 6 3 6 2 6 2 6 2 6 1 6 2 6 3 6 3 6 4 6 4 6 5

Какая часть фигуры останется не закрашена, если закрасить синим цветом: 4 части 3 части 1 часть 2 части 6 2 6 3 6 5 6 4

Сложение и вычитание дробей с одинаковыми знаменателями 03.12.14 г.

При сложении дробей с одинаковыми знаменателями числители складываются, а знаменатель оставляют без изменения. Буквенная запись Запомни правило

Кот Леопольд приготовил торт на свой День рождения. И позвал в гости мышат. Сначала на тарелку он положил 9 долей, а потом еще 2 доли. На тарелке оказалось 11 долей, то есть торта: 17 частей

При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют без изменения. Буквенная запись

Кот Леопольд разрезал торт на 17 долей. На тарелку положил 11 долей, а потом 9 долей съели мышата. Осталось 2 доли, то есть торта:

Выполнение упражнений из учебника № 422; № 426

Динамическая пауза Пока занимались мы, тихо, но прытко В класс к нам пробралась сеньора ошибка. Чтоб убралась она без оглядки Сделать придется математическую зарядку. Правильно – вверх, неверно – вперед, Ответ посчитаем- ошибка уйдет.

Самостоятельная работа I вариант II вариант 15 22 7 22 18 33 13 33 44 65 37 65 12 19 5 19 6 19 11 18 5 18 13 27 6 27 33 58 26 58 15 21 7 21 5 21 "5" - без ошибок; "4" - 1 ошибка; "3" - 2 ошибки

Какую тему мы сегодня изучали? Какие задачи мы сегодня ставили? Наши задачи выполнены?

Домашнее задание № 425 № 427, учить правила с. 118-119 Найти загадки про дроби (по желанию)

Нарисуйте смайлик Если вы считаете, что усвоили тему урока Если вы считаете, что не достаточно усвоили тему урока Если вы считаете, что не поняли тему урока

Мальчик играл в компьютер 3 часа. Какую часть суток играл мальчик? Ответ: Масса яблока 300 г. Какую часть килограмма составляет масса яблока? Ответ:

Петя в июне и июле был у бабушки в деревне. Какую часть года провел Петя у бабушки? Лена читала книгу 15 мин. Какую часть часа Лена читала? Ответ: Ответ:

В доме окон. Вечером, в окнах загорелся свет. А потом ещё в. Какая часть окон осталась без света?

Проверим решение 1 способ 2 способ

Восстановите таблицу так, чтобы дроби не повторялись в строках и столбцах таблицы Какую часть таблицы составляют неправильные дроби? Сравните дроби


Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

Найдите числитель и знаменатель. Дробь включает два числа: число, которое расположено над чертой, называется числителем, а число, которое находится под чертой – знаменателем. Знаменатель обозначает общее количество частей, на которые разбито некоторое целое, а числитель – это рассматриваемое количество таких частей.

  • Например, в дроби ½ числителем является 1, а знаменателем 2.

Определите знаменатель. Если две и более дроби имеют общий знаменатель, у таких дробей под чертой находится одно и то же число, то есть в этом случае некоторое целое разбито на одинаковое количество частей. Складывать дроби с общим знаменателем очень просто, так как знаменатель суммарной дроби будет таким же, как у складываемых дробей. Например:

  • У дробей 3/5 и 2/5 общий знаменатель 5.
  • У дробей 3/8, 5/8, 17/8 общий знаменатель 8.
  • Определите числители. Чтобы сложить дроби с общим знаменателем, сложите их числители, а результат запишите над знаменателем складываемых дробей.

    • У дробей 3/5 и 2/5 числители 3 и 2.
    • У дробей 3/8, 5/8, 17/8 числители 3, 5, 17.
  • Сложите числители. В задаче 3/5 + 2/5 сложите числители 3 + 2 = 5. В задаче 3/8 + 5/8 + 17/8 сложите числители 3 + 5 + 17 = 25.

  • Запишите суммарную дробь. Помните, что при сложении дробей с общим знаменателем он остается без изменений – складываются только числители.

