Высокоэффективная жидкостная хроматография загрязнителей природных и сточных вод. Высокоэффективная жидкостная хроматография Вэжх основы


В высокоэффективной жидкостной хроматографии (ВЭЖХ) характер происходящих процессов в хроматографической колонке, в общем идентичен с процессами в газовой хроматографии. Отличие состоит лишь в применении в качестве неподвижной фазы жидкости. В связи с высокой плотностью жидких подвижных фаз и большим сопротивлением колонок газовая и жидкостная хроматография сильно различаются по аппаратурному оформлению.

В ВЭЖХ в качестве подвижных фаз обычно используют чистые растворители или их смеси.

Для создания потока чистого растворителя (или смесей растворителей), называемого в жидкостной хроматографии элюентом, используются насосы, входящие в гидравлическую систему хроматографа.

Адсорбционная хроматография осуществляется в результате взаимодействия вещества с адсорбентами, такими как силикагель или оксид алюминия, имеющими на поверхности активные центры. Различие в способности к взаимодействию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия, как с растворителем, так и с адсорбентом.

Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом, поверхностью и диаметром пор. Значительно реже используют оксид алюминия и другие адсорбенты. Основная причина этого:

Недостаточная механическая прочность, не позволяющая упаковывать и использовать при повышенных давлениях, характерных для ВЭЖХ;

силикагель по сравнению с оксидом алюминия обладает более широким диапазоном пористости, поверхности и диаметра пор; значительно большая каталитическая активность оксида алюминия приводит к искажению результатов анализа вследствие разложения компонентов пробы либо их необратимой хемосорбции.

Детекторы для ВЭЖХ

Высокоэффективная жидкостная хроматография (ВЭЖХ) используется для детектирования полярных нелетучих веществ, которые по каким-либо причинам не могут быть переведены в форму удобную для газовой хроматографии, даже в виде производных. К таким веществам, в частности, относят сульфоновые кислоты, водорастворимые красители и некоторые пестициды, например производные фенил - мочевины.

Детекторы:

УФ - детектор на диодной матрице. «Матрица» фотодиодов (их более двухсот) постоянно регистрирует сигналы в УФ- и видимой области спектра, обеспечивая таким образом запись УФ-В-спектров в режиме сканирования. Это позволяет непрерывно снимать при высокой чувствительности неискаженные спектры быстро проходящих через специальную ячейку компонентов.

По сравнению с детектированием на одной длине волны, которое не дает информации о «чистоте» пика, возможности сравнения полных спектров диодной матрицы обеспечивают получение результата идентификации с гораздо большей степенью достоверности.

Флуоресцентный детектор. Большая популярность флуоресцентных детекторов объясняется очень высокой селективностью и чувствительностью, и тем фактором, что многие загрязнители окружающей среды флуоресцируют (например, полиароматические углеводороды).

Электрохимический детектор используются для детектирования веществ, которые легко окисляются или восстанавливаются: фенолы, меркаптаны, амины, ароматические нитро- и галогенпроизводные, альдегиды кетоны, бензидины.

Хроматографическое разделение смеси на колонке вследствие медлен-ного продвижения ПФ занимает много времени. Для ускорения процесса хроматографирование проводят под давлением. Этот метод называют вы-сокоэффективной жидкостной хроматографией (ВЖХ)

Модернизация аппаратуры, применяемой в классической жидкостной колоночной хроматографии, сделала ее одним из перспективных и совре-менных методов анализа. Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и про-ведения качественного и количественного анализа нелетучих термола-бильных соединений как с малой, так с большой молекулярной массой.

В зависимости от типа применяемого сорбента в данном методе используют 2 варианта хроматографирования: на полярном сорбенте с использованием неполярного элюента (вариант прямой фазы) и на неполярном сорбенте с использованием полярного элюента - так называемая обращенно-фазовая высокоэффективная жидкостная хроматография (ОфВЖХ).

При переходе элюента к элюенту равновесие в условиях ОфВЖХ устанавливается во много раз быстрее, чем в условиях полярных сорбентов и неводных ПФ. Вследствие этого, а также удобства работы с водными и водно-спиртовыми элюентами, ОфВЖХ получила в настоящее время большую популярность. Большинство анализов при помощи ВЖХ проводят именно этим методом.

Детекторы. Регистрация выхода из колонки отдельного компонента производится с помощью детектора. Для регистрации можно использовать изменение любого аналитического сигнала, идущего от подвижной фазы и связанного с природой и количеством компонента смеси. В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение или светоиспускание выходящего раствора (фотометрические и флуориметрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы) и др.

Непрерывно детектируемый сигнал регистрируется самописцем. Хроматограмма представляет собой зафиксированную на ленте самописца по-следовательность сигналов детектора, вырабатываемых при выходе из ко-лонки отдельных компонентов смеси. В случае разделения смеси на внеш-ней хроматограмме видны отдельные пики. Положение пика на хроматограмме используют для целей идентификации вещества, высоту или площадь пика - для целей количественного определения.

Применение

Наиболее широкое применение ВЭЖХ находит в следующих областях химического анализа (выделены объекты анализа, где ВЭЖХ практически не имеет конкуренции):

· Контроль качества продуктов питания - тонизирующие и вкусовые добавки, альдегиды, кетоны, витамины, сахара, красители, консерванты, гормональные препараты, антибиотики, триазиновые, карбаматные и др. пестициды, микотоксины, нитрозоамины, полициклические ароматические углеводороды и т.п.

· Охрана окружающей среды - фенолы, органические нитросоединения, моно- и полициклические ароматические углеводороды, ряд пестицидов, главные анионы и катионы.

· Криминалистика - наркотики, органические взрывчатые вещества и красители, сильнодействующие фармацевтические препараты.

· Фармацевтическая промышленность - стероидные гормоны, практически все продукты органического синтеза, антибиотики, полимерные препараты, витамины, белковые препараты.

· Медицина - перечисленные биохимические и лекарственные вещества и их метаболиты в биологических жидкостях (аминокислоты, пурины и пиримидины, стероидные гормоны, липиды) при диагностике заболеваний, определении скорости выведения лекарственных препаратов из организма с целью их индивидуальной дозировки.

· Сельское хозяйство - определение нитрата и фосфата в почвах для определения необходимого количества вносимых удобрений, определение питательной ценности кормов (аминокислоты и витамины), анализ пестицидов в почве, воде и сельхозпродукции.

· Биохимия, биоорганическая химия, генная инженерия, биотехнология - сахара, липиды, стероиды, белки, аминокислоты, нуклеозиды и их производные, витамины, пептиды, олигонуклеотиды, порфирины и др.

· Органическая химия - все устойчивые продукты органического синтеза, красители, термолабильные соединения, нелетучие соединения; неорганическая химия (практически все растворимые соединения в виде ионов и комплексных соединений).

· контроль качества и безопасности продуктов питания, алкогольных и безалкогольных напитков, питьевой воды, средств бытовой химии, парфюмерии на всех стадиях их производства;

· определение характера загрязнений на месте техногенной катастрофы или чрезвычайного происшествия;

· обнаружение и анализ наркотических, сильнодействующих, ядовитых и взрывчатых веществ;

· определение наличия вредных веществ (полициклические и другие ароматические углеводороды, фенолы, пестициды, органические красители, ионы тяжелых, щелочных и щелочно-земельных металлов) в жидких стоках, воздушных выбросах и твердых отходах предприятий и в живых организмах;

· мониторинг процессов органического синтеза, нефте- и углепереработки, биохимических и микробиологических производств;

анализ качества почв для внесения удобрений, наличия пестицидов и гербицидов в почве, воде и в продукции, а также питательной ценности кормов; сложные исследовательские аналитические задачи; получение микроколичества сверхчистого вещества.



Введение.

Бурное развитие жидкостной хроматографии в последние 10 лет обусловлено, главным образом, интенсивной разработкой теоретических основ и практическим использованием ее высокоэффективного варианта, а также созданием и промышленным выпуском необходимых сорбентов и аппаратуры.

Отличительной особенностью высокоэффективной жидкостной хроматографии (ВЭЖХ) является использование сорбентов с размером зерен 3-10 мкм, что обеспечивает быстрый массоперенос при очень высокой эффективности разделения.

В настоящее время ВЭЖХ по темпам развития вышла на первое место среди инструментальных методов, обогнав даже газовую хроматографию. Важнейшее преимущество ВЭЖХ по сравнению с газовой хроматографией - возможность исследования практически любых объектов без каких-либо ограничений по их физико-химическим свойствам, например, по температурам кипения или молекулярной массе.

Сегодня ВЭЖХ представляет собой хорошо оформленный инструментальный метод, который широко применяют в самых различных областях науки и техники. Особенно велико его значение в таких важнейших областях, как биохимия, молекулярная биология, контроль загрязнений окружающей среды,а также в химической, нефтехимической, пищевой и фармацевтической промышленности.

поскольку необходимо учитывать целый ряд весьма специфических тре­бований, обусловленных следующими особенностями мето­дики.

а. Колонки для ВЭЖХ наполняют носителем с очень ма­лым диаметром частиц. В результате при таких объемных ско­ростях растворителя, которые необходимы для быстрого разде­ления пробы, на колонке создается высокое давление.

б. Детекторы, применяемые в ВЭЖХ, чувствительны к флуктуации потока и давления элюента (шумы). Более того, при применении концентрационных детекторов необходима еще более высокая стабильность объемной скорости элюента.

в. Процесс хроматографического разделения сопровождает­ся рядом антагонистических эффектов, так, например, диспер­гирование образца в подвижной фазе ведет к смешению раз­деляемых компонентов и снижает максимальную концентрацию вещества в элюируемом пике (в детекторе). Диспергирование наблюдается на всех участках системы от точки ввода пробы до детектора.

г. Растворители, выполняющие роль подвижной фазы, ча­сто способны вызывать коррозию аппаратуры. Это в первую очередь относится к растворителям, используемым в обращен-но-фазовой хроматографии, которая предпочтительна в биохи­мических приложениях ВЭЖХ.

Специфику ВЭЖХ как инструментальной методики необхо­димо учитывать в процессе разработки, создания и эксплуата­ции этих систем. Для создания коммерческих образцов хрома-тографических систем и их компонентов, достаточно надеж­ных, простых и безопасных в работе с приемлемым соотноше­нием между ценой и техническими характеристиками, потре­бовалось более десяти лет поисков и исследований. Наметив­шиеся в последнее время тенденции к уменьшению колонок (как длины, так и диаметра) заставляют предъявлять новые требования к инструментам.

1.1. ЭФФЕКТИВНОСТЬ И СЕЛЕКТИВНОСТЬ

Хроматография - это метод разделения компонентов смеси, основанный на различии в равновесном распределении их меж­ду двумя" несмешивающимися фазами, одна из которых непо­движна, а другая подвижна. Компоненты образца движутся по колонке, когда они находятся в подвижной фазе, и остаются на месте, когда находятся в неподвижной фазе. Чем больше срод­ство компонента к неподвижной фазе и чем меньше - к подвиж­ной, тем медленнее он движется по колонке и тем дольше в ней удерживается. За счет различия в сродстве компонентов смеси к неподвижной и подвижной фазам достигается основная цель хроматографии - разделение за приемлемый промежуток вре­мени смеси на отдельные полосы (пики) компонентов по мере их продвижения по колонке с подвижной фазой.

Из этих общих представлений ясно, что хроматографическое разделение возможно, только в том случае, если компоненты образца, попадая в колонку при вводе пробы, во-первых, будут растворены в подвижной фазе и, во-вторых, будут взаимодейст­вовать (удерживаться) с неподвижной фазой. Если при вводе пробы какие-то компоненты находятся не в виде раствора, они будут отфильтрованы и не будут участвовать в хроматографи-ческом процессе. Точно так же компоненты, не взаимодействую­щие с неподвижной фазой, пройдут через колонку с подвижной фазой, не разделяясь на компоненты.

Примем условие, что какие-то два компонента растворимы в подвижной фазе и взаимодействуют с неподвижной фазой, т. е. хроиатографический процесс может протекать без наруше­ний. В этом случае после прохождения смеси через колонку можно получить хроматограммы вида а, б или в (рис. 1.1). Эти хроматограммы иллюстрируют хроматографические разделения, отличающиеся эффективностью и б) при равной селективно­сти и селективностью и в) при равной эффективности.

Эффективность колонки тем выше, чем уже пик получается при том же времени удерживания. Эффективность колонки изме­ряется числом теоретических тарелок (ЧТТ) N : чем выше эф-

Рис. 1.2. Параметры хрома-тографического пика и рас­чет числа теоретических та­релок:

t R - время удерживания пика; h - высота пика; Wj/j - шири­на пика на половине его высоты

Рис. 1.1. Вид хроматограммы в зависимости от эффективности и селектив­ности колонки:

а - обычная селективность, пониженная эффективность (меньше теоретических тарелок); б - обычные селективность и эффективность; в - обычная эффективность, повышенная селективность (больше отношение времен удерживания компонентов)

фективность, тем больше ЧТТ, тем меньше расширение пика первоначально узкой полосы по мере прохождения ее через ко­лонку, тем уже пик на выходе из колонки. ЧТТ характеризует число ступеней установления равновесия между подвижной и не­подвижной фазами.

Зная число теоретических тарелок, приходящееся на колонку, и длину колонки L (мкм), а также средний диаметр зерна сор­бента d c (мкм), легко получить значения высоты, эквивалент­ной теоретической тарелке (ВЭТТ), а также приведенной вы­соты, эквивалентной теоретической тарелке (ПВЭТТ):

ВЭТТ = L / N

ПВЭТТ =B3TT/d c .

Имея значения ЧТТ, ВЭТТ и ПВЭТТ, можно легко сравни­вать эффективность колонок разных типов, разной длины, за­полненных разными по природе и зернению сорбентами. Срав­нивая ЧТТ двух колонок одной длины, сравнивают их эффек­тивность. При сравнении ВЭТТ сравнивают колонки с сорбен­тами одинакового зернения, имеющими разную длину. Нако­нец, величина ПВЭТТ позволяет для двух любых колонок оце­нить качество сорбента, во-первых, и качество заполнения коло­нок, во-вторых, независимо от длины колонок, зернения сорбен­тами его природы.

Селективность колонки играет большую роль в достижении хроматографического разделения.

Селективность колонки зависит от очень многих факторов, и искусство экспериментатора в большой мере определяется умением воздействовать на селективность разделения. Для это­го в руках хроматографиста находятся три очень важных фак­тора: выбор химической природы сорбента, выбор состава рас­творителя и его модификаторов и учет химической структуры и свойств разделяемых компонентов. Иногда заметное влияние на селективность оказывает изменение температуры колонки, меняющее коэффициенты распределения веществ между по­движной и неподвижной фазами.

При рассмотрении разделения двух компонентов на хрома­тограмме и его оценке важным параметром является разреше­ние R s , которое связывает времена выхода и ширину пиков обо­их разделяемых компонентов

Разрешение как параметр, характеризующий разделение пи­ков, увеличивается по мере возрастания селективности, отра­жаемой ростом числителя, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пи­ков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия «жидкостная хроматография вы­сокого давления» - оно было заменено на «жидкостную хрома­тографию высокого разрешения» (при этом сокращенная запись термина на английском языке сохранилась HPLC как наибо­лее правильно характеризующее направление развития совре­менной жидкостной хроматографии).

