Урок по физике явление самоиндукции индуктивность. Тема урока: «Явление самоиндукции

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Цель урока : сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны.

Ход урока

Проверка домашнего задания методом индивидуального опроса

1. Получить формулу для вычисления электродвижущей силы индукции для проводника, движущегося в магнитном поле.

2. Вывести формулу для вычисления электродвижущей силы индукции, используя закон электромагнитной индукции.

3. Где применяется и как устроен электродинамический микрофон?

4. Задача. Сопротивление проволочного витка равно 0,03 Ом. Магнитный поток уменьшается внутри витка на 12 мВб. Какой электрический заряд проходит через поперечное сечение витка?

Решение. ξi=ΔФ/Δ t; ξi= Iiʹ·R; Ii =Δq/Δt; ΔФ/Δt = Δq R/Δt; Δq = ΔФΔt/ RΔt; Δq= ΔФ/R;

Изучение нового материала

1. Самоиндукция.

Если по проводнику идет переменный ток, то он создает ЭДС индукции в этом же проводнике – это явление

Самоиндукции. Проводящий контур играет двоякую роль: по нему идет ток, в нем же создается ЭДС индукции этим током.

На основании правила Ленца; когда ток увеличивается, напряженность вихревого электрического поля, направлена против тока, т.е. препятствует его увеличению.

Во время уменьшения тока вихревое поле его поддерживает.

Рассмотрим схему на которой видно, что сила тока достигает определенного

значения постепенно, через какое – то время.

Демонстрация опытов со схемами. С помощью первой цепи покажем, как появляется ЭДС индукции при замыкании цепи.

При замыкании ключа первая лампа загорается мгновенно, вторая с опозданием, из-за большой самоиндукции в цепи, которую создает катушка с сердечником.

С помощью второй цепи продемонстрируем появление ЭДС индукции при размыкании цепи.

В момент размыкания через амперметр, пойдет ток направленный,против начального тока.

При размыкании сила тока может превысить первоначальное значение тока. Значит, ЭДС самоиндукции может быть больше ЭДС источника тока.

Провести аналогию между инерцией и самоиндукцией

Индуктивность.

Магнитный поток пропорционален величине магнитной индукции и силе тока. Ф~B~I.

Ф= L I; где L- коэффициент пропорциональности между током и магнитным потоком.

Данный коэффициент называют чаще индуктивностью контура или коэффициентом самоиндукции.

Используя величину индуктивности, закон электромагнитной индукции можно записать так:

ξis= – ΔФ/Δt = – L ΔI/Δt

Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающий в контуре при изменении силы тока на 1 А за 1 с.

Измеряют индуктивность в генри (Гн) 1 Гн = 1 В с/А

О значении самоиндукции в электротехнике и радиотехнике.

Вывод: когда по проводнику идет изменяющийся ток появляется вихревое электрическое поле.

Вихревое поле тормозит свободные электроны при увеличении тока и поддерживает его при уменьшении.

Закрепление изученного материала.

Как объяснить явление самоиндукции?

– Провести аналогию между инерцией и самоиндукцией.

– Что такое индуктивность контура, в каких единицах измеряется индуктивность?

– Задача. При силе тока в 5 А в контуре возникает магнитный поток 0,5 мВб. Чему будет равна индуктивность контура?