    • 3/5 + 2/5 = 5/5
    • 3/8 + 5/8 + 17/8 = 25/8
  • Если нужно, преобразуйте дробь. Иногда дробь можно записать в виде целого числа, а не обыкновенной или десятичной дроби. Например, дробь 5/5 легко преобразуется в 1, так как любая дробь, у которой числитель равен знаменателю, есть 1. Представьте пирог, разрезанный на три части. Если вы съедите все три части, то вы съедите целый (один) пирог.

    • Любую обыкновенную дробь можно преобразовать в десятичную; для этого разделите числитель на знаменатель. Например, дробь 5/8 можно записать так: 5 ÷ 8 = 0,625.
  • Если возможно, упростите дробь. Упрощенная дробь – эта дробь, числитель и знаменатель которой не имеют общих делителей.

    • Например, рассмотрим дробь 3/6. Здесь и у числителя, и у знаменателя есть общий делитель, равный 3, то есть числитель и знаменатель нацело делятся на 3. Поэтому дробь 3/6 можно записать так: 3 ÷ 3/6 ÷ 3 = ½.
  • Если нужно, преобразуйте неправильную дробь в смешанную дробь (смешанное число). У неправильной дроби числитель больше знаменателя, например, 25/8 (у правильной дроби числитель меньше знаменателя). Неправильную дробь можно преобразовать в смешанную дробь, которая состоит из целой части (то есть целого числа) и дробной части (то есть правильной дроби). Чтобы преобразовать неправильную дробь, например, 25/8, в смешанное число, выполните следующие действия:

    • Разделите числитель неправильной дроби на ее знаменатель; запишите неполное частное (целый ответ). В нашем примере: 25 ÷ 8 = 3 плюс некоторый остаток. В данном случае целый ответ – это целая часть смешанного числа.
    • Найдите остаток. В нашем примере: 8 х 3 = 24; полученный результат вычтите из исходного числителя: 25 - 24 = 1, то есть остаток равен 1. В данном случае остаток – это числитель дробной части смешанного числа.
    • Запишите смешанную дробь. Знаменатель не меняется (то есть равен знаменателю неправильной дроби), поэтому 25/8 = 3 1/8.
  • Одной из важнейших наук, применение которой можно увидеть в таких дисциплинах, как химия, физика и даже биология, является математика. Изучение этой науки позволяет развить некоторые умственные качества, улучшить и способность концентрироваться. Одна из тем, которые заслуживают отдельного внимания в курсе «Математика» - сложение и вычитание дробей. У многих учеников ее изучение вызывает затруднение. Возможно, наша статья поможет лучше понять эту тему.

    Как вычесть дроби, знаменатели которых одинаковые

    Дроби - это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:

    • Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m - b/m = (k-b)/m.

    Примеры вычитания дробей, знаменатели которых одинаковы

    7/19 - 3/19 = (7 - 3)/19 = 4/19.

    От числителя уменьшаемой дроби «7» отнимаем числитель вычитаемой дроби «3», получаем «4». Это число мы записываем в числитель ответа, а в знаменатель ставим то же число, что было в знаменателях первой и второй дроби - «19».

    На картинке ниже приведено еще несколько подобных примеров.

    Рассмотрим более сложный пример, где произведено вычитание дробей с одинаковыми знаменателями:

    29/47 - 3/47 - 8/47 - 2/47 - 7/47 = (29 - 3 - 8 - 2 - 7)/47 = 9/47.

    От числителя уменьшаемой дроби «29» отниманием по очереди числители всех последующих дробей - «3», «8», «2», «7». В итоге получаем результат «9», который записываем в числитель ответа, а в знаменатель записываем то число, которое находится в знаменателях всех этих дробей, - «47».

    Сложение дробей, имеющих одинаковый знаменатель

    Сложение и вычитание обыкновенных дробей осуществляется по одному и тому же принципу.

    • Для того чтобы сложить дроби, знаменатели которых одинаковы, необходимо числители сложить. Полученное число - числитель суммы, а знаменатель останется тот же: k/m + b/m = (k + b)/m.