Таким образом, размывание в колонке уменьшается и эф­фективность повышается, когда используют более мелкий сор­бент, более равномерный по составу (узкая фракция), более плотно и равномерно упакованный в колонке, при использова­нии более тонких слоев привитой фазы, менее вязких раствори­телей и оптимальных скоростей потока.

Однако наряду с размыванием полосы хроматографической зоны в процессе разделения в колонке может происходить так­же и размывание ее в устройстве для ввода пробы, в соедини­тельных капиллярах инжектор - колонка и колонка - детек­тор, в ячейке детектора и в некоторых вспомогательных устрой­ствах (микрофильтры для улавливания механических частиц из пробы, устанавливаемые после инжектора, предколонки, ре­акторы-змеевики и др.)- Размывание при этом тем больше, чем больше внеколоночный объем по сравнению с удерживаемым объемом пика. Имеет также значение и то, в каком месте на­ходится мертвый объем: чем уже хроматографическая зова, тем большее размывание даст мертвый объем. Поэтому особое вни­мание следует уделять конструированию той части хроматогра­фа, где хроматографическая зона наиболее узкая (инжектор и устройства от инжектора до колонки) - здесь внеколоночное размывание наиболее опасно и сказывается наиболее сильно. Хотя считается, что в хорошо сконструированных хроматогра­фах источники дополнительного внеколоночного размывания должны быть сведены до минимума, тем не менее каждый новый прибор, каждая переделка хроматографа должны обяза­тельно заканчиваться тестированием на колонке и сравнением полученной хроматограммы с паспортной. Если наблюдается ис­кажение пика, резкое снижение эффективности, следует тща­тельно проинспектировать вновь введенные в систему капилля­ры и другие устройства.

Размывание вне колонки и его неправильная оценка могут привести к значительной (более 50%) потере эффективности, особенно в тех случаях, когда относительно давно сконструиро­ванные хроматографы пытаются использовать для высокоско­ростной ВЭЖХ, микроколоночной ВЭЖХ и других вариантов современной ВЭЖХ, требующих микроинжекторов, соединитель­ных капилляров с внутренним диаметром 0,05-0,15 мм мини­мальной длины, колонок вместимостью 10-1000 мкл, детекто­ров с микрокюветами емкостью 0,03-1 мкл и с высоким быстро­действием, высокоскоростных самописцев и интеграторов.

1.2. УДЕРЖИВАНИЕ И СИЛА РАСТВОРИТЕЛЯ

Для того чтобы анализируемые вещества разделялись на ко­лонке, как уже упоминалось выше, коэффициент емкости k " должен быть больше 0, т. е. вещества должны удерживаться неподвижной фазой, сорбентом. Однако коэффициент емкости не должен быть и слишком большим, чтобы получить приемле­мое время элюирования. Если для данной смеси веществ выбра­на неподвижная фаза, которая их удерживает, то дальнейшая работа по разработке методики анализа заключается в выборе такого растворителя, который обеспечил бы в идеальном случае различные для всех компонентов, но приемлемо не очень боль­шие k ". Этого добиваются, меняя элюирующую силу раствори­теля.

В случае адсорбционной хроматографии на силикагеле или оксиде алюминия, как правило, силу двухкомпонентного рас­творителя (например, гексана с добавкой изопропанола) увели­чивают, увеличивая в нем содержание полярного компонента (изопропанола), или же уменьшают, уменьшая содержание изо­пропанола. Если содержащие полярного компонента становится слишком малым (менее 0,1%), следует заменить его более сла­бым по элюирующей силе. Так же поступают, заменяя на дру­гие либо полярную, либо неполярную составляющую и в том^ случае, если данная система не обеспечивает желаемой селек­тивности по отношению к интересующим компонентам смеси. При подборе систем растворителей принимают во внимание как растворимости компонентов смеси, так и элюотропнЬе ряды растворителей, составленные разными авторами.

Примерно так же подбирают силу растворителя в случае ис­пользования привитых полярных фаз (нитрил, амино, диол, нитро и др.), учитывая возможные химические реакции и ис­ключая опасные для фазы растворители (например и кетоны для аминофазы).

В случае обращенно-фазной хроматографии силу раствори­теля увеличивают, повышая содержание в элюенте органичес­кой составляющей (метанола, ацетонитрила или ТГФ) и умень­шают, добавляя больше воды. Если не удается добиться же­лаемой селективности, используют другую органическую состав­ляющую либо пытаются изменить ее с помощью разных доба­вок (кислот, ион-парных реагентов и др.).

При разделениях методом ионообменной хроматографии си­лу растворителя меняют, увеличивая или уменьшая концентра­цию буферного раствора или меняя рН, в некоторых случаях используют модификацию органическими веществами.

Однако, особенно в случае сложных природных и биологи­ческих смесей, зачастую не удается подобрать силу раствори­теля таким образом, чтобы все компоненты пробы элюирова-лись за приемлемый срок. Тогда приходится прибегать к гра­диентному элюированию, т. е. использовать растворитель, элюи-рующая сила которого в процессе анализа изменяется так, что она постоянно увеличивается по заранее заданной программе. Таким приемом удается добиться элюирования всех компонен­тов сложных смесей за относительно короткий промежуток вре­мени и их разделения на компоненты в виде узких пиков.

1.3. РАЗМЕР ЧАСТИЦ СОРБЕНТА, ПРОНИЦАЕМОСТЬ И ЭФФЕКТИВНОСТЬ

Рассматривая размывание в колонке, мы указывали, что эффективность колонки (ВЭТТ) зависит от размера частиц сорбента. В большой степени бурное развитие ВЭЖХ за послед­ние 10-12 лет было обусловлено, во-первых, разработкой спо­собов получения сорбентов с размером частиц от 3 до 10 мкм и с узким фракционным составом, обеспечивающих высокую эффективность при хорошей проницаемости, во-вторых, ^разра­боткой способов заполнения этими сорбентами колонок и, в-третьих, разработкой и серийным выпуском жидкостных хро­матографов, имеющих рассчитанные на высокие давления насо­сы, инжекторы и детекторы с кюветами малого объема, способ­ные регистрировать пики малого объема.

Для хорошо упакованных суспензионным способом колонок приведенная высота, эквивалентная теоретической тарелке (ПВЭТТ), может составлять 2 независимо от того, использо­вали ли для упаковки частицы с размером 3, 5, 10 или 20 мкм. В этом случае мы получим соответственно колонки (при стан­дартной длине их 250 мм) эффективностью 41670, 25000, 12500 и 6250 т.т. Кажется естественным выбрать наиболее эффектив­ную колонку, заполненную частицами размером 3 мкм. Однако за эту эффективность придется заплатить использованием при работе очень высокого давления и относительно невысокой скоростью разделения, так как имеющийся насос, скорее всего, будет и^пособен* прокачивать через такую колонку растворитель с высокой объемной скоростью. Здесь мы как раз и сталкива­емся с вопросом о связи размера частиц сорбента, эффективно­сти и проницаемости колонок.

Если выразить отсюда фактор сопротивления колонки--безраз­мерную величину, получим следующее уравнение:

Фактор сопротивления для колонок, упакованных микрочасти­цами одного вида по одному и тому же способу, меняется не­значительно и составляет следующие значения:

Вид частиц ».... Неправильная Сферическая

форма форма

Сухая упаковка. . . . . 1000-2000 800-1200

Суспензионная упаковка. . . 700-1500 500-700

Давление на входе в колонку пропорционально линейной скорости потока, фактору сопротивления колонки, вязкости рас­творителя и длине колонки и обратно пропорционально квадра­ту диаметра частиц.

Применив эту зависимость для вышеописанных колонок с частицами диаметром 3, 5, 10 и 20 мкм и предположив посто­янными линейную скорость потока, фактор сопротивления ко­лонки и вязкость растворителя, получим для колонок равной длины соотношение давлений на входе 44:16:4:1. Таким об­разом, если для обращенно-фазного сорбента с размером час­тиц 10 мкм при использовании систем растворителей метанол - . вода (70:30) обычно на стандартной колонке при расходе рас­творителя 1 мл/мин давление на входе в колонку составляет 5 МПа, то для частиц 5 мкм - 20 МПа и для 3 мкм - 55 МПа. При использовании силикагеля и менее вязкой системы рас­творителей гексан - изопропанол (100:2) значения будут су­щественно ниже: соответственно 1, 4 и 11 МПа. Если в случае обращенно-фазного сорбента применение частиц размером Змкм очень проблематично, а 5 мкм возможно, но не на всех при­борах, то для нормально-фазного проблем с давлением не воз­никает. Следует отметить, что для современной скоростной ВЭЖХ характерно использование более высокого расхода рас­творителей, чем в вышерассмотренном примере, поэтому тре­бования к давлению возрастают еще больше.

Однако в тех случаях, когда для разделения требуется оп­ределенное число теоретических тарелок и желательно осуще­ствить скоростной анализ, картина несколько меняется. Так как длины колонок с сорбентами зернением 3, 5, 10 мкм при равной эффективности будут соответственно 7,5; 12,5 и 25 см, то и соотношение давлений на входе в колонки изменится доЗ,3:2:1. Соответственно продолжительность анализа на таких колонках равной эффективности будет соотноситься как 0,3:0,5:1, т. е. при переходе от 10 к 5 и 3 мкм продолжительность анализа со­кратится в 2 и 3,3 раза. За это ускорение анализа приходится расплачиваться пропорционально более высоким давлением на входе в колонку.

Приведенные данные справедливы для тех случаев, когда сорбенты разного зернения имеют одинаковые кривые распреде­ления частиц по размеру, колонки набиты одинаковым спосо­бом и имеют одинаковый фактор сопротивления колонки. Сле­дует иметь в виду, что трудность получения узких фракций сор­бента возрастает по мере уменьшения размера частиц и что. фракции от разных производителей имеют разный фракционный состав. Поэтому фактор сопротивления колонок будет меняться в зависимости от зернения, типа сорбента, способа упаковки колонок и др.

КЛАССИФИКАЦИЯ МЕТОДОВ ВЭЖХ ПО МЕХАНИЗМУ РАЗДЕЛЕНИЯ

Большинство проводимых методом ВЭЖХ разделений основа­но на смешанном механизме взаимодействия веществ с сорбен­том, обеспечивающим большее или меньшее удерживание ком­понентов в колонке. Механизмы разделения в более или менее чистом виде на практике встречаются достаточно редко, напри­мер, адсорбционный при использовании абсолютно безводного силикагеля и безводного гексана для разделения ароматических углеводородов.

При смешанном механизме удерживания для веществ раз­ного строения и молекулярной массы можно оценить вклад в удерживание адсорбционного, распределительного, эксклюзион-ного и других механизмов. Однако для лучшего понимания и представления о механизмах разделения в ВЭЖХ целесообраз­но рассматривать разделения с преобладанием того или иного механизма как относящиеся к определенному виду хроматогра­фии, например, к ионообменной хроматографии.

2.1.1 АДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ

Разделение методом адсорбционной хроматографии осущест­вляется в результате взаимодействия вещества с адсорбентами, такими, как силикагель или оксид алюминия, имеющими на по­верхности активные центры. Различие в способности к взаимо­действию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия как с растворите­лем, так и с адсорбентом.

В основе сорбции на поверхности адсорбента, имеющего гид-роксильные группы, лежит специфическое взаимодействие меж­ду полярной поверхностью адсорбента и полярными (или спо­собным поляризоваться) группами или участками молекул. К таким взаимодействиям относят диполь-дипольное взаимодей­ствие между постоянными или индуцированными диполями, об­разование водородной связи вплоть до образования я-комплек-сов или комплексов с переносом заряда. Возможным и доста­точно частым в практической работе является проявление хемо-сорбции, которая может привести к значительному повышению времени удерживания, резкому снижению эффективности, появ­лению продуктов разложения или необратимой сорбции веще­ства.

Изотермы адсорбции веществ имеют линейную, выпуклую или вогнутую форму. При линейной изотерме адсорбции пик ве­щества симметричен и время удерживания не зависит от разме­ра пробы. Чаще всего изотермы адсорбции веществ нелинейны и имеют выпуклую"форму, что приводит к некоторой асиммет­рии пика с образованием хвоста.

Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом пор, поверхностью, диаметром пор. Значительно реже используют оксид алюминия и крайне редко--другие адсорбенты, широко применяющиеся в класси­ческой колоночной и тонкослойной хроматографии. Основная причина этого - недостаточная механическая прочность боль­шинства прочих адсорбентов, не позволяющая упаковывать их я использовать при повышенных давлениях, характерных для вэжх.

Полярные группы, обусловливающие адсорбцию и находя­щиеся на поверхности силикагеля и оксида алюминия, по свой­ствам близки. Поэтому обычно порядок элюирования смесей ве­ществ и элюотропный ряд растворителей для них одинаковы. Однако различие химического строения силикагеля и оксида алюминия иногда приводит к появлению различий в селектив­ности-- тогда предпочтение отдают тому или другому адсор­бенту, более подходящему для данной конкретной задачи. На­пример, оксид алюминия обеспечивает большую избиратель­ность при разделении некоторых многоядерных ароматических углеводородов.

Предпочтение, отдаваемое обычно силикагелю по сравнению с оксидом алюминия, объясняется более широким выбором си-ликагелей по пористости, поверхности и диаметру пор, а также значительно более высокой каталитической активностью оксида алюминия, нередко приводящей к искажению результатов ана­лиза вследствие разложения компонентов пробы либо их необ­ратимой хемосорбции.

2.1.2 Недостатки адсорбционной хроматографии, ограничивающие ее использование

Популярность адсорбционной хроматографии по мере разви­тия метода ВЭЖХ постепенно падала, она все больше заменя­лась и продолжает заменяться на другие варианты, такие, как обращенно-фазная и нормально-фазная ВЭЖХ на сорбентах с-привитой фазой. Какие же недостатки адсорбционной хромато­графии привели к этому?

Прежде всего, это большая длительность процессов уравно­вешивания адсорбентов с растворителями, содержащими воду в микроколичествах, трудность приготовления таких раствори­телей с определенной и воспроизводимой влажностью. Из это­го следуют плохая воспроизводимость параметров удерживания, разрешения, селективности. По этой же причине невозможно использовать градиентное элюирование - возврат к исходному состоянию настолько длителен, что значительно превосходит выигрыш времени за счет использования градиента.

Существенные недостатки адсорбентов, особенно оксида алюминия, связанные с частыми случаями перегруппировок чувствительных к катализу соединений, их разложения, необра­тимой сорбции, также общеизвестны и неоднократно отмеча-лить в литературе. Необратимо сорбирующиеся вещества, на­капливаясь на начальном участке колонки, меняют природу сорбента, могут привести к повышению сопротивления колонки или даже к полной ее забивке. Последний недостаток может быть устранен путем использования предколонки, которая по- мере повышения сопротивления и забивки заменяется на новую* или перезаполняется новым сорбентом. Однако необратимая сорбция, имеющая место и в этом случае, приводит к получе­нию хроматограммы, на которой полностью или частично от­сутствуют чувствительные к сорбции или каталитическому раз­ложению компоненты пробы.

