Катион рубидия. Для чего необходим химический элемент рубидий в организме человека (характеристика с фото)? Применение изотопов рубидия

В 1861 году недавно изобретенный физический метод исследования веществ - спектральный анализ - еще раз продемонстрировал свое могущество и надежность, как залог большого будущего в науке и технике. С его помощью был открыт уже второй неизвестный ранее химический элемент - рубидий. Затем, с открытием в 1869 году Д. И. Менделеевым периодического закона, рубидий вместе с другими элементами занял свое место в таблице, которая внесла порядок в химическую науку.

Дальнейшее изучение рубидия показало, что этот элемент обладает целым рядом интересных и ценных свойств. Мы рассмотрим здесь наиболее характерные и важные из них.

Общая характеристика химического элемента

Рубидий имеет атомный номер 37, то есть в атомах его в состав ядер входит именно такое количество положительно заряженных частиц - протонов. Соответственно нейтральный атом обладает 37 электронами.

Символ элемента - Rb. В рубидий классифицируется как элемент I группы, период - пятый (в короткопериодном варианте таблицы он относится к главной подгруппе I группы и расположен в шестом ряду). Является щелочным металлом, представляет собой мягкое, очень легкоплавкое кристаллическое вещество серебристо-белого цвета.

История обнаружения

Честь открытия химического элемента рубидий принадлежит двум немецким ученым - химику Роберту Бунзену и физику Густаву Кирхгофу, авторам спектроскопического метода изучения состава вещества. После того, как в 1860 году применение спектрального анализа привело к открытию цезия, ученые продолжили исследования, и уже в следующем году при изучении спектра минерала лепидолита ими были обнаружены две неотождествленные линии темно-красного цвета. Именно благодаря характерному оттенку наиболее сильных спектральных линий, по которым удалось установить существование неизвестного ранее элемента, он и получил свое название: слово rubidus переводится с латыни как «багровый, темно-красный».

В 1863 году Бунзен впервые выделил из воды минерального источника металлический рубидий путем упаривания большого количества раствора, разделения солей калия, цезия и рубидия и, наконец, восстановления металла с использованием сажи. Позднее Н. Бекетов сумел восстановить рубидий из его гидроксида с помощью порошка алюминия.

Физическая характеристика элемента

Рубидий - легкий металл, он имеет плотность 1,53 г/см 3 (при нулевой температуре). Образует кристаллы с кубической объемно-центрированной решеткой. Плавится рубидий всего при 39 °C, то есть при комнатной температуре его консистенция уже близка к пастообразной. Металл кипит при 687 °C, пары его имеют зеленовато-синий оттенок.

Рубидий - парамагнетик. По проводимости он более чем в 8 раз превосходит ртуть при 0 °C и почти во столько же раз уступает серебру. Подобно другим щелочным металлам, рубидий отличает очень низкий порог фотоэффекта. Для возбуждения фототока в нем достаточно уже длинноволновых (то есть низкочастотных и несущих меньшую энергию) красных световых лучей. В этом отношении по чувствительности его превосходит лишь цезий.

Изотопы

Рубидий имеет атомный вес 85,468. В природе встречается в виде двух изотопов, различающихся количеством нейтронов в ядре: рубидий-85 составляет наибольшую долю (72,2%), и в значительно меньшем количестве - 27,8% - рубидий-87. Ядра их атомов, помимо 37 протонов, содержат соответственно по 48 и по 50 нейтронов. Более легкий изотоп стабилен, а рубидий-87 имеет огромный по длительности период полураспада - 49 миллиардов лет.

В настоящее время искусственным путем получено несколько десятков радиоактивных изотопов этого химического элемента: от сверхлегкого рубидия-71 до перегруженного нейтронами рубидия-102. Периоды полураспада искусственных изотопов варьируют от нескольких месяцев до 30 наносекунд.

Основные химические свойства

Как было отмечено выше, в ряду химических элементов рубидий (как натрий, калий, литий, цезий и франций) относится к щелочным металлам. Особенность электронной конфигурации их атомов, определяющая химические свойства - это наличие только одного электрона на внешнем энергетическом уровне. Этот электрон легко покидает атом, а ион металла при этом приобретает энергетически выгодную электронную конфигурацию стоящего перед ним в таблице Менделеева инертного элемента. Для рубидия это - конфигурация криптона.

Таким образом, рубидий, как и прочие щелочные металлы, имеет ярко выраженные восстановительные свойства и степень окисления +1. Щелочные свойства сильнее проявляются с увеличением атомного веса, поскольку при этом растет и радиус атома, и, соответственно, ослабляется связь внешнего электрона с ядром, что обусловливает повышение химической активности. Поэтому рубидий активнее лития, натрия и калия, а цезий, в свою очередь, активнее рубидия.

Суммируя все вышесказанное о рубидии, разбор элемента можно произвести, как на иллюстрации, представленной ниже.