    Рассмотрим, как это выглядит на примере:

    1/4 + 2/4 = 3/4.

    К числителю первой слагаемой дроби - «1» - добавляем числитель второй слагаемой дроби - «2». Результат - «3» - записываем в числитель суммы, а знаменатель оставляем тот же, что присутствовал в дробях, - «4».

    Дроби с различными знаменателями и их вычитание

    Действие с дробями, которые имеют одинаковый знаменатель, мы уже рассмотрели. Как видим, зная простые правила, решить подобные примеры достаточно легко. Но что делать, если необходимо произвести действие с дробями, которые имеют различные знаменатели? Многие учащиеся средних школ приходят в затруднение перед такими примерами. Но и здесь, если знать принцип решения, примеры уже не будут представлять для вас сложности. Здесь также существует правило, без которого решение подобных дробей просто невозможно.

      Чтобы произвести вычитание дробей с разными знаменателями, необходимо их привести к одинаковому наименьшему знаменателю.

      О том, как это сделать, мы поговорим подробнее.

      Свойство дроби

      Для того чтобы несколько дробей привести к одинаковому знаменателю, нужно использовать в решении главное свойство дроби: после деления или умножения числителя и знаменателя на одинаковое число получится дробь, равная данной.

      Так, например, дробь 2/3 может иметь такие знаменатели, как «6», «9», «12» и т. д., то есть она может иметь вид любого числа, которое кратно «3». После того как числитель и знаменатель мы умножим на «2», получится дробь 4/6. После того как числитель и знаменатель исходной дроби мы умножим на «3», получим 6/9, а если аналогичное действие произвести с цифрой «4», получим 8/12. Одним равенством это можно записать так:

      2/3 = 4/6 = 6/9 = 8/12…

      Как привести несколько дробей к одному и тому же знаменателю

      Рассмотрим, как привести несколько дробей к одному и тому же знаменателю. Для примера возьмем дроби, приведенные на картинке ниже. Для начала необходимо определить, какое число может стать знаменателем для их всех. Для облегчения разложим имеющиеся знаменатели на множители.

      Знаменатель дроби 1/2 и дроби 2/3 на множители разложить нельзя. Знаменатель 7/9 имеет два множителя 7/9 = 7/(3 х 3), знаменатель дроби 5/6 = 5/(2 х 3). Теперь необходимо определить, какие же множители будут наименьшими для всех этих четырех дробей. Так как в первой дроби в знаменателе имеется число «2», значит, оно должно присутствовать во всех знаменателях, в дроби 7/9 присутствуют две тройки, значит, они также обе должны присутствовать в знаменателе. Учитывая вышесказанное, определяем, что знаменатель состоит из трех множителей: 3, 2, 3 и равен 3 х 2 х 3 = 18.

      Рассмотрим первую дробь - 1/2. В ее знаменателе имеется «2», но нет ни одной цифры «3», а должно быть две. Для этого мы знаменатель умножаем на две тройки, но, согласно свойству дроби, мы и числитель должны умножить на две тройки:
      1/2 = (1 х 3 х 3)/(2 х 3 х 3) = 9/18.

      Аналогично производим действия с оставшимися дробями.

      • 2/3 - в знаменателе не хватает одной тройки и одной двойки:
        2/3 = (2 х 3 х 2)/(3 х 3 х 2) = 12/18.
      • 7/9 или 7/(3 х 3) - в знаменателе не хватает двойки:
        7/9 = (7 х 2)/(9 х 2) = 14/18.
      • 5/6 или 5/(2 х 3) - в знаменателе не хватает тройки:
        5/6 = (5 х 3)/(6 х 3) = 15/18.

      Все вместе это выглядит так:

      Как вычесть и сложить дроби, имеющие различные знаменатели

      Как уже говорилось выше, для того чтобы произвести сложение или вычитание дробей, имеющих различные знаменатели, их необходимо привести к одному знаменателю, а дальше воспользоваться правилами вычитания дробей, имеющих одинаковый знаменатель, о котором уже рассказывалось.