2.2. РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ

Распределительная хроматография - это вариант ВЭЖХ, в котором разделение смеси на компоненты осуществляется за счет различия их коэффициентов распределения между двумя несмешивающимися фазами: растворителем (подвижная фа­за) и фазой на сорбенте (неподвижная фаза). Исторически пер­выми были сорбенты такого типа, которые получали нанесением жидких фаз (оксидипропионитрила, парафинового масла и др.) на пористые носители, аналогично тому, как готовили и готовят сорбенты для газожидкостной хроматографии (ГЖХ). Однако сразу же обнаружились и недостатки таких сорбентов, основ­ным из которых было относительно быстрое смывание фазы с носителя. За счет этого количество фазы в колонке постепенно уменьшалось, времена удерживания также уменьшались, на на­чальном участке колонки появлялись не покрытые фазой центры адсорбции, вызывавшие образование хвостов пиков. С этим недостатком боролись, насыщая растворитель нанесен­ной фазой еще до его попадания в колонку. Унос также умень­шался, когда использовали более вязкие и менее растворимые полимерные фазы, однако в этом случае из-за затруднения диффузии из толстых полимерных пленок эффективность колонок заметно снижалась.

Логическим оказалось привить химическими связями жид­кую фазу к носителю таким образом, чтобы унос ее стал физи­чески невозможен, т. е. превратить носитель и фазу в одно це­лое- в так называемый привито-фазный сорбент.

В дальнейшем усилия исследователей были направлены на поиск реагентов, прививка которых протекала бы достаточно быстро и полно, а образовавшиеся связи были максимально устойчивыми. Такими реагентами стали алкилхлорсиланы и их производные, позволившие по сходной технологии получать привито-фазные сорбенты разного типа и с разными как по­лярными, так и неполярными группами на поверхности.

Успешное применение сорбентов последнего типа для ВЭЖХ способствовало росту их производства самыми разными произ­водителями. Каждая фирма производила такие сорбенты, как правило, на основе своего вида силикагеля и по своей техноло­гии, которая обычно составляет «ноу-хау» производства. В ре­зультате большое количество сорбентов, называющихся хими­чески совершенно одинаково (например, силикагель с привитым октадецилсиланом), имеют очень сильно различающиеся хро-матографические характеристики. Это связано с тем, что сили­кагель может иметь поры шире или уже, разную поверхность, пористость, его поверхность до прививки может гидроксилиро-ваться или нет, прививаться могут моно-, ди- или трихлорсила-ны, условия прививки могут давать мономерный, полимерный или смешанный слой фазы, используются разные методы удале­ния остатков реагентов, может использоваться или не исполь­зоваться дополнительная дезактивация силанольных и других активных групп.

Сложность технологии прививки реагентов и подготовки сырья и материалов, ее многостадийность приводят к тому, что даже полученные по одной технологии ка одной фирме-произво­дителе партии сорбентов могут иметь несколько разные хрома-тографические характеристики. Особенно это касается тех слу­чаев, когда такие сорбенты используют для анализа многоком­понентных смесей, содержащих вещества, заметно различаю щиеся по количеству и положению функциональных групп, по* роду функциональности .

Учитывая вышеуказанное, всегда следует стремиться к то­му* чтобы при использовании описанной в литературе методи­ки анализа применять именно тот самый сорбент и те же усло­вия работы. В этом случае вероятность того, что работу не удастся воспроизвести, является минимальной. Если же такой возможности нет, а берется сорбент другой фирмы с аналогич­ной привитой фазой, нужно быть готовым к тому, что потребу­ется длительная работа по переделке методики. При этом су­ществует вероятность (и ее следует учитывать), что на этом сорбенте даже и после длительной разработки можно не до­биться требуемого разделения. Наличие в литературе многих описанных методик разделения на давно производимых старых сорбентах стимулирует их дальнейшее производство и примене­ние по этой причине. Однако в тех случаях, когда приходится переходить к разработке оригинальных методик, особенно при­менительно к веществам, склонным к разложению, хемосорб-ции, перегруппировкам, целесообразно начинать работу на сор­бентах, разработанных в последнее время и выпускаемых по> новым, улучшенным вариантам технологии. Новые сорбенты имеют более однородный фракционный состав, более однород­ное и полное покрытие поверхности привитой фазой, более со­вершенные окончательные стадии обработки сорбентов.

2.3. ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ

В ионообменной хроматографии разделение компонентов смеси достигается за счет обратимого взаимодействия ионизи­рующихся веществ с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием спо­собных к ионному обмену противоионов, расположенных в не­посредственной близости к поверхности. Ион введенного образ­ца, взаимодействуя с фиксированным зарядом сорбента, обме­нивается с противоионом. Вещества, имеющие разное сродство " к фиксированным зарядам, разделяются на анионитах или на катеонитах. Аниониты имеют на поверхности положительно за­ряженные группы и сорбируют из подвижной фазы анионы. Ка-тиониты соответственно содержат группы с -отрицательным за­рядом, взаимодействующие с катионами.

В качестве подвижной фазы используют водные растворы " солей кислот, оснований и растворители типа жидкого аммиа­ка, т. е. системы растворителей, имеющих высокое значение ди­электрической проницаемости е и большую тенденцию ионизи­ровать соединения. Обычно работают с буферными растворами, позволяющими регулировать значение рН.

При хроматографичеоком разделении ионы анализируемого вещества конкурируют с ионами, содержащимися в элюенте, стремясь вступить во взаимодействие с противоположно заря­женными группами сорбента. Отсюда следует, что ионообмен­ную хроматографию можно применять для разделения любых соединений, которые могут быть каким-либо образом ионизированы. Можно провести анализ даже нейтральных молекул Сахаров в виде их комплексов с борат-ионом:

Сахар + ВО 3 2 - = Сахар -ВО 3 2 -.

Ионообменная хроматография незаменима при разделении вы­сокополярных веществ, которые без перевода в производные не могут быть проанализированы методом ГЖХ. К таким со­единениям относятся аминокислоты, пептиды, сахара.

Ионообменную хроматографию широко применяют в медици­не, биологии, биохимии , для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для раз­деления неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии прово­дят за 20-40 мин с лучшим разделением. Применение ионооб­менной хроматографии в биологии позволило наблюдать за об­разцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к не­правильной интерпретации конечного результата. Интересно ис­пользование данного метода для контроля изменений, происхо­дящих с биологическими жидкостями . Применение пори­стых слабых анионообменников на силикагелевой основе позво­лило разделить пептиды . V

Механизм ионного обмена можно представить в виде сле­дующих уравнений:

для анионного обмена

X- + R+Y- ч ->■ Y-+R+X-.

для катионного обмена |

X+ + R-Y+ ч=* Y++R-X+.

В первом случае ион образца Х~ конкурирует с ионом по­движной фазы Y~ за ионные центры R+ ионообменника, а во втором в конкуренцию с ионами подвижной фазы Y+ за ион­ные центры R~ вступают катионы образца Х+.

Естественно, что ионы образца, слабо взаимодействующие с ионообменником, при этой конкуренции будут слабо удержи­ваться на колонке и первыми вымываются с нее и, наоборот, более сильно удерживаемые ионы будут элюировать из колонки последними. Обычно возникают BTqpH4Hbie взаимодействия не­ионной природы за счет адсорбции или водородных связей об­разца с неионной частью матрицы или за счет ограниченной растворимости образца в подвижной фазе. Трудно выделить «классическую» ионообменную хроматографию в «чистом» ви­де, и поэтому некоторые хроматографисты исходят из эмпири­ческих, а не теоретических закономерностей при ионообменной хроматографии.

Разделение конкретных веществ зависит в первую очередь от выбора наиболее подходящего сорбента и подвижной фазы. В качестве неподвижных фаз в ионообменной хроматографии применяют ионообменные смолы и силикагели с привитыми ионогенными группами.

2.4. ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ

Зксклюзионная хроматография представляет собой вариант! жидкостной хроматографии, в котором разделение происходит за счет распределения молекул между растворителем, находя­щимся внутри пор сорбента, и растворителем, протекающим " между его частицами.

В отличие от остальных вариантов ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры. Поэтому применение термина «сорбент» к данным наполнителям в определенной степени ус­ловно.

Принципиальной особенностью метода является возможность разделения молекул по их размеру в растворе в диапазоне прак­тически любых молекулярных масс - от 10 2 до 10 8 , что дела­ет ч его незаменимым для исследования синтетических и биопо­лимеров.

По традиции процесс, проводимый в органических раствори­телях, все еще часто называют гель-проникающей, а в водных системах - гель-фильтрационной хроматографией. В данной книге для обоих вариантов принят единый термин, который происходит от английского «Size Exclusion» - исключение по размеру - и в наиболее полной степени отражает механизм процесса.

Детальный разбор существующих представлений о весьма сложной теории процесса эксклюзионной хроматографии прове­ден в монографиях.

Полный объем растворителя в колонке Vt (его часто назы­вают полным объемом колонки, так как Vd не принимает учас­тия в хроматографическом процессе) представляет собой сум­му объемов подвижной и неподвижной фаз.

Удерживание молекул в зксклюзионной колонке определяет­ся вероятностью их диффузии в поры и зависит от соотношения размеров молекул и пор, что схематически показано на рис. 2.15. Коэффициент распределения Ка, как и в других вариантах хро­матографии, представляет собой отношение концентраций ве­щества в неподвижной и подвижной фазах.

Так как подвижная и неподвижная фазы имеют одинаковый состав, то Kd вещества, для которого обе фазы одинаково до­ступны, равен единице. Эта ситуация реализуется для молекул С самыми малыми размерами (в том числе и молекул раствори­теля), которые проникают во все поры (см. рис. 2.15) и поэто­му движутся через колонку наиболее медленно. Их удерживае­мый объем равен полному объему растворителя Vt-

Рис. 2.15. Модель разделения молекул по меру в эксклюзионной хроматографии

Все молекулы, размер которых больше размера пор сорбен­та, не могут попасть в них (полная эксклюзия) и проходят по-каналам между частицами. Они элюируются из колонки с од­ним и тем же удерживаемым объемом, равным объему подвиж­ной фазы V 0 - Коэффициент распределения для этих молекул ра­вен нулю.

Молекулы промежуточного размера, способные проникать только в какую-то часть пор, удерживаются в колонке в соот­ветствии с их размером. Коэффициент распределения этих мо­лекул изменяется в "пределах от нуля до единицы и характери­зует долю объема пор, доступных для молекул данного размера. Их удерживаемый объем определяется суммой У о и доступной части объема пор.

КАЧЕСТВЕННЫЙ АНАЛИЗ

Хроматографист, начинающий работать в области высоко­эффективной жидкостной хроматографии, должен ознакомиться с основами качественного анализа. Качественный анализ при­меняют для идентификации известного продукта, полученного новым путем или находящегося в смеси с другими продукта­ми." Он необходим при выделении из сложных биологических, химических смесей различных компонентов, что особенно важ­но в медицине, криминалистике, экологии, для контроля за на-| хождением некоторых лекарствен химических продуктов и их метаболитов в биомл.тер.иалах..„. "Знакомство с основами каче­ственного" анализа поможет избежать типичных ошибок, на­пример/отличить примеси в образце от примесей в раствори-теле или проверять чистоту вещества не на одной длине волны спектрофотометра, а на разных и т. д.

Прежде чем приступить к анализу, необходимо установить, весь ли образец элюируется из колонки данной системой ра­створителей или нет. Чтобы быть уверенным в полном элюи-ровании, необходимо собрать всю вытекающую из колонки жидкость, упарить растворитель, взвесить остаток и найти степень извлечения образца.

Идентификацию компонентов в ВЭЖХ можно проводить тремя способами: 1) использовать информацию об удержива­нии; 2) исследовать зоны, полученные при разделении в колон­ке жидкостного хроматографа, методами спектрального или химического анализа; 3) непосредственно подключить спект-ральный анализатор к колонке.

Для регистрации пиков в хроматографии используют удер­живаемый объем V R или время удерживания t R . Обе величины являются характеристикой вещества в данной хроматографиче­ской системе. Так как время удерживания разделяемого веще­ства состоит из времени взаимодействия в колонке и времени прохождения пустых участков трубки, оно меняется от прибора к прибору. Удобно иметь вещество, не удерживаемое данной колонкой, приняв его за стандарт, время и объем удер­живания которого t 0 , V o . Хроматографирование вещества и стандарта необходимо проводить при одних и тех же условиях (давлении и скорости потока). При идентификации по данным об удерживании, известные индивидуальные вещества, которые могут присутствовать в об­разцах, разделяют в той же самой хроматографической систе­ме, и для них получают значения t R . Сравнивая эти значения t R с временем удерживания неизвестного пика, можно обнару­жить, что они либо совпадают, и тогда вероятно, что пики со­ответствуют одному и тому же веществу, либо t R известного вещества не соответствует t R неизвестной зоны. Тогда все же возможна ориентировочная оценка значений t R веществ, не до­ступных для непосредственного измерения степени их удержи­вания. Рассмотрим оба варианта.

В первом случае, очевидно, необходимо предварительное изучение образца для постулирования присутствия в нем кон­кретных веществ. При работе с простыми смесями нетрудно определить, совпадает ли степень удерживания зон образца и известных веществ, или нет, т. е. значения t B одинаковы или различаются. В случае сложных смесей сразу несколько ве­ществ могут элюироваться со схожими значениями t R , и реально получаемые при хроматографическом разделении зоны пере­крываются. В результате получение точных значений t R для различных зон становится невозможным. Надежность иденти­фикации возрастает при повышении разрешающей способности, более тщательном контроле условий разделения, многократном измерении значений t R и усреднении найденных величин. При этом хроматографическое разделение известного и неизве­стного веществ должно чередоваться. При разделении сложных смесей значение t R вещества может изменяться под влиянием матрицы самого образца. Такое воздействие возможно в нача­ле хроматограммы и при перекрывании пиков; возможно также затягивание зон, о чем уже упоминалось.

В подобных случаях следует добавить стандарт к образцу в соотношении 1: 1. Если вещества идентичны, значение t R исходного вещества не изменится, и на хроматограмме полу­чают только один пик. Если имеется прибор с циклической системой хроматографирования, то для надежности идентифи­кации желательно смесь пропускать через колонку несколько раз.

Сведения о степени удерживания можно найти и в литера­туре, однако ценность этой информации ограничена. Так как колонки даже одной партии дают плохую воспроизводимость, литературные значения не всегда соответствуют истинному значению t R на данной колонке. Для адсорбционной хромато­графии возможно, однако, предсказание t R на основании лите­ратурных данных. Другая трудность, связанная с использова­нием литературных значений t R , - сложность их поиска в специальной литературе, хотя библиографические обзоры, пуб­ликуемые в Jornal of chromatography, имеют обновляемый указатель по типам веществ.