Решение. ΔФ/Δt = – L ΔI/Δt; L = ΔФ/ΔI; L =1 ·10-4Гн

Подведем итоги урока

Домашнее задание: §15, повт. §13, упр. 2 № 10




  1. Цель урока: сформулировать количественный закон электромагнитной индукции; учащиеся должны усвоить, что такое ЭДС магнитной индукции и что такое магнитный поток. Ход урока Проверка домашнего задания...
  2. Цель урока: сформировать у учащихся представление о существовании сопротивления только в цепи переменного тока – это емкостное и индуктивное сопротивления. Ход урока Проверка домашнего задания...
  3. Цель урока: сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током. Ход урока Проверка домашнего задания методом тестирования...
  4. Цель урока: ввести понятие электродвижущей силы; получить закон Ома для замкнутой цепи; создать у учащихся представление о различии между ЭДС, напряжением и разностью потенциалов. Ход...
  5. Цель урока: сформировать у учащихся представление об активном сопротивлении в цепи переменного тока, и о действующем значении силы тока и напряжения. Ход урока Проверка домашнего...
  6. Цель урока: сформировать понятие, что ЭДС индукции может возникать или в неподвижном проводнике, помещенном в изменяющееся магнитное поле, или в движущемся проводнике, находящемся в постоянном...
  7. Цель урока: выяснить, как произошло открытие электромагнитной индукции; сформировать понятие об электромагнитной индукции, значение открытия Фарадея для современной электротехники. Ход урока 1. Анализ контрольной работы...
  8. Цель урока: рассмотреть устройство и принцип действия трансформаторов; привести доказательства, что электрический ток никогда не имел бы такого широкого применения, если бы в свое время...
  9. Цель урока: выяснить, какой причиной вызвана ЭДС индукции в движущихся проводниках, помещенных в постоянное магнитное поле; подвести учащихся к выводу, что действует на заряды сила...
  10. Цель урока: контроль усвоения, учащимися изученной темы, развитие логического мышления, совершенствование вычислительных навыков. Ход урока Организация учащихся на выполнение контрольной работы Вариант 1 №1. Явление...
  11. Цель урока: сформировать у учащихся представление об электрическом и магнитном поле, как об едином целом – электромагнитном поле. Ход урока Проверка домашнего задания методом тестирования...
  12. Цель урока: проверить знания учащихся по вопросам изученной темы, совершенствовать навыки решения задач различных видов. Ход урока Проверка домашнего задания Ответы учащихся по подготовленным дома...
  13. Цель урока: повторить и обобщить знания по пройденной теме; совершенствовать умение логически мыслить, обобщать, решать качественные и расчетные задачи. Ход урока Проверка домашнего задания 1....
  14. Цель урока: доказать учащимся, что свободные электромагнитные колебания в контуре не имеют практического применения; используются незатухающие вынужденные колебания, которые имеют большое применение на практике. Ход...
  15. Цель урока: сформировать понятие о модуле магнитной индукции и силе Ампера; уметь решать задачи на определение этих величин. Ход урока Проверка домашнего задания методом индивидуального...

Слайд 2

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

Слайд 3

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

Слайд 4

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Слайд 5

Проявление явления самоиндукции

  • Слайд 6

    Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

    Слайд 7

    ИНДУКТИВНОСТЬ

    От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

    Слайд 8

    Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.

    Слайд 9

    Также индуктивность можно рассчитать по формуле:

    где Ф - магнитный поток через контур, I - сила тока в контуре.

    Слайд 10

    Единицы измерения индуктивности в системе СИ:

  • Слайд 11

    Индуктивность катушки зависит от:

    числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

    Слайд 12

    ЭДС САМОИНДУКЦИИ

    ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

    Слайд 13

    ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

    Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

    Слайд 14

    Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

    Посмотреть все слайды

    1-й семестр

    ЭЛЕКТРОДИНАМИКА

    3. Электромагнитное поле

    УРОК 9/36

    Тема. Самоиндукция. Индуктивность

    Цель урока: расширить представление учащихся о явлении электромагнитной индукции; разъяснить сущность явления самоиндукции.

    Тип урока: урок изучения нового материала.

    ПЛАН УРОКА

    Контроль знаний

    1. Явление электромагнитной индукции.

    2. Закон электромагнитной индукции.

    3. Правило Ленца.

    Демонстрации

    1. Явление самоиндукции во время размыкания и замыкания круга.

    2. Использование самоиндукции для зажигания люминесцентной лампы.

    3. Фрагменты видеофильма «Явление самоиндукции».

    Изучение нового материала

    1. Самоиндукция.

    2. ЭДС самоиндукции.

    3. Индуктивность

    Закрепление изученного материала

    1. Качественные вопросы.

    2. Учимся решать задачи.

    ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

    Первый уровень

    1. В какой момент искрит рубильник: в случае замыкания или размыкания круга?

    2. Когда можно наблюдать явление самоиндукции в цепи постоянного тока?

    3. Почему нельзя мгновенно изменить силу тока в замкнутом контуре?

    Второй уровень

    1. Как зависит значение модуля вектора магнитной индукции от силы тока?

    2. Опыты показывают, что индуктивность катушки увеличивается в соответствии с увеличением числа витков в катушке. Как этот факт можно объяснить?

    ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

    ) . Качественные вопросы

    1. Почему за отрыва дуги трамвая от воздушного провода возникает искрение?

    2. Электромагнит с разомкнутым сердечником включен в круг постоянного тока. При замыкании якорем сердечника происходит кратковременное уменьшение силы тока в цепи. Почему?

    3. Почему отключение от питающей сети мощных электродвигателей осуществляют плавно и медленно при помощи реостата?

    ) . Учимся решать задачи

    1. Сверхпроводящую катушку индуктивностью 5 Гн замыкают на источник тока с ЭДС 20 В и очень малым внутренним сопротивлением. Считая, что сила тока в катушке увеличивается равномерно, определите время, за которое сила тока достигнет 10 А.

    Решения. Сила тока в катушке увеличивается постепенно вследствие явления самоиндукции. Воспользуемся законом Ома для полной цепи: где - полная ЭДС цепи, состоящей из ЭДС источника и ЭДС самоиндукции: Тогда закон Ома принимает вид.

    План–конспект урока по физике «Самоиндукция. Индуктивность. Энергия магнитного поля тока» (8 класс)

    Тема урока: Самоиндукция. Индуктивность. Энергия магнитного поля.

    Цель : Формирование понятия явления самоиндукции, его проявлении в цепях электрического тока. Применение самоиндукции в электротехнических устройствах.

    Задачи:

    Образовательные: Повторить знание учащихся о явление электромагнитной индукции, углубить их; на этой основе изучить явление самоиндукции.

    Воспитательные: Воспитать интерес к предмету, трудолюбие и умение внимательно оценивать ответы товарищей. Показать значение причинно- следственных связей в познаваемости явлений.

    Развивающие: Развитие физического мышления учащихся, расширение понятийного аппарата учащихся, формирование умений анализировать информацию, делать выводы из наблюдений и опытов.

    Тип урока: урок изучения нового материала.

    Оборудование: Катушка индуктивности с сердечником – демонстрационная, источник питания, ключ, две лампочки на 3,5 В, реостат на 100 Ом, неоновая лампочка на 200В.

    Опыты: 1) опыт по наблюдению явления самоиндукции при замыкании цепи; 2) опыт по наблюдению явления самоиндукции при размыкании цепи;

    План урока:

      Организационный момент.

      Актуализация опорных знаний.

      Мотивация.

      Изучение нового материала.

      Закрепление.

      Домашнее задание.

    Ход урока

      Организационный момент. (1 мин)

      Актуализация опорных знаний.

    Что называют явлением электромагнитной индукции?

    Какая гипотеза Фарадея привела к открытию электромагнитной индукции?

    Как Фарадей открыл явление электромагнитной индукции?

    При каких условиях возникает индукционный ток в катушке?

    Отчего зависит направление индукционного тока?

    Чем объясняется отталкивание алюминиевого кольца при введение в него магнита и притяжение к магниту при его удалении из кольца?

    Почему разрезанное алюминиевое кольцо не взаимодействует с движущимся магнитом?

    Сформулируйте правило Ленца.

    Как с помощью правила Ленца определить направление индукционного тока в проводнике?

    3 . Мотивация.

    Основы электродинамики были заложены Ампером в 1820 году. Работы Ампера вдохновили многих инженеров на конструирование различных технических устройств, таких как электродвигатель (конструктор Б.С. Якоби), телеграф (С. Морзе), электромагнит, конструированием которого занимался известный американский ученый Генри. Создавая различные электромагниты, в 1832 году ученый открыл новое явление в электромагнетизме – явление самоиндукции. Об этом мы будем говорить на этом уроке.