      Рассмотрим это на примере: 4/18 - 3/15.

      Находим кратное чисел 18 и 15:

      • Число 18 состоит из 3 х 2 х 3.
      • Число 15 состоит из 5 х 3.
      • Общее кратное будет состоять из следующих множителей 5 х 3 х 3 х 2 = 90.

      После того как знаменатель будет найден, необходимо вычислить множитель, который будет отличным для каждой дроби, то есть то число, на которое необходимо будет умножить не только знаменатель, но и числитель. Для этого число, которое мы нашли (общее кратное), делим на знаменатель той дроби, у которой нужно определить дополнительные множители.

      • 90 поделить на 15. Полученное число «6» будет множителем для 3/15.
      • 90 поделить на 18. Полученное число «5» будет множителем для 4/18.

      Следующий этап нашего решения - приведение каждой дроби к знаменателю «90».

      Как это делается, мы уже говорили. Рассмотрим, как это записывается в примере:

      (4 х 5)/(18 х 5) - (3 х 6)/(15 х 6) = 20/90 - 18/90 = 2/90 = 1/45.

      Если дроби с маленькими числами, то можно общий знаменатель определить, как в примере, приведенном на картинке ниже.

      Аналогично производится и имеющих различные знаменатели.

      Вычитание и имеющих целые части

      Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:

      • Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, - числитель неправильной дроби. Знаменатель же остается неизменным.
      • Если дроби имеют различные знаменатели, следует привести их к одинаковому.
      • Произвести сложение или вычитание с одинаковыми знаменателями.
      • При получении неправильной дроби выделить целую часть.

      Есть и иной способ, при помощи которого можно осуществить сложение и вычитание дробей с целыми частями. Для этого производятся отдельно действия с целыми частями, и отдельно действия с дробями, а результаты записываются вместе.

      Приведенный пример состоит из дробей, которые имеют одинаковый знаменатель. В том случае, когда знаменатели различны, их необходимо привести к одинаковому, а далее выполнить действия, как показано на примере.

      Вычитание дробей из целого числа

      Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

      7 - 4/9 = (7 х 9)/9 - 4/9 = 53/9 - 4/9 = 49/9.

      Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

    Исследование, проведенное Алышевой Т.В. 1 , свидетельствует о целесообразности при изучении действий сложения и вычитания обыкновенных дробей с одинаковыми знаменателями использовать аналогию со сложением и вычитанием уже известных учащимся

    Алышева Т. В. Изучение арифметических действий с обыкновенными дробями учащимися вспомогательной школы //Дефектология. -1992.- № 4.- С. 25-27.

    исел, полученных в результате измерения величин, и проводить ручение действий дедуктивным методом, т. е. «от общего к част­ому».

    Сначала повторяется сложение и вычитание чисел с наимено-»аниями мер стоимости, длины. Например, 8 р. 20 к. ± 4 р. 15 к.

    Лри выполнении устного сложения и вычитания нужно склады-

    3 м 45 см ± 2 м 24 см - сначала складываются (вычитаются) метры, а потом сантиметры.

    ; При сложении и вычитании дробей рассматривается общий случай: выполнение этих действий со смешанными дробями (зна­менатели одинаковые): 3-?- ± 1-г. В этом случае надо: «Сложить (вычесть) целые числа, затем числители, а знаменатель остается тем же». Это общее правило распространяется на все случаи сложения и вычитания дробей. Постепенно вводятся частные слу­чаи: сложение смешанного числа с дробью 1у + -= = \-= \, потом

    (1 1\ ^ "

    смешанного числа с целым \-= + 4 = 5у. После этого рассматри­ваются более трудные случаи вычитания: 1) из смешанного числа дроби: 4д~п=4д-; 2) из смешанного числа целого: 4д-2=2-д-.