Во втором случае, когда времена удерживания известных соединений и зон образца не совпадают, имеется возможность предсказать время удерживания неизвестного компонента. Вполне надежны предсказания относительного удерживания на основании данных о структуре в пространственно-эксклюзионной хроматографии. Менее точны они в адсорбционной, распределительной хроматографии и особенно при работе на химически привязанной фазе. Для ионной и ион-парной хрома­тографии веществ с известной р Ка возможны лишь приблизи­тельные определения значений tR . Всегда легче предсказать от­носительное удерживание или значение *х, чем абсолютные зна­чения k ". Относительные значения t R легче оценить для родствен­ных соединений или производных, например замещенных алкилкарбоновых кислот или производных бензола.

При изократическом разделении гомологов или олигомеров иногда наблюдается следующая закономерность:

\ gk " = A + Bn ,

где А и В - константы для ряда выбранных образцов и для данной хрома-тографической системы (на одной и той же колонке, с такой же подвижной и неподвижной фазами); п - число одинаковых структурных единиц в мо­лекуле образца.

Введение в молекулу образца функциональной группы / бу­дет приводить к изменению k " в первом уравнении на некото­рый постоянный коэффициент а/ в данной хроматографической системе. Можно получить групповые константы а/ для различ­ных замещающих групп /, значения которых будут возрастать при увеличении полярности функциональных групп во всех видах хроматографии, кроме обращенно-фазной, где значения констант будут уменьшаться с увеличением полярности.

Некоторые групповые константы а/ для различных заме­щающих групп / приведены в табл. 9.1.

В адсорбционной хроматографии первое уравнение не всег­да применимо, так как оно справедливо при условии, что все изомеры имеют одно и то же значение k ", что не всегда соблю­дается. Можно, однако, построить график зависимости lgfe" одних и тех же соединений на одной колонке относительно lgfe" тех же соединений, но на другой колонке или относитель­но соответствующих характеристик в тонкослойной хромато­графии, например, lg[(l-Rf ) IRf ].

При сопоставлении данных об удерживании веществ можно использовать значения коэффициента емкости k ", так как на него в отличие от t R не влияют скорость подвижной фазы и геометрические особенности колонки.

Разделение на химически привязанной фазе аналогично разделению по методу распределительной хроматографии с аналогичными фазами, и поэтому данные по экстракции при равновесном состоянии могут быть использованы для пред­сказания времени удерживания.

В ионообменной хроматографии на степень удерживания влияют три фактора: степень ионизации кислот и оснований, заряд ионизированной молекулы и способность вещества из водной подвижной фазы, используемой в ионообменной хрома­тографии, мигрировать в органическую фазу. Последнее зави­сит от молекулярной массы соединения и его гидрофобности. Следовательно, более сильные кислоты или основания сильнее удерживаются при анионообменном или катионообменном раз­делении. При снижении рК а отдельной кислоты, входящей в образец, удерживание возрастает при разделении ряда кислот за счет анионного обмена, а при увеличении р/С о увеличивает­ся удерживание оснований при их разделении за счет катион-ного обмена.

Таким образом, совпадение значений времени удерживания известного вещества с наблюдаемым дает возможность пред­положить их идентичность. Достоверность идентификации воз­растает, если проводить сравнение хроматограмм известного вещества и неизвестного компонента в различных условиях. Если вещества в адсорбционной и обращенно-фазной или ион-нообменной и эксклюзионной хроматографии ведут себя одина­ково, надежность идентификации возрастает. Если достовер­ность идентификации при равенстве относительного удерживания составляет 90%, то при изучении поведения этих же веществ в условиях существенно отличающихся достоверность иденти­фикации составляет уже 99%.

Ценной характеристикой вещества, применяемой при иден­тификации, является отношение сигналов, полученных для данного вещества на двух разных детекторах. Анализируемое вещество после выхода из колонки проходит сначала через первый детектор, затем через второй, а сигналы, поступающие с детекторов, регистрируются одновременно при помощи мно­гоперьевого самописца или на двух самописцах. Обычно при­меняют последовательное соединение ультрафиолетового детек­тора (более чувствительного, но селективного) с рефрактомет­ром, или ультрафиолетового с детектором по флуоресценции, или двух ультрафиолетовых детекторов, работающих на раз­ных длинах волн. Относительный отклик, т. е. отношение сиг­нала рефрактометра к сигналу фотометра, является характе­ристикой вещества при условии, что оба детектора работают в своем линейном диапазоне; это проверяется введением раз­личных количеств одного и того же вещества. Качественную информацию можно получить, работая на фотометрических детекторах, снабженных устройством для остановки потока (Stop flow) и позволяющих регистрировать спектр выходящего" из колонки пика, пока он находится в проточной кювете, сравнивая его со спектром известного соединения.

Значительный интерес при идентификации представляют со­временные, пока еще дорогие, спектрофотометры с диодной решеткой.

Совершенно неизвестное вещество невозможно идентифици­ровать только с помощью высокоэффективной жидкостной хро­матографии, необходимы и другие методы.

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ

Количественная жидкостная хроматография является хоро-(шо разработанным аналитическим методом, не уступающим по точности количественной газовой хроматографии и значительно превышающим точность ТСХ или электрофореза. К со­жалению, в ВЭЖХ не существует детектора, который имел бы близкую чувствительность для соединений различного химиче­ского строения (как катарометр в ГЖХ). Поэтому для полу­чения количественных результатов калибровка прибора обяза­тельна.

Количественный анализ состоит из следующих стадий: 1) хроматографическое разделение; 2) измерение площадей или высот пика; 3) расчет количественного состава смеси на основании хроматографических данных; 4) интерпретация по­лученных результатов, т. е. статистическая обработка. Рас­смотрим все эти стадии.

4.1. ХРМАТОГРАФИЧЕСКОЕ РАЗДЕЛЕНИЕ

При отборе пробы могут быть допущены ошибки. Особенно важно избежать ошибки и отобрать адекватную представи­тельную пробу неоднородных твердых образцов, легколетучих или неустойчивых веществ, а также сельскохозяйственных про­дуктов и биоматериалов. Неоднородные образцы, например, пищевых продуктов, тщательно перемешивают и квартуют. Проводя эту операцию многократно, добиваются однородности пробы.

Погрешности и потери веществ могут быть допущены на стадии экстракции, выделения, очистки и т. д.

Образцы должны быть полностью растворены, а их раст­воры приготовлены с точностью ±0,1%. Растворять образец желательно в подвижной фазе, что исключит возможность осаждения его после введения в хроматограф. Если растворе­ние в подвижной фазе невозможно, то следует применять ра­створитель, смешивающийся с ней, и вводить в хроматограф объемы образца (менее 25 мкл).

Значительные погрешности могут быть при вводе пробы за счет ее фракционирования, утечек и размывания пиков. Размывание пиков вызывает образование хвостов, приводящих к частичному перекрыванию пиков, и как следствие этого к погрешностям при детектировании. Для ввода пробы при ко­личественном анализе предпочтительнее использовать петле­вые клапанные устройства, а не шприцы из-за более высокой точности.и меньшей зависимости от индивидуальных особен­ностей операторов.

При хроматографическом разделении веществ также могут возникнуть осложнения, приводящие к искажению данных: количественного анализа. Возможно разложение или превра­щение пробы во время хроматографического процесса или не­обратимая адсорбция вещества на данной колонке. Важно убедиться в отсутствии этих нежелательных явлений и при не­обходимости провести регенерацию колонки или заменить ее. Перекрывание пиков и образование хвостов также можно уменьшить, изменяя условия хроматографирования.

Нельзя использовать в количественном анализе пики лож­ные или нечеткой формы, а также пики, время выхода которых близко к to , поскольку возможно недостаточное их разделение. Обычно используют пики со значением й"^0,5. Наивысшая эффективность колонки достигается при введении 10~ 5 -10~ 6 г растворенного вещества на 1 г сорбента. При введении боль­ших количеств образца зависимость высоты пика от нагрузки может оказаться нелинейной и потребоваться количественная оценка по площадям пиков.

К существенному искажению результатов хроматографиче­ского разделения приводят погрешности, связанные с детекти­рованием, или усилением. Каждый детектор характеризуется специфичностью, линейностью и чувствительностью. Особенно важна проверка на селективность при анализе микропримесей. Отклик УФ-детекторов может изменяться на вещества со схожими функциональными группами в 10 4 раз. Необходимо от­клик детектора прокалибровать для каждого определяемого вещества. Естественно, что вещества, не поглощающие в УФ-области, не дадут сигнала на самописец при использовании в качестве детектора фотометра. При использовании рефракто­метра возможно появление отрицательных пиков. Кроме того, этот детектор необходимо термостатировать, чего не требуется для УФ-детектора.

Линейностью детектора определяется размер вводимой пробы. Необходимо помнить, что скорость потока через колон­ку, температура колонки и детектора, а также его конструкция влияют на точность количественного анализа. Погрешности при передаче электрического сигнала на выходное устройство (са­мописец), интегратор или на ЭВМ могут возникать за счет наводки шумов, отсутствия заземления, колебания напряжения в сети и т. д.

4.2. ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ИЛИ ВЫСОТ ПИКОВ

Высотой пик h (рис. 10.1) называют расстояние от верши­ны пика до базовой линии, его измеряют линейной либо под­считывают число делений на самописце. Некоторые электрон­ные интеграторы и вычислительные машины дают информацию о высоте пиков. Положение базовой линии смещенных пиков находят путем интерполирования значений ординат, соответ­ствующих началу и концу пика (пик 1 и 3 см. рис. 10.1). Для повышения точности необходимо иметь пологую стабиль­ную базовую линию. В случае неразделенных пиков базовую линию строят между началом и концом пика, а не заменяют нулевой линией. Так как высота пиков менее зависит от влия­ния соседних перекрывающихся пиков, оценка по высоте пика точнее, и ее почти всегда используют при анализе микропри­месей.

Площадь пика можно определять различными способами. Рассмотрим некоторые из них.

1. Планиметрический метод заключается в том, что пик обводят ручным планиметром, представляющим собой прибор механически определяющий площадь пика. Метод точен, но трудоемок и плохо воспроизводим. Применение этого метода нежелательно.

2. Метод бумажных силуэтов - пик вырезают и взвешивают. Метод хорошо воспроизводим, но трудоемок, при этом уничто­жается хроматограмма. Применимость его зависит от одно­родности диаграммной ленты. Метод также не может быть широко рекомендован.

4. Метод триангуляции состоит в построении треугольника путем проведения касательных к сторонам пика. Вершина тре­угольника находится выше, чем вершина пика. Увеличение площади, образованной этой продленной вершиной, будет по­следовательным для всей хроматограммы и не слишком по­влияет на точность. Кроме того, некоторая площадь, теряемая при проведении касательных, будет компенсирована. Основание треугольника определяют пересечением касательных с базовой линией, а площадь - произведением 7г основания на высоту. Для определения площадей асимметричных пиков этот метод наилучший. Однако воспроизводимость при построении каса­тельных различными операторами различна и, следовательно; низкая.

5. Метод с применением дискового интегратора основан на электромеханическом приспособлении, присоединенном к само­писцу. Перо, прикрепленное к интегратору, перемещается по полосе внизу ленты со скоростью, пропорциональной переме­щению пера самописца.

Как и при ручном измерении, пик должен оставаться на шкале самописца, однако регулировки, компенсирующие сме­щение базовой линии и неполное разделение смежных пиков, снижает надежность и увеличивает продолжительность ана­лиза.

Метод более точен, чем ручные методы измерения, особен­но при асимметричных пиках, и дает преимущество в скорости. Кроме того, он обеспечивает постоянную количественную за­пись анализа.

6. Методы с применением электронных интеграторов, опре­деляющих площадь пиков и печатающих информацию об этой площади и о временах удерживания, могут включать коррек­цию смещения базовой линии и определять площадь лишь ча­стично разделенных пиков. Основные преимущества - точность, скорость, независимость действия от работы самописца. Инте­граторы имеют память, и их можно программировать для кон­кретного анализа, используя предварительно заложенную про­грамму. К достоинствам интегратора относят его способность использовать поправочные коэффициенты на отклик детектора при пересчете исходных данных о площадях пиков, компенси­руя различие чувствительности детектора к разным веществам. Подобные системы экономят время, улучшают аналитическую точность и полезны для рутинного аналитического анализа.

7. В жидкостной хроматографии широко применяют ЭВМ, измеряющие площади пиков. Они выводят на печать полное сообщение, включая название веществ, площади пиков, време­на удерживания, поправочные коэффициенты на отклик детек­тора и содержание (в масс.%) для различных компонентов образца.

Жидкостная хроматография это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга веществ, чем метод газовой хроматографии. Это связано с тем, что большинство веществ не обладает летучестью, многие из них неустойчивы при высоких температурах (особенно высокомолекулярные соединения) и разлагаются при переводе в газообразное состояние. Разделение веществ жидкостной хроматографией чаще всего производится при комнатной температуре.

Особенности всех видов жидкостной хроматографии обусловлены тем, что подвижной фазой в ней является жидкость, а сорбция компонентов из газообразного и жидкого элюента протекает по-разному. Если в газовой хроматографии газ-носитель выполняет только транспортную функцию и неподвижной фазой не сорбируется, то жидкая подвижная фаза в жидкостной хроматографии является активным элюентом, его молекулы могут сорбироваться неподвижной фазой. При прохождении через колонку молекулы компонентов анализируемой смеси, находящиеся в элюенте, должны вытеснить молекулы элюента из поверхностного слоя сорбента, что приводит к уменьшению энергии взаимодействия молекул анализируемого вещества с поверхностью сорбента. Поэтому величины удерживаемых объемов V R , пропорциональные изменению свободной энергии системы, в жидкостной хроматографии меньше, чем в газовой, а диапазон линейности изотермы сорбции в жидкостной хроматографии шире.

Применяя различные элюенты, можно изменять параметры удерживания и селективность хроматографической системы. Селективность в жидкостной хроматографии в отличие от газовой определяется не одним, а двумя факторами природой подвижной (элюент) и неподвижной фаз.

Жидкая подвижная фаза имеет большую плотность и вязкость, чем газообразная, коэффициенты диффузии D ж на 34 порядка ниже, чем в газе. Это приводит к замедлению массообмена в жидкостной хроматографии по сравнению с газовой. Уравнение Ван-Деемтера в связи с тем, что членВ в жидкостной хроматографии роли не играет (D ж D г ), видоизменяется и графическая зависимость эффективностиН от линейной скорости потока подвижной фазы имеет вид, представленный на рис. 1.9.

В классическом варианте колоночной жидкостной хроматографии в стеклянную колонку высотой 1–2 м, заполненную сорбентом с размером частиц 100 мкм и элюентом, вводят анализируемую пробу, растворенную в элюенте, и пропускают элюент, отбирая на выходе из колонки порции элюата. Этот вариант жидкостной хроматографии до настоящего времени применяют в лабораторной практике, но так как скорость прохождения элюента под действием силы тяжести мала, анализ продолжителен.

Современный вариант жидкостной хроматографии так называемая высокоэффективная жидкостная хроматография ВЭЖХиспользует объемно- и поверхностно-пористые сорбенты с размером частиц 5–10 мкм, нагнетательные насосы, обеспечивающие давление в системе до 400 атм., высокочувствительные детекторы. Быстрый массоперенос и высокая эффективность разделения позволяют использовать ВЭЖХ для разделения молекул (жидкостно-адсорбционная и жидкость-жидкостная распределительная хроматографии), для разделения ионов (ионообменная, ионная, ион-парная хроматография), для разделения макромолекул (эксклюзионная хроматографии).