Соединения, образуемые рубидием

На воздухе этот металл ввиду своей исключительной реакционной активности окисляется бурно, с воспламенением (пламя имеет фиолетово-розоватый цвет); в ходе реакции образуются надпероксид и пероксид рубидия, проявляющие свойства сильных окислителей:

  • Rb + O 2 → RbO 2 .
  • 2Rb + O 2 → Rb 2 O 2 .

Оксид образуется в том случае, если доступ кислорода к реакции ограничен:

  • 4Rb + O 2 → 2Rb 2 O.

Это вещество желтого цвета, реагирующее с водой, кислотами и кислотными оксидами. В первом случае образуется одна из наиболее сильных щелочей - гидроксид рубидия, в остальных - соли, например, сульфат рубидия Rb 2 SO 4 , большинство которых растворимы.

Еще более бурно, сопровождаясь взрывом (так как мгновенно воспламеняются и рубидий, и освобождаемый водород), протекает реакция металла с водой, в которой образуется гидроксид рубидия, чрезвычайно агрессивное соединение:

  • 2Rb + 2H 2 O → 2RbOH +H 2 .

Рубидий - химический элемент, способный также непосредственно реагировать со многими неметаллами - с фосфором, водородом, углеродом, кремнием, с галогенами. Галогениды рубидия - RbF, RbCl, RbBr, RbI - хорошо растворимы в воде и в некоторых органических растворителях, например, в этаноле или в муравьиной кислоте. Взаимодействие металла с серой (растирание с серным порошком) происходит взрывообразно и приводит к образованию сульфида.

Существуют и малорастворимые соединения рубидия, такие как перхлорат RbClO 4 , они находят применение в аналитике для определения этого химического элемента.

Нахождение в природе

Рубидий - элемент, не относящийся к редким. Встречается он практически везде, входит в состав множества минералов и горных пород, а также содержится в океане, в подземных и речных водах. В земной коре содержание рубидия достигает суммарного значения содержания меди, цинка и никеля. Однако, в отличие от многих гораздо более редких металлов, рубидий - чрезвычайно рассеянный элемент, его концентрация в породе очень низка, и он не образует собственных минералов.

В составе полезных ископаемых рубидий повсеместно сопутствует калию. Наибольшей концентрацией рубидия отличаются лепидолиты - минералы, служащие также источником лития и цезия. Так что рубидий в небольших количествах всегда присутствует там, где обнаруживаются другие щелочные металлы.

Немного о применении рубидия

Краткую характеристику хим. элемента рубидия можно дополнить несколькими словами о том, в каких областях используется этот металл и его соединения.

Рубидий находит применение в производстве фотоэлементов, в лазерной технике, входит в состав некоторых специальных сплавов для ракетной техники. В химической промышленности соли рубидия используются благодаря высокой каталитической активности. Один из искусственных изотопов, рубидий-86, применяется в гамма-дефектоскопии и, кроме того, в фармацевтической промышленности для стерилизации лекарственных препаратов.

Еще один изотоп, рубидий-87, используют в геохронологии, где он служит для определения возраста древнейших горных пород благодаря очень большому периоду полураспада (рубидий-стронциевый метод).

Если несколько десятков лет назад считалось, что рубидий - химический элемент, область применения которого едва ли будет расширяться, то в настоящее время для этого металла появляются все новые перспективы, например, в катализе, в высокотемпературных турбоагрегатах, в специальной оптике и в других сферах. Так что в современных технологиях рубидий играет и будет продолжать играть важную роль.

Элемент рубидий представляет собой щелочной металл белого цвета с металлическим блеском (см. фото). Легко поддается плавке, этот процесс происходит при температуре всего 39°С. По всем своим характеристикам, элемент схож с калием и натрием. Название Rubidium – лат. темно-красный было ему присвоено не за природную окраску. Немецкие ученые Бунзен и Кирхгоф исследовали новое вещество в спектрографе, и заметили красные линии.

Рубидий очень активный элемент, но его характерной особенностью является то, что большинство реакций проходит со взрывом, и горение сопровождается ярким фиолетовым пламенем. Подобным образом происходит взаимодействие со всеми известными элементами, вне зависимости от их природы (металл-неметалл). Хранят его в сосудах с сухим керосином или в вакууме. Кроме того, что он активный, рубидий еще и является радиоактивным элементом, постепенно превращающимся в стронций.

Это вещество, по своей природе, очень уникально. Под воздействием света оно становится источником электрического тока. Такое явление названо фотоэффектом, и позволяет использовать элемент для изготовления фотоэлементов, применяющихся в кинематографе, телевидении, в дистанционном управлении автоматикой. Рубидий оценен очень высоко, и поэтому употребление достаточно мало (несколько десятков килограмм в год).

Также его применяют в изготовлении измерительных приборов, в качестве составляющих смазок для ракетной и космической техники, работающей в условиях вакуума, в рентгеновском оборудовании. Именно благодаря содержанию рубидия и стронция в породах геологам удается определить их возраст.