    После усвоения этих достаточно простых случаев вычитания учащиеся знакомятся с более трудными случаями, когда требуется преобразование уменьшаемого: вычитание из одной целой едини­цы или из нескольких единиц, например:

    \ О О О 2, л О <-)Э О п~

    1 ~Ь-~Ь~Ь-~5" 6 ~~5~ 2 Ь~"5- 2 "5-

    В первом случае единицу нужно представить в виде дроби со знаменателем, равным знаменателю вычитаемого. Во втором слу­чае из целого числа берем единицу и также ее записываем в виде неправильной дроби со знаменателем вычитаемого, получаем в уменьшаемом смешанное число. Вычитание выполняется по обще­му правилу.

    Наконец рассматривается наиболее трудный случай вычитания: из смешанного числа, причем числитель дробной части меньше

    числителя в вычитаемом: 5^-^. В этом случае надо уменьшае­мое изменить так, чтобы можно было применить общее правило, т. е. в уменьшаемом занять из целого одну единицу и раздробить

    в пятые доли, получим 1=-г, да еще -г, получится -г, прим<-|>

    примет такой вид: 4^~^, к его решению уже можно применим

    общее правило.

    Использование дедуктивного метода обучения сложению и вычп танию дробей будет способствовать развитию у учащихся умении обобщать, сравнивать, дифференцировать, включать отдельные слу­чаи вычислений в общую систему знаний о действиях с дробями.

    2. Сложение и вычитание дробей и смешанных чисел с разными знаменателями*.

    а) больший знаменатель является НОЗ:

    о?+|, Н; 2) 1|+", 4-ш" 3 > 4+4 4-4

    б) больший знаменатель не является НОЗ:

    п 3 4 7 2. 9 г.3 , 7 ,3 2. 04^2.. 1 гЗ 9 2 1} Б-+7" 8-9" 2) %+8" 1 5-5" 3) %+%" 5 Т- 2 3"

    Выполнение сложения и вычитания дробей, имеющих разные з менатели, представляет значительные трудности для умственно -сталых школьников, так как, прежде чем выполнять действия, тре­буется привести дроби к наименьшему знаменателю, в связи с чем внимание учащихся переключается на дополнительную операцию (удлиняется запись выражения - требуется несколько раз перепи­сывать выражение, ставя знак равенства). Это требует от учащихся сосредоточенности внимания. А внимание учащихся с нарушением ин­теллекта характеризуется, как известно, отвлекаемостью, рассеяннос­тью. Это нередко приводит к потере целых, знака равенства, а то и ком­понента. Чтобы избежать подобных ошибок, можно на первых порах предложить учащимся запись выражения проговорить устно, а именно сказать, какие операции надо выполнить и в какой последовательности: 1) привести дроби к наименьшему знаменателю; 2) выполнить дейст­вие; 3) произвести, если нужно, преобразование в ответе.

    При выполнении сложения дроби со смешанным числом надо обратить внимание учащихся на значение суммы и каждого слагаемого, сравнив со свойством суммы целых чисел.

    То же самое необходимо сделать и при знакомстве с вычитанием дро­бей, подчеркнув общность свойств разности целых и дробных чисел.

    Для этого целесообразно решить и сравнить пары примеров на нахождение суммы и разности целых и дробных чисел: 310

    4,3 . 3 , -1 5 + 5" 1 ТО +5 ТО

    Вывод: сумма больше каждого из слагаемых, разность меньше или равна уменьшаемому.

    Сложение и вычитание дробей необходимо связать с жизненно-практическими заданиями и упражнениями, которые могут быть мыполнены и устно. Например:

    «На отделку блузки отрезали -^ м белой и -^ м синей тесьмы.

    Сколько тесьмы пошло на отделку блузки?»

    ъ - - о -3

    «От рейки длиной 2 м отпилили один кусок длиной -% м и

    второй - длиной 4" м. Какова длина оставшейся рейки?»

    Отметим, что в этих задачах даны числа, полученные от изме­рения величин. Это позволяет закрепить в памяти учащихся наи­более употребительные в повседневной жизни соотношения: к- м - это 50 см, -^ м - это 25 см, -? м - это 20 см, -^ ч - это 15 мин и т. д.

    В этот период следует решать с учащимися примеры на нахож­дение неизвестных компонентов сложения и вычитания, сопостав­ляя нахождение неизвестных компонентов сложения и вычитания дробных и целых чисел.