1.3. УДЕРЖИВАНИЕ И СИЛА РАСТВОРИТЕЛЯ

Для того чтобы анализируемые вещества разделялись на колонке, как уже упоминалось выше, коэффициент емкости k" должен быть больше 0, т.е. вещества должны удерживаться неподвижной фазой, сорбентом. Однако коэффициент емкости недолжен быть и слишком большим, чтобы получить приемлемое время элюирования. Если для данной смеси веществ выбрана неподвижная фаза, которая их удерживает, то дальнейшая работа по разработке методики анализа заключается в выборе такого растворителя, который обеспечил бы в идеальном случае различные для всех компонентов, но приемлемо не очень большие k". Этого добиваются, меняя элюирующую силу растворителя.

В случае адсорбционной хроматографии на силикагеле или оксиде алюминия, как правило, силу двухкомпонентного растворителя (например, гексана с добавкой изопропанола) увеличивают, увеличивая в нем содержание полярного компонента (изопропанола), или же уменьшают, уменьшая содержание изопропанола. Если содержание полярного компонента становится слишком малым (менее 0,1%), следует заменить его более слабым по элюирующей силе. Так же поступают, заменяя на другие либо полярную, либо неполярную составляющую и в том случае, если данная система не обеспечивает желаемой селективности по отношению к интересующим компонентам смеси. При подборе систем растворителей принимают во внимание как растворимости компонентов смеси, так и элюотропные ряды растворителей, составленные разными авторами.

Примерно так же подбирают силу растворителя в случае использования привитых полярных фаз (нитрил, амино, диол, нитро и др.), учитывая возможные химические реакции и исключая опасные для фазы растворители (например, альдегиды и кетоны для аминофазы).

В случае обращенно-фазной хроматографии силу растворителя увеличивают, повышая содержание в элюенте органической составляющей (метанола, ацетонитрила или ТГФ) и уменьшают, добавляя больше воды. Если не удается добиться желаемой селективности, используют другую органическую составляющую либо пытаются изменить ее с помощью разных добавок (кислот, ион-парных реагентов и др.).

При разделениях методом ионообменной хроматографии силу растворителя меняют, увеличивая или уменьшая концентрацию буферного раствора или меняя рН, в некоторых случаях используют модификацию органическими веществами.

Однако, особенно в случае сложных природных и биологических смесей, зачастую не удается подобрать силу растворителя таким образом, чтобы все компоненты пробы элюировались за приемлемый срок. Тогда приходится прибегать к градиентному элюированию, т.е. использовать растворитель, элюирующая сила которого в процессе анализа изменяется так, что она постоянно увеличивается по заранее заданной программе. Таким приемом удается добиться элюирования всех компонентов сложных смесей за относительно короткий промежуток времени и их разделения на компоненты в виде узких пиков.

1.6.1. Адсорбционная жидкостная хроматография . Адсорбционная жидкостная хроматография в зависимости от полярности неподвижной и подвижной фаз подразделяется на нормально-фазовую (НФХ) и обращенно-фазовую (ОФХ) хроматографии. В НФХ используют полярный адсорбент и неполярные подвижные фазы, в ОФХнеполярный адсорбент и полярные подвижные фазы, но в обоих вариантах выбор подвижной фазы часто важнее, чем выбор неподвижной. Неподвижная фаза должна удерживать разделяемые вещества. Подвижная фаза, т. е. растворитель, должна обеспечивать различную емкость колонки и эффективное разделение за приемлемое время.

В качестве неподвижной фазы в адсорбционной жидкостной хроматографии применяют полярные и неполярные тонкодисперсные пористые материалы с удельной поверхностью более 50 м 2 /г. Полярные адсорбенты (SiO 2 ,Al 2 O 3 , флорисил и др.) имеют на поверхности слабокислотные группы, способные удерживать вещества с основными свойствами. Эти адсорбенты используют главным образом для разделения неполярных и среднеполярных соединений. Их недостатоквысокая чувствительность к содержанию воды в применяемых элюентах. Для устранения этого недостатка полярные сорбенты обрабатывают аминами, диолами и другими реагентами, в результате чего происходит поверхностная прививка этих реагентов, модифицирование поверхности и изменение селективности по отношению к анализируемым веществам.

Неполярные адсорбенты (графитированные сажи, диатомит, кизельгур) неселективны к полярным молекулам. Для получения неполярных адсорбентов часто на поверхность, например, силикагеля прививают неполярные группы, например, алкилсилильные SiR 3 , гдеRалкильные группы С 2 С 22 .

Подвижная фаза должна полностью растворять анализируемую пробу, обладать невысокой вязкостью (чтобы коэффициенты диффузии были достаточно большими), желательно, чтобы из нее было возможно выделить разделенные компоненты. Она должна быть инертной по отношению к материалам всех частей хроматографа, безопасной, дешевой, подходящей для детектора.

Подвижные фазы, применяемые в жидкостной хроматографии, различаются по своей элюирующей силе. Элюирующая сила растворителя показывает, во сколько раз энергия сорбции данного элюента на данном адсорбенте больше, чем энергия сорбции элюента, выбранного в качестве стандарта, например н-гептана. Слабые растворители плохо адсорбируются неподвижной фазой, поэтому коэффициенты распределения сорбируемых веществ (сорбата) высокие. Наоборот, сильные растворители адсорбируются хорошо, поэтому коэффициенты распределения сорбата низкие. Растворитель тем сильнее, чем выше растворимость в нем анализируемой пробы, чем сильнее взаимодействие растворитель – сорбат.

Для обеспечения высокой эффективности разделения на колонке необходимо подобрать такую подвижную фазу, которая имеет полярность, оптимальную для разделяемой смеси в выбранных условиях разделения. Обычно сначала выбирают неподвижную фазу, которая имеет полярность, близкую к полярности разделяемых компонентов. Затем подбирают подвижную фазу, добиваясь того, чтобы коэффициент емкости k " оказался в интервале от 2 до 5. Если полярность подвижной фазы слишком близка к полярности неподвижной, время удерживания компонентов будет слишком малым, а если полярности подвижной и неподвижной фаз различаются очень сильно, время удерживания становится слишком большим.

При подборе подвижных фаз ориентируются на так называемые элюотропные ряды, основанные на применении индексов полярности Снайдера Р" , который подразделяет все растворители на сильные (полярные) и слабые (слабополярные и неполярные). В основе шкалы полярности лежит растворимость веществ, используемых в качестве подвижных фаз, в диоксане, нитрометане и этаноле.

В таблице 1.2 приведены значения индексов полярности и элюирующей силы (по отношению к SiO 2) ряда растворителей, наиболее часто применяемых в жидкостной хроматографии в качестве подвижных фаз. Здесь же указаны коротковолновые границы прозрачности этих растворителей, что облегчает подбор условий детектирования компонентов смеси.

Таблица 1.2

Характеристики растворителей, используемых в жидкостной хроматографии

Растворитель

Индекс полярности

Элюирующая сила (SiO 2)

Коротковолновая граница прозрачности

Фторалкан

Циклогексан

н -Гексан

Тетрахлорметан

Диизопропиловый эфир

Диэтиловый эфир

Дихлорметан

Тетрагидрофуран

Хлороформ

Уксусная кислота

Ацетонитрил

Нитрометан

В жидкостной хроматографии часто используют не индивидуальные растворители, а их смеси. Часто незначительные добавки другого растворителя, особенно воды, существенно увеличивают элюирующую силу элюента.

При разделении многокомпонентных смесей одна подвижная фаза в качестве элюента может не разделить все компоненты пробы за приемлемое время. В этом случае применяют метод ступенчатого, или градиентного, элюирования, при котором в процессе хроматографирования последовательно используют все более сильные элюенты, что позволяет элюировать сильноудерживаемые вещества за меньшее время.

В жидкостной хроматографии существуют некоторые эмпирические правила, которые очень полезны при выборе элюента:

 сорбция соединения, как правило, увеличивается с ростом в нем количества двойных связей и ОН-групп;

 сорбция уменьшается в ряду органических соединений: кислоты спиртыальдегидыкетонысложные эфирыненасыщенные углеводородынасыщенные углеводороды;

 для разделения веществ разной полярности и разделения веществ разных классов применяют нормально-фазовую хроматографию: анализируемая проба растворяется и элюируется неполярным элюентом, соединения разных классов выходят из колонки с полярным адсорбентом за разное время, при этом время удерживания соединений с разными функциональными группами увеличивается при переходе от неполярных соединений к слабополярным. Для очень полярных молекул значения времени удерживания так велики, что при использовании неполярного элюента анализ невозможен. Для уменьшения времени удерживания полярных компонентов переходят к полярным элюентам;

 в обращенно-фазовом варианте неподвижная фаза (неполярный адсорбент) сильнее адсорбирует неполярный компонент из полярных элюентов, например из воды;

 снижая полярность элюента добавлением менее полярного растворителя, можно уменьшить удерживание компонентов.

1.6.2. Распределительная жидкостная хроматография. В распределительной или жидкость-жидкостной хроматографии разделение компонентов анализируемой пробы обусловлено различиями в коэффициентах их распределения между двумя не смешивающимися между собой жидкими фазами, одна из которых неподвижная и находится на поверхности или в порах твердого неподвижного носителя, а втораяподвижная.

По характеру сил взаимодействия, обусловливающих различное распределение между двумя фазами веществ, отличающихся своим химическим строением, распределительная хроматография подобна адсорбционной, т. е. и здесь разделение основано на различии в силах межмолекулярного взаимодействия компонентов анализируемой пробы с неподвижной и подвижной жидкими фазами.

В зависимости от техники выполнения распределительная хроматография, как и адсорбционная, может быть колоночной или плоскостной (бумажной или тонкослойной).

В качестве твердых носителей используют вещества, индифферентные по отношению к подвижному растворителю и компонентам анализируемой пробы, но способные удерживать на поверхности и в порах неподвижную фазу. Чаще всего в качестве носителей применяют полярные вещества (целлюлозу, силикагель, крахмал). На них наносят неподвижную фазу полярный растворитель, чаще всего воду или спирт. В качестве подвижных фаз в этом случае используют менее полярные или неполярные вещества (спирты, амины, кетоны, углеводороды и др.). Такой вариант распределительной хроматографии называетсянормально-фазовым . Он применяется для разделения полярных веществ.

Второй вариант распределительной хроматографии отличается тем, что в качестве неподвижной твердой фазы используют неполярные носители (резину, фторопласт, гидрофобизированный силикагель), в качестве неподвижной жидкой фазы неполярные растворители (углеводороды), а в качестве подвижной жидкой фазыполярные растворители (спирты, альдегиды, кетоны и др., часто вода). Этот вариант распределительной хроматографии называетсяобращенно-фазовой и используется для разделения неполярных веществ.

Для достижения оптимального разделения компонентов анализируемой пробы очень важное значение имеет подбор подвижной фазы. Растворители (подвижные и неподвижные жидкие фазы) должны подбираться так, чтобы коэффициенты распределения компонентов смеси различались достаточно существенно. К жидким фазам предъявляются следующие требования :

1) используемые растворители должны хорошо растворять разделяемые вещества, причем их растворимость в неподвижной фазе должна быть больше, чем в подвижной;

2) растворители, используемые в качестве подвижной и неподвижной фаз, должны быть взаимонасыщаемы, т. е. состав растворителя должен быть постоянным во время прохождения через колонку;

3) взаимодействие растворителей, используемых в качестве подвижной фазы, с неподвижной фазой должно быть минимальным.

Чаще всего в распределительной жидкостной хроматографии в качестве подвижных жидких фаз применяют не индивидуальные вещества, а их смеси в различных соотношениях. Это позволяет регулировать полярность подвижной фазы, изменять соотношение полярностей подвижной и неподвижной фаз и добиваться оптимальных условий разделения компонентов конкретной анализируемой смеси.

Существенным недостатком этого хроматографического метода является достаточно быстрое смывание нанесённой неподвижной жидкой фазы с носителя. Для его устранения растворитель, используемый в качестве подвижной фазы, насыщают веществом, применяемым в качестве неподвижной жидкой фазы, или стабилизируют неподвижную жидкую фазу прививкой ее к носителю.

Разновидностью распределительной жидкостной хроматографии является широко используемый метод ВЭЖХ.

Самыми распространенными хроматографическими системами являются системы, имеющие модульный принцип сборки. Насосы, дегазирующие устройства, детекторы, дозаторы (автосамплеры), термостаты для колонок, коллекторы фракций, блоки управления хроматографической системой и регистрирующие устройства выпускаются в виде отдельных модулей. Широкий выбор модулей позволяет гибко решать различные аналитические задачи, быстро менять при необходимости конфигурацию системы с минимальными расходами. Вместе с тем выпускаются и мономодульные (интегрированные) ЖХ, главным преимуществом которых является миниатюризация отдельных блоков, компактность прибора.

В зависимости от способа элюирования жидкостные хроматографы делятся на изократические и градиентные.

Схема изократического хроматографа

Подвижная фазаиз емкости (1) через входной фильтр (9) подается прецизионным насосом высокого давления (2) в систему ввода образца (3) - ручной инжектор или автосамплер, туда же вводитсяпроба. Далее, через in-line фильтр (8), образец с током подвижной фазы поступает в элемент (элементы) разделения (4) - через предколонку в разделительную колонку. Затем, элюат поступает вдетектор (5) и удаляется в сливную емкость (7). При протекании элюата через измерительный контур детектора происходит регистрация хроматограммы и передача данных на аналоговый регистратор (самописец) (6) или иную систему сбора и обработки хроматографических данных (интегратор или компьютер). В зависимости от конструкции функциональных модулей управление системой может осуществляться с клавиатуры управляющего модуля (как правило насоса или системного контролера), с клавиатур каждого из модулей системы или производиться управляющей программой с персонального компьютера.

В случае градиентного элюирования используются два принципиально различных типа жидкостных хроматографов. Они отличаются точкой формирования градиента состава подвижной фазы.

Схема градиентного хроматографа с формированием градиента состава подвижной фазы на линии низкого давления.

Подвижная фаза из емкостей (1) через входные фильтры (9) и программатор градиента (10) подается прецизионным насосом высокого давления (2) в систему ввода образца (3) - ручной инжектор или автосамплер, туда же вводится проба. Работой клапанов программатора градиента управляет либо управляющий модуль системы (насос или контроллер), либо управляющая программа ПК. Системы такого типа формируют бинарный, трехмерный и четырехмерный градиент. Форма функции отработки градиента зависит от конкретного управляющего модуля или программы управления, а также функциональных возможностей управляемых и управляющих модулей. Далее, через in-line фильтр (8), образец с током подвижной фазы поступает в элемент (элементы) разделения (4) - через предколонку в разделительную колонку. Затем, элюат поступает в детектор (5) и удаляется в сливную емкость (7). При протекании элюата через измерительный контур детектора происходит регистрация хроматограммы и передача данных на аналоговый регистратор (самописец) (6) или иную систему сбора и обработки хроматографических данных (интегратор или компьютер). В зависимости от конструкции функциональных модулей управление системой может осуществляться с клавиатуры управляющего модуля (как правило, насоса или системного контролера), или производиться управляющей программой с персонального компьютера. В случае управления управляющим модулем возможно независимое управление детектором с его собственной клавиатуры.