В природе рубидий достаточно распространен, но лишь в виде примесей. Его соли часто встречаются в минеральных источниках и в вулканических породах.

Действие рубидия и его биологическая роль

Действие макроэлемента на биологический организм связано с его концентрацией в определенных органах: костные ткани, легкие, головной мозг, яичники. Усвоение его из пищи происходит в желудочно-кишечном тракте, и выводится он с природными выделениями.

Ученые еще недостаточно изучили воздействие элемента на человека, но без сомнений, он играет немалую роль в организме и оказывает такое влияние:

  • может в некоторой мере заменять калий и выполнять его роль в активации ферментов;
  • оказывает антигистаминное воздействие (борется с воздействием аллергенов);
  • ослабляет воспалительные процессы в клетках и организме в целом;
  • восстанавливает баланс центральной нервной системы, оказывает успокаивающее воздействие.

Сегодня ученые изучают влияние элемента на стимуляцию кровообращения и употребление этих свойств для лечения гипотонии. Еще известный врач С. Боткин в 1898 году заметил, что хлорид рубидия способен повысить давление в артериях и связал это с процессом сужения сосудов и активацией сердечно-сосудистой системы.

Также замечено, что микродозы элемента способны вызывать сопротивляемость эритроцитов вредному воздействию, и увеличивают массу гемоглобина в них. Это в свою очередь приводит к повышению иммунитета.

Чаще всего изучение рубидия идет в комплексе с цезием. Соли этих элементов помогают перенести гипоксию – недостаток кислорода.

Надеемся, что этот элемент откроет медицинскому и ученому миру еще немало своих уникальных способностей.

Суточная норма

Суточная норма макроэлемента для взрослого человека составляет приблизительно 1-2 мг. Он довольно быстро усваивается организмом – уже через 1-1,5 часа можно найти его содержание в крови. Всего в тканях и органах человека содержится около 1 грамма рубидия.

Дефицит химического элемента в организме

Недостаток макроэлемента и его воздействие на организм человека практически не исследован. Опыты проводились только на животных и их реакция была такова:

  • снижение аппетита, и даже полный отказ от еды;
  • задержка роста, медленное развитие, укороченная продолжительность жизни;
  • преждевременные роды, выкидыши;
  • отклонения в развитии плода и снижение рождаемости.

Избыток рубидия

Переизбыток макроэлемента может вызывать опасные осложнения по той причине, что рубидий относится к той же категории ядовитых и токсичных элементов, что и мышьяк и серная кислота. Передозировки способны привести к нанесению большого вреда здоровью и даже к летальному исходу.

Причиной таких больших доз может послужить работа на предприятиях, где используются соединения вещества, которые проникают в организм с парами и пылью. Теоретически одной из причин может быть чрезмерное употребление элемента из пищи и воды.

Незначительное повышение уровня макроэлемента может привести к мигреням, бессоннице, заболеваниям и воспалениям легких и органов дыхания, частому сердцебиению (аритмии), кожным аллергическим заболеваниям и повышению уровня белков в моче. Если же отравление вызвано накоплением критических масс элемента, то последствия аналогичны тем, что вызываются дефицитом элемента: замедление роста и развития, сокращение срока жизни.

Опять уникальность? Положительный момент состоит в том, что для появления этих симптомов необходимо получать более 1000 мг ежедневно, а это уже очень сложно.

Лечение отравления проводится веществами, которые при реакции с токсинами образуют соединения, легко растворяющиеся в воде и выводящиеся почками. В основном это комплексообразователь на основе калия или натрия. Также применяют препараты, которые способы снимать характерные симптомы.

Каковы источники элемента?

Список продуктов, содержащих рубидий, в основном, состоит из растительной пищи. Вот самые основные из них: баклажаны, имбирь, картофель, свекла, томаты, чеснок, лук, грибы (шампиньоны и белый гриб), многие фрукты и сухофрукты, орехи (миндаль, грецкий и кедровый, фундук, фисташки), семена подсолнечника, злаки, бобовые. Самое большое количество наш организм получает с чаем и кофе (около 40% от всего количества) и минеральной водой в зависимости от происхождения.

Этот элемент способен накапливаться в живых тканях, особенно в морских организмов. Поэтому употребление морепродуктов поможет получить необходимое количество рубидия.

Показания к назначению

Показания к назначению макроэлемента исходят из природы воздействия на организм человека. Основное его медикаментозное назначение – это лечение расстройств нервной системы. Еще 100 лет назад его активно применяли для избавления от эпилепсии. Сегодня его применяют в качестве нейротропного препарата для укрепления нервной системы.

Также он может быть необходимым при лечении аллергических заболеваний, при слабости мышц, анемии.