    Учащиеся должны убедиться, что переместительный и сочета­тельный закон арифметических действий над целыми числами рас­пространяются и на действия над дробными числами. Так же как и при изучении действий с целыми числами, учащиеся получают

    лишь практическое знакомство с законами - их использование

    3 для рационализации вычислений. Например, решить пример -^+2

    удобнее, переставив местами слагаемые, т. е. использовав пере­местительный закон сложения.

    Решение примеров с предварительным обдумыванием порядка вы­полнения действий развивает сообразительность, смекалку, предуп­реждает шаблонность и имеет большое корригирующее значение.

    УМНОЖЕНИЕ И ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ*

    В школе VIII вида рассматривается только умножение и деле­ние дробей и смешанных чисел на целое число. Изучение этих

    действий, так же как и изучение сложения и вычитания, дает параллельно.

    Для удобства изложения мы сначала рассмотрим методику зь комства с умножением дроби на целое число, а затем с деление дроби на целое число.

    Прежде чем знакомить учащихся с умножением дроби на цел^ число, необходимо повторить умножение целых чисел.

    При рассмотрении умножения дроби на целое число необхоД| мо соблюдать определенную последовательность разных случае] которая определяется степенью их трудности.

      Умножение дроби на целое число.

      Умножение смешанного числа на целое. Подготовительными заданиями к объяснению умножения дрой

    на целое число являются задания на умножение целых чисел | последующей заменой действия умножения действием сложений например: заменить умножение 7-3=21 сложением 7+7+7=21| заменить действие умножения (первый множитель - дробь второй множитель - целое число) действием сложен» д-хЗ=д-+д-4-д-=-д. При этом обращается внимание на числитель знаменатель произведения и первого множителя. С помощью во просов: «Изменился ли знаменатель дроби при умножении? Чт| произошло с числителем дроби?» - учащиеся приходят к выводу^ что числитель увеличился в 3 раза, а знаменатель не изменился.. Для вывода правила умножения дроби на целое число недостаточ­но ограничиться рассмотрением только одного примера, нужно, рассмотреть еще несколько примеров:

    2

    2,2,2 2+2+2 =++ 7 = ~7~

    3 6

    - ~- 7 ;

    3 2 6 3~

    Правильность ответов в этих примерах необходимо подтвер­дить демонстрацией рисунков.

    В рассмотренных примерах внимание учащихся надо обратить на то, что в числителе сумму одинаковых слагаемых (трех двоек) можно заменить произведением (2 3). Это позволит подвести их

    л » 2 о 2 3 6

    к более сокращенной записи: у 3= - ^ - =у, а следовательно, и к

    выводу правила. Кроме того, при умножении дроби на целое число получается произведение, большее первого множителя. После усвоения правила умножения дроби на целое число необхо­димо показать учащимся, что до умножения числителя на целое 312

    Исло надо сопоставить эти числа со знаменателем и, если у них Ьть общий делитель, разделить на него и только потом произвес-умножение. Такой прием предварительного сокращения чисел,

    писанных в числителе и знаменателе, облегчает вычисления, пример: -г-10=-?-=-г-=8. Это же действие выполним с пред-рительным сокращением числителя и знаменателя на общий |делитель:

    I Дети с интеллектуальным недоразвитием редко прибегают к | рациональным приемам вычисления, используя, как правило, толь­ко те приемы, которые стали стереотипными. Поэтому учителю надо иногда просто требовать, чтобы учащиеся использовали ра­циональные способы действий.

    Перед объяснением умножения смешанного числа на целое необходимо повторить умножение чисел, полученных при измере­нии величин, вида 15 р. 32 к.-3. Сначала следует дать подробную запись при решении этого примера: 1 р. = 100 к.

    15 р. = 100 к.-15=1500 к. 1500 к.+32 к. = 1532 к.

    Однако тут же надо показать, что некоторые примеры легче решать в уме, умножая отдельно число рублей и копеек.