Несмотря на кажущуюся привлекательность таких систем (в них используется всего лишь один прецизионный насос высокого давления), данные системы обладают рядом недостатков, среди которых основным, пожалуй, является жесткая необходимость тщательной дегазации компонентов подвижной фазы еще до смесителя низкого давления (камеры программатора градиента). Она осуществляется с помощью специальных проточных дегазаторов. Из-за этого факта стоимость их становится сравнимой с другим типом градиентных систем - систем с формированием состава градиента подвижной фазы на линии высокого давления.

Принципиальным отличием систем с формированием состава градиента подвижной фазы на линии высокого давления является смешение компонентов в линии высокого давления, естественно, что при данном подходе количество прецизионных насосов определяется количеством резервуаров для смешивания подвижной фазы. При таком подходе требования к тщательности дегазации компонентов существенно снижаются.

Схема градиентного хроматографа с формированием градиента состава подвижной фазы на линии высокого давления.

Подвижная фаза из емкостей (1) через входные фильтры (9) подается прецизионными насосами высокого давления (2 и 11) через статический или динамический смеситель потока (10) в систему ввода образца (3) - ручной инжектор или автосамплер, туда же вводится проба. Работой управляемых насосов управляет либо управляющий модуль системы (насос “master pump” или контроллер), либо управляющая программа ПК. В этом случае все насосы являются управляемыми. Системы такого типа формируют бинарный или трехмерный градиент. Форма функции отработки градиента зависит от конкретного управляющего модуля или программы управления, а также функциональных возможностей управляемых и управляющих модулей. Далее, через in-line фильтр(8), образец с током подвижной фазы поступает в элемент (элементы) разделения (4) - через предколонку в разделительную колонку. Затем элюат поступает в детектор (5) и удаляется в сливную емкость (7). При протекании элюата через измерительный контур детектора происходит регистрация хроматограммы и передача данных на аналоговый регистратор (самописец) (6) или иную систему сбора и обработки хроматографических данных (интегратор или компьютер). В зависимости от конструкции функциональных модулей управление системой может осуществляться с клавиатуры управляющего модуля (как правило, насоса или системного контролера), или производиться управляющей программой с персонального компьютера. В случае управления управляющим модулем возможно независимое управление детектором с его собственной клавиатуры.

Предложенные схемы являются достаточно упрощенными. В состав систем могут быть включены дополнительные устройства - термостат колонок, системы постколоночной дериватизации, системы пробоподготовки и концентрирования образца, рециклер растворителя, мембранные системы подавления фоновой электропроводности (для ионной хроматографии), дополнительные защитные системы (фильтры, колонки) и т.д. На схемах, также отдельно не показаны манометрические модули. Как правило, эти устройства встраиваются в насосные блоки. Эти блоки могут объединять в себе несколько насосов, насос с программатором градиента, а также общий системный контроллер. Структура системы зависит от ее комплектации и каждого конкретного производителя.

Такое радикальное усложнение технического сопровождения хроматографического процесса приводит к возникновению ряда требований к свойствам подвижной фазы, отсутствующих в классической колоночной и планарной хроматографии. Жидкая фазадолжна быть пригодна для детектирования (быть прозрачной в заданной области спектра или иметь низкий показатель преломления, определенную электропроводность или диэлектрическую проницаемость и т.д.), инертна к материалам деталей хроматографического тракта, не образовывать газовых пузырей в клапанах насоса и ячейке детектора, не иметь механических примесей.

В жидкостной хроматографии используют множество типов насосов. ПриЖХнизкого давления зачастую используют перистальтические насосы (Рис.1).

Рис.1 Програмируемый перистальтический насос MasterFlex.

При ВЭЖХдля обеспечения расхода подвижной фазы через колонку с указанными параметрами используются насосы высокого давления.

К наиболее важным техническим характеристикам насосов для ВЭЖХотносятся: диапа­зон расхода; максимальное рабочее давление; воспроизводимость расхода; диапазон пульса­ций подачи растворителя.

По характеру подачи растворителя насосы могут быть постоянной подачи (расхода) и постоянного давления. В основном при аналитической работе используется режим постоян­ного расхода, при заполнении колонок - постоянного давления.

По принципу действия насосы для ВЭЖХ делятся на шприцевые и наплунжерные возвратно-поступательные .

Шприцевые насосы

Основной отличительной особенностью данных насосов является цикличность их работы, в связи с чем хроматографы, в которых применяются данные насосы, также отличаются цикличностью работы.

Рис. 2. Принципиальное устройство шприцевого насоса дляВЭЖХ.

Рис. 2А. Шприцевой насос.

Блок управления БУ подает напряжение на двигатель Д, определяющее скорость и направление его вращения. Вращение двигателя с помощью редуктора Р преобразуется в пе­ремещение поршня П внутри цилиндра Д. Работа насоса осуществляется в 2 цикла. В цикл заполнения клапан К2 закрыт, К1 - открыт, растворитель поступает из резервуара в цилиндр Ц. В режиме подачи клапан К1 закрыт, а через клапан К2 подвижная фазапоступает в дози­рующее устройство.

Для насосов этого типа характерно практически полное отсутствие пульсаций потока подвижной фазы в ходе работы.

Недостатки насоса:

а) большой расход времени и растворителя на промывку при смене растворителя;

б) ограниченный объемом шприца объем ПФ, а следовательно ограниченное время разделения;

в) приостановка разделения во время заполнения насоса;

г) большие габариты и вес при обеспечении большого расхода и давления (нужен мощный двигатель и большое усилие поршня с его большой площадью).

Плунжерные возвратно-поступательные насосы.

Рис. 3. Принципиальное устройство плунжерного насоса.

Принцип действия.

Двигатель Д через редуктор Р приводит в возвратно-поступательное движение плун­жер П, перемещающийся в рабочей головке насоса. Клапаны К1 и К2 открываются, когда на­сос находится в фазе всасывания и подачи соответственно. Величина объемной подачи опре­деляется тремя параметрами: диаметром плунжера (обычно 3.13; 5.0; 7.0 мм), его амплитудой (12-18 мм)и частотой(что зависит от скорости вращения двигателя и редуктора).

Насосы этого типа обеспечивают постоянную объемную подачу подвижной фазы длительное время. Максимальное рабочее давление 300-500 атм, расход 0.01-10 мл/мин. Воспроизводимость объемной подачи -0.5%. Основной недостаток - растворитель подается в систему в виде серии последовательных импульсов, поэтому существуют пульсации давле­ния и потока (Рис.4). Это является основной причиной повышенного шума и снижения чувствитель­ности почти всех детекторов, применяемых в ЖХ, особенно электрохимического.

Рис.4. Пульсации плунжерного насоса.

Способы борьбы с пульсациями.

1. Применение демпфирующих устройств .

Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором.

Рис. 5. Спиральный демпфер.

Демпферраскручивается при увеличении давления в нем (ускорение хода насоса). При спаде давления он скручивается, его объем уменьшается, он выдавливает из себя часть растворителя, поддерживая постоянным расход и уменьшая пульсации. Такой демпфер хо­рошо работает при давлении 50 атм и выше.

При давления 5-30 атм лучше сглаживает пуль­сации воздушный демпфер , изготовленный из колонки (рис. 6.). Воздух в заглушенной ко­лонке (6х200 мм) сжимается и пульсации гасятся. Воздух в нем растворяется за 24 часа.

Рис. 6. Воздушный демпфер.

2. Применение электронных устройств.

При использовании электронного датчика давления можно использовать показания датчика для управления работой насоса. При спаде давления увеличивается скорость враще­ния двигателя и компенсирует уменьшение давления. Также можно скомпенсировать утечки в клапанах и частично в манжетах. Применение электронного демпфера(БПЖ-80, ХПЖ-1 и т.д.) позволяет снизить пульсации давления до 1 атм при давлении 100-150 кгс/см2.

1.6.3. Ионообменная, ионная, ион-парная хроматография. В основе методов ионообменной, ионной и ион-парной хроматографии лежит динамический процесс замещения ионов, связанных с неподвижной фазой, ионами элюента, поступающими в колонку. Основная цель хроматографического процесса  разделение неорганических или органических ионов одного и того же знака. Удерживание в этих видах хроматографии определяется изменением свободной энергии реакции ионного обмена. Соотношение концентраций обменивающихся ионов в растворе и в фазе сорбента характеризуются ионообменным равновесием. Ионный обмен заключается в том, что некоторые вещества (ионообменники) при погружении в раствор электролита поглощают из него катионы или анионы, выделяя в раствор эквивалентное количество других ионов с зарядом того же знака. Между катионообменником и раствором происходит обмен катионами, между анионообменником и раствором – обмен анионами.

Катионообменники представляют собой чаще всего специально синтезированные нерастворимые полимерные вещества, содержащие в своей структуре ионогенные группы кислотного характера: –SO 3 H; –COOH; –OH; –PO 3 H 2 ; –AsO 3 H 2 .

Химические формулы катионообменников схематически можно изобразить как R-SO 3 H; R-SO 3 Na. В первом случае катионообменник находится в Н-форме, во второмв Na-форме. R – полимерная матрица.

Катионообменные реакции записывают как обычные гетерогенные химические реакции:

RН +Na + RNa+H +

Анионообменники содержат в своей структуре ионогенные группы основного характера: –N(CH 3) 3 + ; =NH 2 + ; =NH + и др. Их химические формулы могут быть изображены как RNH 3 OH и RNH 3 Cl или ROH, RCl. В первом случае анионообменник находится в ОН-форме, во втором – в Сl-форме. Анионообменную реакцию можно записать следующим образом:

R–OH+Cl – RCl+OH –

Известны амфотерные ионообменники, содержащие в своей структуре и кислотные, и основные группы. Ионообменники, имеющие в своем составе однотипные (например, SO 3 H) кислотные (основные) группы, называют монофункциональными; ионообменники, содержащие разнотипные (например,SO 3 H,ОН) кислотные (основные) группыполифункциональными.

Монофункциональные ионообменники получают реакцией полимеризации. Реакция поликонденсации позволяет получать полифункциональные ионообменники. Для того, чтобы полученные ионообменники имели достаточно высокие эксплуатационные характеристики, они должны быть нерастворимыми, но набухающими в соответствующем растворителе и иметь достаточно большое количество ионогенных групп, способных к обмену с ионогенными группами анализируемой пробы. Это может быть достигнуто, если полученные полимерные цепи достаточно разветвлены и связаны друг с другом «сшивающими мостиками». Например, при получении катионообменников полимеризационного типа на основе стирола в качестве сшивающего агента чаще всего используется дивинилбензол, введение которого в количестве до 16% обеспечивает получение ионообменников с различной степенью набухания и, следовательно, позволяет регулировать пористость ионообменника. Степенью набухания ионита, выражаемой в миллилитр/грамм, называют объем упакованного в колонку 1 г воздушно-сухого ионообменника.

Ионообменник поглощает, как правило, один из противоионов ионов, находящихся в подвижной фазе, т. е. проявляет определенную селективность. Экспериментально установлены ряды сродства, или селективности, ионов по отношению к ионообменникам разных типов. Например, при низких концентрациях раствора на сильнокислотных катионообменниках ионы с одинаковым зарядом сорбируются в такой последовательности:

Li +  Na +  K +  Rb +  Cs +

Mg 2+  Ca 2+  Sr 2+  Ba 2+ .

Для ионов с разными зарядами сорбируемость увеличивается с увеличением заряда:

Na + Ca 2+

Однако изменение условий проведения реакции ионного обмена может привести к обращению ряда. Ряды сродства установлены и для анионообменников. Например, сорбируемость анионов на сильноосновных анионитах увеличивается в ряду:

F –  OH –  Cl –  Br –  NO 3 –  J –  SCN –  ClO 4 – .

Ионообменики, содержащие в своей структуре сильнокислотные или сильноосновные группы, вступают в реакции ионного обмена с любыми ионами, находящимися в растворе обладающими зарядами того же знака, что и знак противоиона. Такие ионообменники называют универсальными.

Процесс ионного обмена между анализируемым веществом и ионообменником может быть осуществлен одним из трех способов: статическим, динамическим (способ ионообменного фильтра) и хроматографическим.

Статический метод ионного обмена заключается в том, что навеску ионита приводят в контакт с определенным объемом раствора и перемешивают или встряхивают определенное время до установления равновесия. Это быстрый и простой способ ионного обмена, применяющийся для концентрирования ионов из разбавленных растворов, удаления ненужных примесей, но он не обеспечивает полного поглощения ионов, так как ионный обменэто неравновесный процесс, и вследствие этого не гарантирует полного разделения ионов.

При проведении ионного обмена динамическим способом через колонку с ионитом пропускают раствор, который по мере перемещения по колонке контактирует с новыми гранулами ионита. Этот процесс обеспечивает более полный обмен, чем статический метод, так как продукты обмена удаляются потоком раствора. Им можно концентрировать ионы из разбавленных растворов и разделять ионы, сильно различающиеся по свойствам, например, разнозарядные ионы (отделять катионы от анионов), но разделение ионов одного знака заряда практически невозможно. Количественное разделение таких ионов возможно только при многократном повторении сорбционно-десорбционных элементарных актов в динамических условиях, т. е.хроматографическим методом . При работе этим методом применяют высокие слои ионита и в этот слой вводят разделяемую смесь в количестве, значительно меньшем емкости колонки, благодаря чему и обеспечивается многократное повторение элементарных актов ионного обмена.

По технике проведения анализа ионообменная хроматография сходна с молекулярной и может осуществляться по элюентному (проявительному), фронтальному и вытеснительному вариантам. Отличие между молекулярной и ионообменной хроматографией состоит в том, что в молекулярной хроматографии разделенные компоненты смеси элюируются из колонки чистым элюентом, а в ионообменной в качестве элюента используют раствор электролита. При этом обмениваемый ион элюента должен сорбироваться менее селективно, чем любой из ионов разделяемой смеси.

При проведении проявительной ионообменной хроматографии, которая применяется наиболее часто, колонку, заполненную ионитом, сначала промывают раствором электролита до тех пор, пока в ионите не произойдет полное замещение всех его ионов на ионы, содержащиеся в элюенте. Затем в колонку вводят небольшой объем раствора анализируемого вещества, имеющего в своем составе разделяемые ионы в количестве около 1% от емкости ионита. Далее колонку промывают раствором элюента, отбирая фракции элюата и анализируя их.