Содержание статьи

РУБИДИЙ – (Rubidium) Rb, химический элемент 1-й (Ia) группы Периодической системы. Щелочной элемент. Атомный номер 37, относительная атомная масса 85,4678. В природе встречается в виде смеси стабильного изотопа 85 Rb (72,15%) и радиоактивного изотопа 87 Rb (27,86%) с периодом полураспада 4,8 . 10 10 лет. Искусственно получено еще 26 радиоактивных изотопов рубидия с массовыми числами от 75 до 102 и периодами полураспада от 37 мс (рубидий-102) до 86 дней (рубидий-83).

Степень окисления +1.

Рубидий был открыт в 1861 немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом и стал одним из первых элементов, открытых методом спектроскопии, который был изобретен Бунзеном и Кирхгоффом в 1859. Название элемента отражает цвет наиболее яркой линии в его спектре (от латинского rubidus – глубокий красный).

Изучая с помощью спектроскопа различные минералы, Бунзен и Кирхгофф заметили, что один из образцов лепидолита, присланный из Розены (Саксония), дает линии в красной области спектра. (Лепидолит – минерал калия и лития, который имеет примерный состав K 2 Li 3 Al 4 Si 7 O 21 (OH,F) 3 .) Эти линии не встречались в спектрах ни одного из известных веществ. Вскоре аналогичные темно-красные линии были обнаружены в спектре осадка, полученного после испарения воды из образцов, взятых из минеральных источников Шварцвальда. Однако содержание нового элемента в опробованных образцах было ничтожным, и чтобы извлечь мало-мальски ощутимые количества, Бунзену пришлось выпаривать свыше 40 м 3 минеральных вод. Из упаренного раствора он осадил смесь хлороплатинатов калия, рубидия и цезия. Для отделения рубидия от его ближайших родственников (и особенно от большого избытка калия) Бунзен подверг осадок многократной фракционированной кристаллизации и получил хлориды рубидия и цезия из наименее растворимой фракции и затем перевел их в карбонаты и тартраты (соли винной кислоты), что позволило еще лучше очистить рубидий и освободить его от основной массы цезия. Бунзену удалось получить не только отдельные соли рубидия, но и сам металл. Металлический рубидий был впервые получен при восстановлении сажей кислой соли – гидротартрата рубидия.

Спустя четверть века русский химик Николай Николаевич Бекетов предложил другой способ получения металлического рубидия – восстановлением его из гидроксида алюминиевым порошком. Он проводил этот процесс в железном цилиндре с газоотводной трубкой, которая соединялась со стеклянным резервуаром-холодильником. Цилиндр подогревался на газовой горелке, и в нем начиналась бурная реакция, сопровождавшаяся выделением водорода и возгонкой рубидия в холодильник. Как писал сам Бекетов, «рубидий гонится постепенно, стекая, как ртуть, и сохраняя даже свой металлический блеск вследствие того, что снаряд во время операции наполнен водородом».

Распространение рубидия в природе и его промышленное извлечение. Содержание рубидия в земной коре составляет 7,8·10 –3 %. Это примерно столько же, как для никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий – типичный рассеянный элемент. Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,2%, а изредка и до 1–3% (в пересчете на Rb 2 О).

Соли рубидия растворены в воде морей, океанов и озер. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море – 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешел в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15%. Минерал карналлит – сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl·MgCl 2 ·6H 2 O. Рубидий дает соль аналогичного состава RbCl·MgCl 2 ·6H 2 O, причем обе соли – калиевая и рубидиевая – имеют одинаковое строение и образуют непрерывный ряд твердых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда. Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Тем не менее, большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов MAl(SO 4) 2 ·12H 2 O (M = Rb, K, Cs). Смесь разделяют многократной перекристаллизацией. Рубидий выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля. Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия. При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs 3 . Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозема из нефелина.

Для извлечения рубидия используют методы экстракции и ионообменной хроматографии. Соединения рубидия высокой чистоты получают с использованием полигалогенидов.

Значительную часть производимого рубидия выделяют в ходе получения лития, поэтому появление большого интереса к литию для использования его в термоядерных процессах в 1950-х привело к уведичению добычи лития, а, следовательно, и рубидия и поэтому соединения рубидия стали более доступными.

Рубидий – один из немногих химических элементов, ресурсы и возможности добычи которого больше, чем нынешние потребности в нем. Официальная статистика по производству и использованию рубидия и его соединений отсутствует. Считают, что годовое производство рубидия составляет около 5 т.

Рынок рубидия очень мал. Активная торговля металлом не ведется, и рыночной цены на него нет. Цены, установленные компаниями, торгующими рубидием и его соединениями, различаются в десятки раз.

Характеристика простого вещества, промышленное получение и применение металлического рубидия. Рубидий – мягкий серебристо-белый металл. При обычной температуре он имеет почти пастообразную консистенцию. Плавится рубидий при 39,32° С, кипит при 687,2° С. Пары рубидия окрашены в зеленовато-синий цвет.