    При умножении смешанного числа на целое обращается внима­ние на то, что смешанное число надо выразить (записать) в виде неправильной дроби, а затем выполнять умножение по правилу умножения дроби на целое число, например:

    -

    4 _ 35 „

    (Сопоставить с умножением 15 р. 32 к. на целое число 3.)

    Недостатком этого способа вычислений является его громозд­кость: большие числа, которые получаются в числителе, затрудня­ют вычисления. Однако у этого способа есть и преимущество: в дальнейшем, когда учащиеся будут знакомиться с делением сме­шанного числа на целое, перед выполнением действия им потребу­ется выразить смешанное число неправильной дробью.

    Наиболее сильным учащимся можно показать и второй сп| умножения смешанного числа на целое (без записи смешан| числа неправильной дробью), например:

    (

    Сопоставить с умножением чисел, полученных от измеренияличин, устно: 15 р. 32 к. -3=45 р. 96 к.)

    В этом случае умножается целое число на целое, получен», произведение записывается целым числом, затем умножаете!, дробная часть числа по правилу умножения дроби на целое число,.

    При изучении темы «Умножение дроби на целое число» следу*! ет решать примеры и задачи на увеличение дроби в несколько!

    2 раз. Необходимо показать учащимся, что пример у 3 можно про*

    произведение у и 3; множители у и 3, найти произведение. После!

    решения примера уЗ=у следует сравнить произведение и пер-

    выи множитель: у больше у в 3 раза, = меньше у в 3 раза.

    Надо решать примеры и с неизвестным числителем или знаме­нателем в первом множителе вида: -~--2=-г, т=г-2=-я-.

    Можно предложить и более трудные примеры вида:

    А, 4 1 ,-, 3 П г-, 2

    1 -а- 4 =Ъи" а =Г> П" П =5

    2. Дробь тг увеличить в 3 раза.

    Деление дроби на целое число дается в следующей последо­вательности:

      Деление дроби на целое число без предварительного сокра­ щения.

      Деление смешанного числа на целое число без предваритель­ ного сокращения.

      Деление с предварительным сокращением.

    Учащимся необходимо показать и такие случаи деления дроби или смешанного числа на целое, когда предварительное сокраще­ние облегчает процесс выполнения действия. Например:

    5- 2= 7^- = 5" 3 4- 9 = Т" :9 = 4^ = Т2-

    На основе наблюдений и конкретной деятельности учащиеся

    н"мнодятся к выводу: при делении дроби на целое число доли

    1.ПЮВЯТСЯ мельче, число же долей не изменяется. Например,

    | гни взять половину яблока и разделить эту половину на 2 рав-

    ц.к" части (-я- : 2 ] , то получится по яблока. Записываем: -к\2=-^.

    Каждый ученик должен самостоятельно половину круга (полоски, Отрезки) разделить на 2 равные части и записать результат деле-

    Части: -^:3=к- Учащиеся видят, что получились при делении девя­тые доли, а число их не изменилось. Сравниваются числитель и знаменатель частного и делимого: знаменатель увеличился в 3 раза, а числитель не изменился. Отсюда можно сделать вывод: чтобы разделить дробь на целое число, нужно знаменатель умно­жить на это число, а числитель оставить тот же. На основе правила решается пример:Затем на предметах уча-

    щиеся должны еще раз показать процесс деления и убедиться, что пример решен верно.

    Деление дроби на целое число необходимо сопоставить с умно­жением дроби на целое число, решая взаимно обратные примеры видаПри этом следует сравнить

    произведение и частное соответственно с первым множителем и делимым. Это надо для того, чтобы учащихся подвести к обобще­нию: при умножении дроби на целое число произведение во столь­ко раз больше первого множителя, сколько единиц содержится во втором множителе. Аналогичный вывод нужно сделать и для част­ного.

    Деление смешанного числа на целое дается по аналогии со вторым способом умножения смешанного числа на целое, напри­мер:Смешанное число обращается в непра-

    вильную дробь и деление производится по правилу деления дроби на целое число.