Смесь ионов Cl – , Br – , J – можно разделить на высокоосновном анионите (сшитый полистирол, содержащий группы четвертичных аммониевых основанийN (CH 3) 3 +), например, AB-17, имеющем ряд избирательности (селективности): NO 3 – Cl – Br – J – . Вследствие этого в качестве элюента используется раствор NaNO 3 . Вначале через ионит пропускается этот раствор до полного насыщения ионами NO 3 – . При введении в колонку разделяемой смеси ионы Cl – , Br – , J – поглощаются анионитом, вытеснив ионы NO 3 – . При последующем промывании колонки раствором NaNO 3 ионы Cl – , Br – , J – в верхних слоях анионита постепенно вновь замещаются ионами NO 3 – . Быстрее всех будут вытесняться ионы Cl – , дольше всех в колонку задержатся ионы J – . Различие в селективности ионита к ионам смеси приводит к тому, что в колонке образуются отдельные зоны сорбированных ионов Cl – , Br – и J – , перемещающиеся по колонке с различной скоростью. По мере перемещения по колонке расстояние между зонами увеличивается. В каждой зоне находится лишь один из анионов разделяемой смеси и анион элюента, в промежутке между зонами лишь анион элюента. Таким образом, в элюенте на выходе из колонки будут появляться фракции, в которых содержатся отдельные компоненты разделяемой смеси.

Для решения практических задач варьируют условия разделения ионов, подбирая подходящую подвижную фазу (состав, концентрация, рН, ионная сила) или изменяя пористость полимерной матрицы ионита, т. е. число межцепных связей в матрице, и создавая ионитовые сита, проницаемые для одних ионов и способные к их обмену и непроницаемые для других. Можно также изменять природу и взаимное расположение ионогенных групп, а также получать сорбенты, способные к селективным химическим реакциям за счет комплексообразования. Высокой селективностью обладают, например, комплексообразующие ионообменники, содержащие в своей структуре хелатообразующие группы органических реагентов диметилглиоксима, дитизона, 8-оксихинолина и др., а также краун-эфиры.

Наибольшее применение в ионообменной, ионной и ион-парной хроматографии находят синтетические макро- и микросетчатые органические ионообменники, имеющие большую обменную емкость (3–7 ммоль/г), а также неорганические ионообменные материалы. Микросетчатые ионообменники способны к обмену ионов только в набухшем состоянии, макросетчатые – в набухшем и ненабухшем состояниях. Другим структурным типом ионообменников являются поверхностно-пленочные иониты, твердая сердцевина которых изготовлена из непористого сополимера стирола и дивинилбензола, стекла или силикагеля и окружена тонкой пленкой ионообменника. Общий диаметр такой частицы составляет около 40 мкм, толщина пленки ионита – 1 мкм. Недостаток таких ионообменников – сравнительно большой диаметр частиц и малая обменная емкость из-за низкой удельной поверхности, вследствие чего приходится работать с малыми пробами и, соответственно, использовать высокочувствительные детекторы. Кроме того, такие ионообменники достаточно быстро отравляются и не способны к регенерации.

В высокоэффективной ионообменной и ионной хроматографии применяют объемно-пористые полистирольные ионообменники, объемно-пористые кремнеземы с диаметром гранул около 10 мкм, а также практически не набухающие поверхностно-пористые и поверхностно-модифицированные сополимеры стирола и дивинилбензола с ионогенными сульфо- и аминогруппами.

В ион-парной хроматографии используют «щеточные» сорбенты – силикагели с привитыми обращенными фазами С 2 , С 8 ,С 18 , которые легко превращаются в катионообменник при поглощении из подвижной фазы ионогенных поверхностно-активных веществ, например алкилсульфатов или солей четвертичных аммониевых оснований.

При проведении хроматографического разделения с применениием ионообменников в качестве подвижной фазы чаще всего используют водные растворы солей. Это связано с тем, что вода обладает прекрасными растворяющими и ионизирующими свойствами, благодаря чему молекулы анализируемой пробы мгновенно диссоциируют на ионы, ионообменные группы ионообменника гидратируются и также переходят в полностью или частично диссоциированную форму. Это обеспечивает быстрый обмен противоионов. На элюирующую силу подвижной фазы основное влияние оказывает рН, ионная сила, природа буферного раствора, содержание органического растворителя или поверхностно-активного вещества (ион-парная хроматография).

Значение рН выбирают в зависимости от природы ионогенных групп, разделяемых ионов и матрицы. С сильнокислотными и сильноосновными ионообменниками можно работать при рН = 2–12, со слабокислотными при рН = 5–12, со слабоосновными при рН = 2–6. Сорбенты на основе кремнезема при рН 9 использовать нельзя. Ионная сила подвижной фазы влияет на емкость ионообменника. С увеличением ионной силы сорбция ионов обычно уменьшается, так как растет элюирующая сила подвижной фазы. Поэтому в начале разделения подвижная фаза должна иметь малое значение ионной силы (0,05–0,1), а конечное значение этой характеристики не должно превышать 2. При градиентном элюировании часто используют буферы с увеличивающейся ионной силой.

Для селективного элюирования ионов, поглощенных ионообменником, можно применять воду, буферные растворы (фосфатный, ацетатный, боратный, гидрокарбонатный и др.) с определенным значением рН и ионной силы, растворы минеральных (соляная, азотная, серная, фосфорная) и органических (фенол, лимонная, молочная, винная, щавелевая, ЭДТА) кислот. Выбор элюента облегчается тем, что предельные коэффициенты распределения большинства элементов между водными (водно-органическими) растворами многих комплексантов и ионообменниками стандартного типа определены и представлены в таблицах.

1.6.4. Эксклюзионная хроматография. Эксклюзионная хроматографияэто разновидность жидкостной хроматографии, в которой разделение компонентов основано на распределении молекул в соответствии с их размером между растворителем, находящимся в порах сорбента, и растворителем, протекающим между его частицами. В процессе разделения небольшие молекулы попадают в сетку полимера, в порах которой растворитель служит неподвижной фазой, и удерживаются там. Большие молекулы не могут проникнуть в полимерную сетку и вымываются из колонки подвижной фазой. Вначале элюируются самые большие, затем средние и, наконец, небольшие молекулы.

Эксклюзионная хроматография подразделяется на гель-про-никающую и гель-фильтрационную. В гель-проникающей хроматографии разделение происходит на полимерах, набухающих в органических растворителях. Гель-фильтрационный вариант эксклюзионной хроматографии предполагает использование в качестве неподвижных фаз полимеров, набухающих в воде.

Продолжительность удерживания компонентов анализируемой пробы в эксклюзионной колонке зависит от размеров их молекул и диффузии в поры сорбента, а также от размеров пор неподвижной фазы.

В этом виде жидкостной хроматографии коэффициент распределения D для самых маленьких молекул анализируемой пробы, которые движутся в хроматографической колонке с наименьшей скоростью, проникая в сетку неподвижной фазы, равен 1, так как подвижная фаза и растворитель, находящийся в порах неподвижной фазы, имеют один и тот же состав. При этом основное уравнение колоночной хроматографии приобретает вид

Молекулы большого размера, не попадающие в поры неподвижной фазы, элюируют из колонки вместе с подвижной фазой. Для них D = 0, aV R =V m . Такой диапазон значений коэффициента распределения (от 0 до 1) характерен только для эксклюзионной хроматографии.

Все молекулы анализируемого многокомпонентного вещества должны вымываться из колонки при пропускании небольшого объема растворителя от V m доV m +V s и разделение заканчивается до выхода пика растворителя. Поэтому в этом виде хроматографии необходимо использовать достаточно длинные колонки с большим свободным объемомV m и большим числом пор в сорбенте.

Разрешение хроматографических пиков при эксклюзионном разделении может быть улучшено при использовании градиентного элюирования смешанными растворителями.

Каждый сорбент, применяемый в эксклюзионной хроматографии, характеризуется определенным объемом пор и, следовательно, обладает определенной областью разделяемых молекулярных масс и определенным градуировочным графиком. При этом градуировочный график, характеризующий зависимость удерживаемого объема от молекулярной массы или размера молекул, имеет, как правило, сложный вид.

Неподвижные фазы в эксклюзионной хроматографии выбирают исходя из конкретных аналитических задач. Первоначально устанавливают, какая система растворителей может быть использована для анализа (водная или водно-органическая). В зависимости от этого определяют тип сорбента. Если необходимо провести разделение водорастворимых проб, в качестве неподвижных фаз применяют, например, набухающие в воде сшитые декстраны (сефадексы) или полиакриламиды (биогель Р). Разделение веществ, растворимых в органических растворителях, можно проводить на полистиролах с различной степенью сшивки, набухающих в органических растворителях (стирогель, порагель, биобид С). Такие набухшие гели, как правило, неустойчивы к давлению, при их использовании допускаются очень низкие скорости потока подвижной фазы, что увеличивает время анализа. Чтобы осуществить высокоэффективный вариант эксклюзионной хроматографии, необходимо применять неподвижные фазы с жесткими матрицами силикагели, недостаток которыхвысокая адсорбционная активность – устраняется силанизацией поверхности или подбором соответствующего по полярности элюента.

В качестве подвижных фаз в эксклюзионной хроматографии могут использоваться вещества, которые:

 полностью растворяют анализируемый образец;

 хорошо смачивают сорбент;

 противодействуют адсорбции компонентов пробы на сорбенте;

 имеют низкую вязкость и токсичность.

1.6.5. Плоскостная хроматография . К плоскостной хроматографии относятся тонкослойная и бумажная хроматографии. Эти виды жидкостной хроматографии просты по технике выполнения, экспрессны, не требуют дорогостоящего оборудования, что является их неоспоримым достоинством.

Разделение смеси веществ этими методами может быть выполнено с использованием различных хроматографических систем. Поэтому выделяют адсорбционную, распределительную, нормально- и обращенно-фазовую, ионообменную и т. п. бумажную и тонкослойную хроматографии. В настоящее время наибольшее распространение получила тонкослойная хроматография.

Бумажная и тонкослойная хроматографии сходны по технике выполнения. В качестве неподвижной фазы в бумажной хроматографии применяется целлюлозное волокно бумаги, в тонкослойной хроматографии различные сорбенты (Al 2 O 3 , силикагель и др.), нанесенные равномерным тонким (100300 мкм) слоем на стеклянную, металлическую или пластиковую подложку (носитель). Слой адсорбента на носителе может быть закреплен или не закреплен.

Хроматографическое разделение в плоскостных методах, как и на колонке, обусловлено переносом компонентов анализируемого вещества подвижной фазой вдоль слоя неподвижной фазы с различными скоростями в соответствии с коэффициентами распределения разделяемых веществ. В обоих случаях используются хроматографические системы жидкость твердый сорбент (адсорбционный механизм разделения), жидкостьжидкостьтвердый носитель (распределительный, ионообменный и другие механизмы).

В качестве подвижных фаз применяют различные растворители или их смеси, органические или неорганические кислоты.

Практическое получение плоскостных хроматограмм состоит в следующем.

На полоске хроматографической бумаги или на тонком слое сорбента карандашом отмечают стартовую линию на расстоянии 1 см от нижнего края полоски или пластинки. Микропипеткой наносят пробу на линию старта в виде пятна диаметром не более 23 мм. Затем край полоски или пластинки опускают в сосуд с подвижной фазой, находящийся в герметичной камере. По мере подъема подвижной фазы по полоске или пластинке и протекания обычных в хроматографии многократных элементарных актов сорбции-десорбции, распределения между двумя жидкими фазами, ионного обмена и др. происходит разделение компонентов анализируемой смеси. Процесс обычно продолжают до тех пор, пока растворитель не пройдет от линии старта10 см. После этого полоску или пластинку извлекают из камеры и высушивают. Если компоненты анализируемого вещества окрашены, они дают на хроматограмме соответствующие цветные пятна. Для обнаружения неокрашенных компонентов анализируемого вещества хроматограмму необходимо проявить. Проявление хроматограммы и детектирование компонентов пробы может быть проведено различными методами и зависит от состава анализируемых смесей. Проявление может быть осуществлено:

 с помощью УФ-освещения. Метод применим для обнаружения веществ, способных под действием УФ-излучения испускать собственное излучение (люминесцировать) видимого диапазона длин волн;

 посредством реагентов-проявителей. Например, присутствие в анализируемой смеси аминокислот может быть обнаружено с помощью нингидрина. Высушенную хроматограмму погружают в 0,2%-ный раствор нингидрина в ацетоне, затем высушивают ее. Пятна, соответствующие различным компонентам смеси, приобретают визуальную и, как правило, специфичную для каждого вещества окраску;

 с использованием иода. При этом детектируемую хроматограмму вносят в сосуд, на дне которого находятся кристаллы иода. Пары иода адсорбируются на пятнах сильнее, благодаря чему пятна визуализируются. Иод это неспецифический реагент-проявитель. Используя специфические реагенты, можно не только определить количество компонентов смеси, но и идентифицировать разделенные вещества по цвету пятен.

Бумажную и тонкослойную хроматографии чаще всего осуществляют в так называемом восходящем варианте, описанном выше. Достаточно часто для улучшения качества хроматограмм приходится использовать и более сложные варианты плоскостной хроматографии, например, нисходящую, круговую, двухмерную. При проведении нисходящей бумажной или тонкослойной хроматографии анализируемое вещество наносится на стартовую линию пластинки или бумажной полоски, находящейся сверху, и элюент подается не снизу, а сверху. Положительный эффект, заключающийся в улучшении разделения, обусловлен вкладом в процесс разделения сил тяжести компонентов.

Как восходящая, так и нисходящая хроматографии могут быть осуществлены в одно и двухмерном вариантах. В отличие от описанного выше одномерного процесса разделения в плоском слое при двухмерном хроматографическом разделении разделение анализируемой пробы сначала проводят в одном растворителе, затем осуществляют разделение в направлении, перпендикулярном первому, с использованием другого растворителя, повернув первую хроматограмму на 90 о С.

При проведении круговой хроматографии анализируемое вещество наносится в виде капли в середину пластинки или листа хроматографической бумаги. Сюда же каплями подается один или несколько растворителей. Это приводит к тому, что получаемая хроматограмма представляет собой набор радиальных пятен.

Положение пятен (зон), которые образуют разделенные компоненты анализируемого вещества на плоской хроматограмме, характеризуется величинами относительной скорости перемещения компонентов в тонком слое R fi . Экспериментально величинуR fi определяют как отношение расстоянияL i , пройденногоi -м компонентом, к расстояниюL , пройденному растворителем от стартовой линии до линии фронта (рис. 1.10):

Величина R fi зависит от природы соответствующего компонента анализируемой пробы, природы неподвижной фазы, ее толщины, природы и качества подвижной фазы, способа нанесения пробы и других факторов, но всегдаR fi 1.

Величина R fi фактически тождественна времени удерживания вещества или его удерживаемому объему, характеризующим скорость прохождения вещества через хроматографическую колонку, и может быть использована для качественной идентификации компонентов анализируемой пробы, а диаметр пятна тождественен высоте или площади хроматографического пика и, следовательно, в некоторой степени отражает количественное содержание вещества.

Количественное определение состава анализируемой пробы в простейшем случае может быть оценено визуально по интенсивности собственной окраски пятен или интенсивности флуоресцентного свечения полученных пятен при УФ-детектировании. Для этих целей достаточно широко применяется элюирование хроматографических пятен. При этом пятно, полученное на хроматограмме, аккуратно вырезают или соскребают, обрабатывают подходящим растворителем и полученный раствор исследуют соответствующим физико-химичес-ким методом. Можно использовать и весовой метод, при котором соответствующее пятно вырезают из хроматограммы и взвешивают. Количество вещества определяют по разности весов чистой бумаги такой же площади и бумаги с веществом.