Рубидий обладает высокой реакционной способностью. На воздухе он мгновенно окисляется и воспламеняется, образуя надпероксид RbO 2 (с примесью пероксида Rb 2 O 2):

Rb + O 2 = RbO 2 , 2Rb + O 2 = Rb 2 O 2

С водой рубидий реагирует со взрывом c образованием гидроксида RbOH и выделением водорода: 2Rb + 2H 2 O = 2RbOH + H 2 .

Рубидий непосредственно соединяется с большинством неметаллов. Однако с азотом он в обычных условиях не взаимодействует. Нитрид рубидия Rb 3 N образуется при пропускании в жидком азоте электрического разряда между электродами, изготовленными из рубидия.

Рубидий восстанавливает оксиды до простых веществ. Он реагирует со всеми кислотами с образованием соответствующих солей, а со спиртами дает алкоголяты:

2Rb + 2C 2 H 5 OH = 2C 2 H 5 ORb + H 2

Рубидий растворяется в жидком аммиаке, при этом получаются синие растворы, содержащие сольватированные электроны и обладающие электронной проводимостью.

Со многими металлами рубидий образует сплавы и интерметаллические соединения. Соединение RbAu, в котором связь между металлами имеет частично ионный характер, является полупроводником.

Металлический рубидий получают, в основном, восстановлением соединений рубидия (обычно галогенидов), кальцием или магнием:

2RbCl + 2Ca = 2Rb + CaCl 2

Rb 2 CO 3 + 3Mg = 2Rb + 3MgO + C

Реакцию галогенида рубидия с магнием или кальцием проводят при 600–800° С и 0,1 Па. Продукт очищают от примесей ректификацией и вакуумной дистилляцией.

Можно получить рубидий электрохимическим способом из расплава галогенида рубидия на жидком свинцовом катоде. Из образовавшегося свинцово-рубидиевого сплава рубидий выделяют дистилляцией в вакууме.

В небольших количествах рубидий получают восстановлением хромата рубидия Rb 2 CrO 4 порошком циркония или кремния, а рубидий высокой чистоты – путем медленного термического разложения азида рубидия RbN 3 в вакууме при 390–395° С.

Металлический рубидий – компонент материала катодов для фотоэлементов и фотоэлектрических умножителей, хотя по чувствительности и диапазону действия рубидиевые фотокатоды уступают некоторым другим, в частности цезиевым. Он входит в состав смазочных композиций, используемых в реактивной и космической технике. Пары рубидия используют в разрядных электрических трубках.

Металлический рубидий является компонентом катализаторов (его наносят на активную окись алюминия, силикагель, металлургический шлак) доокисления органических примесей в ходе производства фталевого ангидрида, а также процесса получения циклогексана из бензола. В его присутствии реакция идет при более низких температурах и давлениях, чем при активации катализаторов натрием или калием, и ему почти не мешают «смертельные» для обычных катализаторов яды – вещества, содержащие серу.

Рубидий опасен в обращении. Хранят его в ампулах из специального стекла в атмосфере аргона или в стальных герметичных сосудах под слоем обезвоженного минерального масла.

Соединения рубидия. Рубидий образует соединения со всеми обычными анионами. Почти все соли рубидия хорошо растворимы в воде. Как и у калия мало растворимы соли Rb 2 SiF 6 , Rb 2 PtCl 6 .

Соединения рубидия с кислородом.

Рубидий образует многочисленные кислородные соединения, в том числе, оксид Rb 2 O, пероксид Rb 2 O 2 , надпероксид RbO 2 , озонид RbO 3 . Все они окрашены, например, Rb 2 O – ярко-желтый, а RbO 2 – темно-коричневый. Надпероксид рубидия образуется при сжигании рубидия на воздухе. Пероксид рубидия получают окислением рубидия, растворенного в безводном аммиаке, безводным пероксидом водорода, а оксид рубидия – нагреванием смеси металлического рубидия и его пероксида. Оксид, пероксид и надпероксид термически устойчивы, они плавятся при температуре около 500° С.

Методом рентгеноструктурного анализа было показано, что соединение состава Rb 4 O 6 , полученное в твердом состоянии реакцией Rb 2 O 2 с RbO 2 в соотношении 1:2, имеет состав . При этом двухатомные анионы кислорода разных типов (пероксид и надпероксид) в кубической элементарной ячейке неразличимы даже при –60° С. Это соединение плавится при 461° С.

Озонид рубидия RbО 3 образуется при действии озона на безводный порошок RbОН при низкой температуре:

4RbOH + 4O 3 = 4RbO 3 + 2H 2 O + O 2

Частичное окисление рубидия при низких температурах дает соединение состава Rb 6 O, которое разлагается выше –7,3° С с образованием блестящих кристаллов медного цвета, имеющих состав Rb 9 O 2 . Под действием воды соединение Rb 9 O 2 воспламеняется. При 40,2° С оно плавится с разложением и образованием Rb 2 O и Rb в соотношении 2:5.