    Наиболее сильных учащихся нужно познакомить и с особыми случаями деления. Если целая часть смешанного числа нацело делится на делитель, то смешанное число не обращается в непра-

    вильную дробь, например: 2-^".2=\-^. Нужно делить сначала

    часть, результат записать в частное, затем делить дробную част

    правилу деления дроби на целое число: 12^:3=47^=4-^. В

    случае деление смешанного числа нужно показать на предметиц пособиях. После изучения всех четырех действий с обыкновений ми дробями предлагаются сложные примеры со скобками и порядок действий.

    НАХОЖДЕНИЕ ОДНОЙ И НЕСКОЛЬКИХ ЧАСТЕЙ ОТ ЧИСЛА

    Данная тема изучается сразу же после изучения темы чение дроби».

    Объяснение нового понятия следует начать с решения практ! ческой задачи, например: «От доски длиной 80 см отпилили -^ част Какой длины доску отпилили?» Эту задачу нужно показать,-, щимся на предметных пособиях. Взять планку длиной 80 ск

    проверить ее длину с помощью метровой линейки, а затем спре

    I сить, как найти часть этой планки. Учащиеся знают, что план

    нужно разделить на 4 равные части и отпилить одну четверту! часть. Отпиленный кусок планки измеряется. Его длина оказыв* ется равной 20 см. «Как получили число 20 см?» - спрашивав учитель. Ответ на этот вопрос вызывает у некоторых учащихс затруднение, поэтому надо показать, что раз планку делили на равные части, то, следовательно, делили 80 см на 4 равные часп Запишем решение этой задачи: -% от 80 см составляет 80 см:4- =20 см.

    Нахождение нескольких частей от числа в школе VIII шадв производится с помощью двух арифметических действий. В пер­вом действии определяется одна часть от числа, а во вто-

    ром - несколько частей. Например, надо найти -5- от 15. Находим 1 21

    Д- от 15, 15:3=5; -? больше -о- в 2 раза, поэтому 5 нужно умно­жить на 2. Находим * от 15, 5-2 = 10.

    3 от 15 15:3=5; | от 15 5-2=10.

    НАХОЖДЕНИЕ ЧИСЛА ПО ОДНОЙ ЕГО ЧАСТИ*

    |Работу над данной темой следует связать с задачами чисто ] I

    |ктического содержания, например: «Известно, что ^ р. со-

    |вляет 50 к. Чему равно все число? (Сколько копеек в целом бле?)» Учащиеся знают, что целый рубль - это 100 к. I Если это известно, то зная, чему равна его * часть, они опре-1лят неизвестное число, * часть рубля, т. е. 50 к., умножаем на! (знаменатель дроби).

    Таким образом рассматриваем решение еще ряда задач, связан-йх с определенным жизненным опытом и наблюдениями учащих-К: «-т- м составляет 25 см. Сколько сантиметров в 1 м?»

    Решение. 25 см-4= 100 см.

    «На платье израсходовали 3 м материи, что составляет -з- всей пленной материи. Сколько материи купили?» Решение. 3 мхЗ=9 м - это вся купленная материя. Теперь надо убедиться, что -^ от 9 м составляет 3 м, т, е. выполнить проверку, -д- от 9 м мы находить умеем. Нужно 9 м:3=3 м. 3 м - это -т часть всей купленной материи. Значит, задача решена верно.

    Когда учащиеся научатся решать задачи на нахождение числа по одной части, необходимо сопоставить решение этих задач с уже известными, т. е. с задачами на нахождение одной части от числа, выявляя сходство, различие в условии, вопросе и решении задач.

    Только прием сравнительного анализа позволит отдифференциро­вать задачи этих двух видов и сознательно подойти к их решению. Для сопоставления эффективнее всего, как показывает опыт, предлагать задачи с одинаковой фабулой:

    «В классе 16 учащихся. Девочки составляют -т- часть всех учащихся. Сколько девочек в классе?» Решение Найти от 16 учеников. 16 уч.:4=4 уч.

    Ответ. В классе 4 девочки.

    «В классе 4 девочки, что составляет -у часть всех учащи}! класса. Сколько всего учащихся в классе?»

    4 уч. -4=16 уч.

    Ответ. В классе 16 учащихся.