    4.Изучение нового материала .

    Рассмотрим частный случай электромагнитной индукции: возникновение индукционного тока в катушке при изменении силы тока в ней.

    Для этого проведём опыт, изображённый на рисунке. Замкнём цепь ключом Кл. Лампа Л1 загорится сразу, а Л2 - с опозданием приблизительно в 1 с. Причина запаздывания заключается в следующем. Согласно явлению электромагнитной индукции, в реостате и в катушке возникают индукционные токи. Они препятствуют увеличению силы тока I 1 и I 2 (это следует из правила Ленца и правила правой руки). Но в катушке К индукционный ток будет значительно больше, чем в реостате Р, так как катушка имеет гораздо большее число витков и сердечник, т. е. обладает большей индуктивностью, чем реостат.

    В проделанном опыте мы наблюдаем явление самоиндукции.

    Явление самоиндукции заключается в возникновении индукционного тока в катушке при изменении силы тока в ней. При этом возникающий индукционный ток называется током самоиндукции. Это явление было открыто Джозефом Генри, практически одновременно с открытием явлением электромагнитной индукции Фарадеем.

    Самоиндукция при размыкании электрической цепи и энергия магнитного поля. Появление мощного индукционного тока при размыкании цепи свидетельствует о том, что магнитное поле тока в катушке обладает энергией. Именно за счёт уменьшения энергии магнитного поля совершается работа по созданию индукционного тока. В этот момент вспыхивает лампа Лн которая, при нормальных условиях, загорается при напряжении 200В. А накопилась эта энергия раньше, при замыкании цепи, когда за счёт энергии источника тока совершалась работа по преодолению тока самоиндукции, препятствующего увеличению тока в цепи, и его магнитного поля.

    Индуктивность - это величина, равная ЭДС самоиндукции при изменении силы тока в проводнике на 1 А за 1 с. Единица индуктивности - генри (Гн). 1 Гн = 1 В с/А. 1 генри - это индуктивность такого проводника, в котором возникает ЭДС самоиндукции 1 вольт при скорости изменения силы тока 1 А/с. L называют индуктивностью. Демонстрация различных катушек индуктивности применяемых в радиотехнике и электротехнике. Используем раздаточный материал для просмотра учащимися. (катушки индуктивности)

    Люминесцентная лампа – это газоразрядные источники света. Их световой поток формируется за счет свечения люминофоров, на которые воздействует ультрафиолетовое излучение разряда. Его видимое свечение обычно не превышает 1-2%. Люминесцентные лампы (ЛЛ) получили широкое применение в освещении помещений разного типа. Их световая отдача в разы больше, чем у привычных ламп накаливания. В качестве выключателя используют устройство – стартёр. Стартер представляет собой небольшую газоразрядную лампу тлеющего разряда. Стеклянная колба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмассовый корпус. При включении схемы на напряжение сети оно полностью окажется приложенным к стартеру. Электроды стартера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток нагревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится. После зажигания лампы в цепи установится ток, равный номинальному рабочему току лампы. Этот ток обусловит такое падение напряжения на дросселе, что напряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер включен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стартере, его электроды останутся разомкнутыми при горении лампы.

    5. Закрепление.

    1. Какое явление изучалось на проделанном опыте.
    2. В чём заключается явление самоиндукции?
    3. Может ли возникнуть ток самоиндукции в прямом проводнике с током? Если нет, то объясните почему; если да, то при каком условии.
    4. За счёт уменьшения какой энергии совершалась работа по созданию индукционного тока при размыкании цепи?

    5. Какие факты доказывают, что магнитное поле обладает энергией?

    6. Что такое индуктивность?

    7. Назовите единицу индуктивности в СИ и как она называется?

    8. Что такое дроссель и для чего он нужен при работе люминесцентной лампы?

    Задача1. Какова индуктивность катушки, если при постепенном изменении в ней силы тока от 5 до 10А за 0,1 с возникает ЭДС самоиндукции, равная 20В?