Карбонат рубидия Rb 2 CO 3 плавится при 873° С, хорошо растворим в воде: при 20° С в 100г воды растворяется 450г карбоната рубидия.

В 1921 немецкие химики Франц Фишер (Fischer Franz) (1877–1947) и Ганс Тропш (Tropsch Hans) (1889–1935) нашли, что карбонат рубидия – превосходный компонент катализатора для получения синтетической нефти – синтола (смесь спиртов, альдегидов и кетонов, образующаяся из водяного газа при 410° C и давления 140–150 атм в присутствии специального катализатора).

Карбонат рубидия оказывает положительное действие на процесс полимеризации аминокислот, с его помощью получены синтетические полипептиды с молекулярной массой до 40 000, причем реакция протекает очень быстро.

Гидрид рубидия RbH получают взаимодействием простых веществ при нагревании под давлением 5–10 МПа в присутствии катализатора:

2Rb + H 2 = 2RbH

Это соединение плавится при 585° С; разлагается под действием воды.

Галогениды рубидия RbF, RbCl, RbBr, RbI получают при взаимодействии гидроксида или карбоната рубидия с соответствующими галогеноводородными кислотами, при реакции сульфата рубидия с растворимыми галогенидами бария, а также при пропускании сульфата или нитрата рубидия через ионообменную смолу.

Галогениды рубидия хорошо растворимы в воде, хуже – в органических растворителях. Они растворяются в водных растворах галогеноводородных кислот, образуя в растворе гидрогалогениды, устойчивость которых падает от гидродифторида RbHF 2 к гидродииодиду RbHI 2 .

Фторид рубидия входит в состав специальных стекол и композиций для аккумулирования тепла. Он является оптическим материалом, прозрачным в диапазоне 9–16 мкм. Хлорид рубидия служит электролитом в топливных элементах. Его добавляют в специальные чугунные отливки для улучшения их механических свойств, он является компонентом материала катодов электроннолучевых трубок.

У смесей хлоридов рубидия с хлоридами меди, серебра или лития электрическое сопротивление падает с повышением температуры столь резко, что они могут стать весьма удобными термисторами в различных электрических установках, работающих при температуре 150–290° C.

Иодид рубидия используется как компонент люминесцентных материалов для флуоресцирующих экранов, твердых электролитов в химических источниках тока. Соединение RbAg 4 I 5 имеет самую высокую электропроводность из всех известных ионных кристаллов. Его можно использовать в тонкопленочных батареях.

Комплексные соединения . Для рубидия не характерно образование ковалентных связей. Наиболее устойчивыми являются его комплексы с полидентатными лигандами, например с краун-эфирами, где он обычно проявляет координационное число 6.

Другая группа очень эффективных лигандов, которые в последнее время используются для координации катионов щелочных элементов, – макроциклические полидентатные лиганды, которые французский химик-органик Жан Мари Лен назвал криптандами (рис. 1).

Рубидий образует комплекс CNS . H 2 O, в котором криптанд N{(CH 2 CH 2 O) 2 CH 2 CH 2 } 3 N (crypt) заключает катион в координационной полиэдр, имеющий форму двухшапочной тригональной призмы (рис. 2).

Озонид рубидия образует устойчивые растворы в органических растворителях (таких как CH 2 Cl 2 , тетрагидрофуран или СН 3 CN), если катион координирован краун-эфирами или криптандами. Медленное выпаривание аммиачных растворов таких комплексов приводит к образованию красных кристаллов. Рентгеноструктурный анализ соединения состава показал, что координационное число атома рубидия равно 9. Он образует шесть связей с краун-эфиром, две – с ионом O 3 – и одну – с молекулой аммиака.

Применение изотопов рубидия.

Рубидий-87 самопроизвольно испускает электроны (b -излучение) и превращается в изотоп стронция. Около 1% стронция образовалось на Земле именно этим путем, и если определить соотношение изотопов стронция и рубидия с массовым числом 87 в какой-либо горной породе, то можно с большой точностью вычислить ее возраст. Такой метод пригоден применительно к наиболее древним породам и минералам. С его помощью установлено, например, что самые старые скальные породы американского континента возникли 2100 млн лет тому назад.

Радионуклид рубидия-82 с периодом полураспада 76 с используется в диагностике. С его помощью, в частности, оценивают состояние миокарда. Изотоп вводится в кровеносную систему пациента, и кровоток анализируется методом позитронно-эмиссионной томографии (ПЭТ).

Елена Савинкина

Рубидий был открыт в 1861 г. Р. Бунзеном и Г. Киргоффом по особым линям в темно-красной области спектра.

Получение:

Рубидий собственных минералов не образует, содержится в апатито-нефелиновых породах, слюдах, карналлите. Получают методами металлотермии (восстановлением хлорида рубидия металлическим кальцием) и термическим разложением соединений, с последующей очисткой от примесей вакуумной перегонкой.
Мировое производство (1979) около 450 кг/год (без СССР).

Физические свойства:

Блестящий, серебристо-белый металл. Плотность рубидия невелика d=1,5 г/см 3 ; t пл =39° , t кип =689° . Очень мягкий, легко режется ножом.

Химические свойства:

Рубидий мгновенно воспламеняется на воздухе, а также в атмосфере фтора и хлора, а взаимодействие с жидким бромом сопровождается сильным взрывом.
Со взрывом реагирует с водой и разбавленными кислотами.

Важнейшие соединения:

Оксид, Rb 2 O - желтый, энергично взаимодействует с водой, образуя гидроксид, химически активный.
Гидроксид, RbOH - бесцветное, очень гигроскопичное вещество, сильное основание.
Пероксиды При сгорании рубидия образуется надперекись RbO 2 . Косвенным путём можно получить также Rb 2 O 2 , который менее устойчив, чем Na 2 O 2 . Rb 2 O 2 и RbO 2 - сильные окислители. Водой, а тем более разбавленными кислотами они легко разлагаются.
2RbO 2 + 2H + = 2Rb + + H 2 O 2 + O 2
Ещё более сильным окислителем является озонид RbO 3:
4RbOH + 4O 3 =4RbO 3 +O 2 +2H 2 O
Соли . Почти все соли рубидия легко растворяются в воде, образуют кристаллогидраты, бесцветны.
Персульфиды (полисульфиды) рубидия получены кипячением сульфидов с избытком серы. Они устойчивы.

Применение:

Вследствие высокой активности рубидия его атомы легко теряют электроны под действием света (фотоэффект), потому рубидий широко применяют для изготовления фотокатодов, используемых в измерительных схемах, устройствах звуковоспроизведения оптических фонограмм, в передающих телевизионных трубках и др.
Рубидий используется для удаления следов воздуха из ваккумных ламп.
Соединения рубидия применяют в медицине и в аналитической химии, как катализатор в органическом синтезе. Соли используются как электролиты в топливных элементах.

Рубидий – металл, имя которого напоминает название драгоценного камня . Минерал красный. Это оправдывает его имя, переводимое как «алый».

Рубидий же серебристо-серый. В чем подвох? В истории обнаружения металла. Его выделили из минерала .

Разложив камень по составным, химики «потеряли» 2,5% массы. Сначала, списали на испарившуюся при реакциях воду.

Потом, решили провести спектральный анализ. Обнаружилась линия темно-красного цвета.

Известные науки элементы такой не обладали. Так, в 1863-ем году и был открыт металл рубидий . Что человечеству удалось узнать о нем за полтора минувших столетия, расскажем далее.

Химические и физические свойства рубидия

Рубидий металлический образует кристаллы. Они напоминают кубы. Характерный для металлов просматривается лишь на срезе агрегатов.

Разрезать их не проблема, — материал мягкий, словно сыр. Это особенность большинства щелочных металлов, к коим относится и рубидий . Формула его характеризуется одним электроном на внешнем уровне.

Всего их 5. Неудивительно, что элемент является мощным восстановителем, активен в химическом плане. Отдаленный от ядра электрон легко замещается.

Так образуются все виды солей, к примеру, хлорид рубидия . Как и остальные соединения, он легко растворим в воде.

В природе выявлено два изотопа 37-го элемента . 85-ый атом рубидия стабилен, а вот 87-ой – радиоактивен, хоть и слабо.

После полного распада 87-ой изотоп преобразуется в стабильную разновидность . В искусственных условиях элемент рубидий дал 20 изотопов.

Все радиоактивные. Номера изотопов равны их атомной массе. Если она меньше 85-ти, испускаются лучи бета + .

Такой рубидий, зачастую, распадается за несколько минут, а порой, и секунд. Наиболее устойчив 81-ый изотоп.

Его полураспад составляет 4 часа. После, выделяется криптон. Это газ, тоже радиоактивный.

Если металл входит в соединения с другими, то всегда одновалентен, то есть образует лишь одну химическую связь с другим атомом.

Степень окисления при этом равна +1. Оксид рубидия образуется лишь в условиях нехватки кислорода.

Если же его достаточно, идет бурная реакция, итогом которой становится пероксид и надпероксид 37-го элемента.

В кислородной среде щелочной металл рубидий загорается. В этом и заключается буйство реакции.

Еще опаснее сочетание с водой. Происходит взрыв. Осторожничать приходится и с карбидом рубидия.

Химический элемент в веществе способен самовоспламениться в углекислой среде. В воде соединение, как и чистый металл, взрывается.

Рубидий, при этом, сгорает. Остается лишь углерод. Он выделяется в виде угля. Так что, это один из способов добычи топлива.

Применение рубидия

Первое применение элементу нашла природа. Она заложила 1 миллиграмм металла в организм каждого человека.

Рубидий есть в костях, легких, головном мозге, женских яичниках, . 37-ой элемент выполняет роль антиаллергена, оказывает противовоспалительное действие, слегка затормаживает, успокаивая .

В крови рубидий, цвет спектральной черты которого сливается с тоном эритроцитов, борется со свободными радикалами.

Металл снижает и действие окислителей. Благодаря этому, клетки крови живут дольше и лучше функционируют. Повышается иммунитет, уровень гемоглобина.

Медики прописывают препараты рубидия в качестве болеутоляющих и снотворных.

Кроме этого, 37-ой элемент получают эпилептики. Врачи рассчитывают на тормозящее нервные импульсы действие препарата.

Рубидий выводится из организма вместе с мочой. Поэтому, требуется восполнение. Суточная норма потребления элемента – 1-2 миллиграмма.

Получить их можно, употребляя бобовые, злаки, орехи, белые грибы, почти все фрукты и ягоды, особенно, черную смородину.

Вне организма рубидий присутствует в телевизионных трубках, устройствах, воспроизводящих оптические фонограммы и в фотокатодах.

Причина – фотоэффект. На него 37-ой элемент способен благодаря быстрой потере электронов под действием света.

Аналогично поведение цезия. Рубидий соперничает с ним за место на рынке фотоэлементов.

Фторид рубидия , как и прочие соли элемента, закладывают в топливные элементы. Соединения 37-го металла служит в них электролитом.

Электролитом является, так же, гидроксид рубидия . Он рекомендован для низкотемпературных химически источников тока.

Убыстрить его течение 37-ой элемент способен в качестве добавки к раствору гидроксида .

В роли катализатора выступает уже карбонат рубидия . Его закупают для производства синтетической нефти. Ее называют синтолом.

Специальные катализаторы с рубидием запатентованы для синтеза высших спиртов, стирола и бутадеина.

Нитрат рубидия признан средством для калибровки калориметров. Это приборы, замеряющие количество теплоты.

Техника засекает и ее выделение, и поглощение при различных химических, физических, биологических процессах.

Не обходится без рубидия и атомная промышленность. 37-ой элемент числится в составе металлических теплоносителей.

Они заключены в ядерных реакторах. Есть рубидий и в вакуумных радиолампах. Металл формирует положительные ионы на их нитях накаливания.

В космической отрасли металлический рубидий входит в состав смесей для смазки. Обнаружить 37-ой элемент можно даже в термометрах.

Речь не о ртутных образцах, а о моделях для измерения повышенных температур до 400-от градусов Цельсия. В таких термометрах находится смесь хлоридов и рубидия.

Электронная отрасль использует пары щелочного металла. С ними, в частности, связано изготовление высокочувствительных магнитометров. Ими пользуются при космических исследованиях и геофизических изыскания.

Добыча рубидия

Рубидий – рассеянный элемент. Это усложняет разработку солидных запасов. По распространенности в земной коре металл занимает 20-е место.

Однако, у него нет собственных минералов и руд, то есть пород, в которых рубидий является основой.

В том же лепидолите, из которого элемент когда-то выделили, он присутствует лишь в качестве примеси.

Искать рубидий приходится попутно с другими щелочными металлами. Можно использовать и морскую воду. В ней растворены соли 37-го элемента. Но, пока, этот ресурс не разрабатывается.

Промышленное получение рубидия – это выделение из электролита, оставшегося после производства магния. Его добывают из карналлита.

Остается осадок из ферроцианидов, железа и . Рубидий скрыт в первых. Ферроцианиды прокаливают, получая карбонат 37-го металла. Он загрязнен цезием и калием. Остается провести очистку.

Немало рубидия извлекают на производстве лития. После его выделения, 37-ой элемент осаждают из маточных растворов.

Итог операции – алюморубидиевые квасцы. После их многократной перекристаллизации удается разделить составляющие.

Поскольку с 50-ых годов прошлого века производство резко увеличилось, увеличилось и предложение на рубидий.

Он перестал быть дорогостоящим дефицитом. Узнаем, во сколько оценивают металл современники.

Цена рубидия

В России рубидий производят на Заводе редких металлов. Предприятие находится в Новосибирской области, реализует упаковки по 30 граммов и 1-му килограмму.

За последний объем придется выложить около 400 000 рублей. Частные продавцы предлагают рубидий, разделенный по граммам.

За один просят, как правило, 5-6 долларов США. Вот и посчитайте. При этом, раньше цены на 37-ой элемент были еще выше.

Но, рекордсменом рубидий, все же, не являлся. Передовик – калифорний. Это самый редкий и самый дорогой металл.

Стоимость грамма превышает 6 000 000 долларов. В сравнении с этим ценником, запросы поставщиков за рубидий кажутся незначительными.

Кстати, кроме Новосибирского завода 37-ым элементом торгует и Сервермед из Мурманской области.