Бумажная (БХ ) и тонкослойная хроматография (ТСХ ) по механизму разделения относятся к распределительной хроматографии . В методе БХ носителем является специальная хроматографическая бумага с определенными свойствами. Неподвижной фазой служит вода, адсорбированная на поверхности и порах бумаги (до 20%), подвижной  органический растворитель, смешивающийся или несмешивающийся с водой, вода или растворы электролитов.

Механизм на бумаге довольно сложен. В неподвижной фазе вещество может удерживаться не только вследствие растворения в адсорбированной бумагой воде, но и адсорбироваться непосредственно целлюлозой. Нанесенные на бумагу разделяемые компоненты переходят в подвижную фазу и по капиллярам бумаги перемещаются с различными скоростями в соответствии с коэффициентом межфазного распределения каждого из них. В начале хроматографирования некоторая часть вещества из бумаги переходит в подвижную фазу и перемещаются далее. Когда органический растворитель достигает участка бумаги, не содержащего растворенное вещество, снова происходит перераспределение : из органической фазы вещество переходит в водную, сорбированную на бумаге. Поскольку компоненты обладают различным сродством к сорбенту , при перемещении элюента происходит разделение: одни вещества задерживаются в начале пути, другие продвигаются далее. Здесь сочетаются термодинамический (установления равновесного распределения веществ между фазами) и кинетический (движение компонентов с различной скоростью) аспекты разделения. В результате каждый компонент концентрируется на определенном участке бумажного листа: образуются зоны отдельных компонентов на хроматограмме . Использование хроматографии на бумаге имеет ряд существенных недостатков: зависимость процесса разделения от состава и свойств бумаги, изменение содержания воды в порах бумаги при изменении условий хранения, очень низкая скорость хроматографирования (до нескольких суток), низкая воспроизводимость результатов. Эти недостатки серьезно влияют на распространение хроматографии на бумаге как хроматографического метода.

В методе ТСХ процесс разделения смеси веществ осуществляется в тонком слое сорбента , нанесенного на инертную твердую подложку, и обеспечивается движением подвижной фазы (растворителя) через сорбент под действием капиллярных сил . По механизму разделения различают распределительную, адсорбционную и ионообменную хроматографию . Разделение компонентов происходит в этих случаях либо в результате их различного коэффициента распределения между двумя жидкими фазами (распределительная хроматография ), либо вследствие различной адсорбируемости соединений сорбентом (адсорбционная хроматография ). Адсорбционный метод основан на разной степени сорбции-десорбции разделяемых компонентов на неподвижной фазе. Адсорбция осуществляется за счет ван-дер-ваальсовских сил , являющейся основой физической адсорбции , полимолекулярной (образование нескольких слоев адсорбата на поверхности адсорбента) и хемосорбцией (химического взаимодействия адсорбента и адсорбата).

В случае использования для ТСХ таких сорбентов, как окись алюминия или силикагель в разделении играют роль как распределение , так и адсорбция на развитой активной поверхности сорбента (150 750 м 2 /г). Распределение компонентов смеси происходит между водой на поверхности носителя (такие адсорбенты , как окись алюминия , крахмал , целлюлоза , кизельгур – и вода образуют неподвижную фазу ), и перемещающимся через эту неподвижную фазу растворителем (подвижная фаза ). Компонент смеси, легче растворимый в воде, перемещается медленнее, чем тот, который легче растворим в подвижной фазе.

Адсорбция проявляется в том, что между носителем , например, окисью алюминия, и компонентами смеси устанавливаются адсорбционные равновесия – для каждого компонента свое, результатом чего является разная скорость перемещения компонентов смеси. Можно выделить два крайних случая:

а) концентрация вещества на адсорбенте равна нулю. Вещество полностью растворяется в подвижной фазе и увлекается ею (перемещается вместе с фронтом растворителя ).

б) вещество адсорбируется полностью, с растворителем не взаимодействует и остается на старте.

На практике при умелом подборе растворителя и адсорбента распределение соединения располагается между этими крайними случаями, и вещество постепенно переносится от одного слоя сорбента к другому за счет одновременно происходящих процессов сорбции и десорбции .

Растворитель, проходящий через сорбент, называют элюентом , процесс перемещения вещества вместе с элюентом  элюированием . По мере продвижения жидкости на пластинке происходит разделение смеси веществ благодаря действию сил адсорбции , распределения , ионного обмена или совокупности действия всех перечисленных факторов. В результате образуются отдельные хроматографические зоны компонентов смеси, т.е. получается хроматограмма .

Правильный подбор сорбента и элюента определяет эффективность разделения смеси. Подвижность исследуемого вещества зависит от его сродства к сорбенту и элюирующей силы (полярности) элюента. С увеличение полярности соединения растет и его сродство к полярному сорбенту. По увеличению степени адсорбции силикагелем органические соединения располагаются в ряд: углеводороды <алкилгалогенидыарены<нитросоединения<простые эфиры <сложные эфиры<альдегиды<спирты<амины<карбоновые кислоты. В свою очередь для силикагеля элюенты можно расположить в порядке возрастания «полярности» (элюирующей способности ) и сформировать серию растворителей (элюотропный ряд ) в соответствии с экспериментальными данными: алканы>бензол>хлороформ>диэтиловый эфир> этилацетат>спирты С 2 -С 4 >вода>ацетон>уксусная кислота>метанол. Таким образом, полярное соединение – спирт достаточно сильно адсорбируется на силикагеле и поэтому слабо перемещается под действием такого неполярного растворителя, как гексан, и остается около линии старта. В свою очередь неполярный ароматический углеводород бифенил заметно более подвижен в гексане, но даже здесь для достижения R f около 0,5 необходим более полярный апротонный элюент – хлористый метилен. Силу элюента регулируют, используя смеси растворителей – соседей по элюотропному ряду с разной полярностью.

В настоящее время в ТСХ применяют главным образом следующие сорбенты : для разделения липофильных веществ силикагель , окись алюминия , ацетилированную целлюлозу , полиамиды ; для разделения гидрофильных веществ целлюлозу , целлюлозные ионообменники , кизельгур , полиамиды . Важнейшей характеристикой сорбента является его активность , т.е. способность сорбировать (удерживать) компоненты разделяемой смеси. За рубежом ряд фирм производит силикагель , кизельгур и окись алюминия с добавкой 5% гипса, который используется для закрепления слоя сорбента при самостоятельном изготовлении пластин.

Наиболее распространенным сорбентом является силикагель - гидратированная кремниевая кислота, образующаяся при действии минеральных кислот на Na 2 SiO 3 и сушкой образовавшегося золя. После размалывания золя используют фракцию определенной зернистости (указанную на пластинке, обычно 5-20 мкм). Силикагель является полярным сорбентом c группами ОН в качестве активных центров. Он легко сорбирует на поверхности воду и образует водородные связи.

Окись алюминия является слабоосновным адсорбентом и используется в основном для разделения соединений слабоосновного и нейтрального характера. Недостатком пластин на окиси алюминия является обязательная активация поверхности перед использованием в сушильном шкафу при высокой температуре (100150 о С) и низкая, по сравнению с силикагелем адсорбционная емкость слоя.

Кизельгур  адсорбент, полученный из природных минералов  диатомовых земель. Сорбент обладает гидрофильными свойствами и более низкой адсорбционной емкостью слоя в сравнении с силикагелем.

Целлюлоза: тонкослойные пластины с нанесенной целлюлозой очень эффективны для разделения сложных органических молекул. Адсорбент представляет собой в основном шарики целлюлозы диаметром до50 мкм, закрепленные на носителе крахмалом. Как и в бумажной хроматографии, подъем фронта растворителя происходит очень медленно.

Хроматографический анализ выполняется на промышленных пластинах чешского производства «Силуфол » («Silufol ») из алюминиевой фольги, иногда укрепленной картоном, и «Силупласт » из пластмассы, покрытых слоем сорбентов – силикагеля LS 5-40 с крахмалом или гипсом в качестве связующего (до 10%), или оксида алюминия с добавлением и без флуоресцентных индикаторов. Пластинки «Силуфол » имеют высокую скорость элюирования, однако при этом характеризуются низкой разделяющей способностью и невысокой чувствительностью. При хранении чувствительны к условиям (влажность, температура, агрессивные среды и т.п.). Отдельные фирмы поставляют хроматографические пластинки со слоем сорбента различной (обычно до 0,25 мм), но строго постоянной толщины (силикагель, целлюлоза, ионообменная смола), на стекле и подложках из алюминиевой фольги, пластмассы, пропитанного стекловолокна.

Пластины «Sorbfil » (ТУ 26-11-17-89) выпускаются в России на полимерной основе (полиэтилентерефталат, марка П) или алюминиевой подложке (марка АФ) с нанесенным рабочим слоем микрофракционированного сорбента силикагеля марки СТХ-1А и СТХ-1ВЭ (выпускался в СССР как фракционированный силикагель КСКГ) толщиной 90-120 мкм (до 200 мкм), закрепленным специальным связующим - силиказолем . При использовании в качестве связующего золя кремневой кислоты (силиказоля), который после нагревания переходит в силикагель, полученные ТСХ-пластины состоят из двух компонентов: слоя силикагеля и подложки. Равномерность по толщины слоя сорбента на одной пластине составляет ±5 мкм. Пример обозначения: "Сорбфил-ПТСХ-АФ-В-УФ (10х10)" - пластинки для ТСХ высокоэффективные на алюминиевой подложке, с люминофором, 10х10 см.

Если применять стеклянную подложку (марка С), то такие пластины являются многоразовыми и химически прочными. Их химическая устойчивость определяется химической стойкостью силикагеля. В результате ТСХ-пластины могут многократно обрабатываться агрессивными реагентами, например, горячей хромовой смесью, что снимает ограничения в использовании коррелирующих реагентов для детектирования пятен и модификации сорбента, и позволяет проводить многократную (до 30 раз и более) регенерацию пластин хромовой смесью. Стеклянные пластинки могут быть нарезаны по необходимым размерам. Механическая прочность слоя сорбента может регулироваться, обеспечивая, с одной стороны, транспортировку и многократность обработки пластин и, с другой стороны, возможность экстракции слоев адсорбента с разделившимися веществами для последующего вымывания индивидуальных соединений из сорбента и их дальнейшего исследования инструментальными методами (ИК и УФ-спектрометрии, рентгено-структурными методами, ЯМР и т.д.).

Пластины различаются величиной фракций (распределения частиц) силикагеля, из которого состоит слой. На аналитических пластинах (марка А) фракция 5-17 мкм, на высокоэффективных (марка В) - 8-12 мкм. Более узкое распределение повышает эффективность пластин, т.е. пятна разделяемых веществ становятся более компактными (меньшими по размерам) и поэтому лучше разделяются при прохождении фронта элюента на более короткое расстояние. На российских пластинах аналитические и высокоэффективные слои различаются не очень сильно, в отличие от пластин фирмы Merck (Германия). Применять высокоэффективные пластины нужно, если вещества не разделяются на аналитических пластинах. Выпускаются пластины всех модификаций с люминофором (марка УФ) с возбуждением 254 нм. Срок хранения не ограничен, пластины «Sorbfil » широко испытаны в анализе производных аминокислот, пестицидов, липидов, антибиотиков.

Методом ТСХ осуществляется качественная идентификация компонентов. Количественное определение для ТСХ также возможно, для этого требуется нанесение точного количества вещества и дополнительные денситометрические исследования с четким фиксированием интенсивности пятен. Наиболее распространенным является полуколичественный метод . Он основан на визуальном сравнении размера и интенсивности пятна компонента с соответствующими характеристиками серии пятен этого же вещества различной концентрации (стандартные растворы сравнения ). При использовании пробы в количестве 1-5 мкг таким простым методом обеспечивается точность определения содержания компонента около 5-10%. Нередко для определения компонентов в образце необходимо провести пробоподготовку для получения смеси, содержащей анализируемые соединения. Пробоподготовка основана на извлечении препаратов из образца органическими растворителями (н -гексан, петролейный эфир, диэтиловый эфир, хлороформ), очистке экстракта и последующем хроматографировании в тонком слое окиси алюминия или силикагеля.

Существует несколько вариантов ТСХ и БХ, различающихся способом подачи растворителя . В зависимости от направления движения подвижной фазы различают:

а) восходящую хроматографию  подвижную фазу наливают на дно разделительной камеры, бумага (пластинка) ставится вертикально;

б) нисходящую хроматографию  подвижная фаза подаётся сверху и перемещается вниз вдоль слоя сорбента пластины или бумаги;

в) радиальную хроматографию  горизонтальное продвижение фронта растворителя: подвижная фаза подводится к центру бумажного диска (пластины), куда нанесена разделяемая смесь.

Наиболее распространенным является восходящее элюирование (хроматографирование). Фронт элюента при этом перемещается снизу вверх. Выбор растворителя (подвижной фазы) определяется природой сорбента и свойствами разделяемых веществ.

Хроматографическое разделение методами БХ и ТСХ проводят в разделительной камере с притёртой крышкой. Количественной мерой скорости переноса вещества при использовании определенного адсорбента и растворителя является величина R f (от англ. retention factor – коэффициент задержки, этот параметр является аналогией времени удерживания). Положение зоны хроматографируемого компонента устанавливают по величине коэффициента R f , равной отношению скорости движения его зоны к скорости движения фронта растворителя. Величина R f всегда меньше единицы и не зависит от длины хроматограммы. На величину R f оказывают влияние различные факторы. Так, при низкой температуре вещества перемещаются медленнее; загрязнения растворителей, негомогенность адсорбента, посторонние ионы в анализируемом растворе могут изменять величину R f до 10%. В выбранной системе анализируемые вещества должны иметь различные значения R f и распределяться по всей длине хроматограммы. Желательно, чтобы значения R f лежало в пределах 0,05-0,85.

На практике величину R f рассчитывают как отношение расстояния l , пройденного веществом, к расстоянию L , пройденному растворителем:

R f = l / L (6.1 )

Обычно для расчета выбирают центр пятна (рис. 1). Величина R f зависит от многих факторов: типа хроматографической бумаги (ее пористости, плотности, толщины, степени гидратации) и сорбента (размера зерен, природы групп на поверхности, толщины слоя, его влажности, природы вещества, состава подвижной фазы), условий эксперимента (температуры, времени хроматографирования и т.п.). При постоянстве всех параметров хроматографирования значение R f определяется только индивидуальными свойствами каждого компонента.

Рис. 1. Определение на хроматограмме величин Rf для компонентовА иВ ,

степени их разделения Rs и числа теоретических тарелокN .

Эффективность БХ и ТСХ также зависит от селективности и чувствительности реакций, используемых для обнаружения компонентов анализируемой смеси. Обычно используют реагенты, образующие с определяемыми компонентами окрашенные соединения  проявители. Для более надёжной идентификации разделяемых компонентов применяют «свидетели » растворы стандартных веществ (в том же растворителе, что и проба), наличие которых предполагается в образце. Стандартное вещество наносят на стартовую линию рядом с анализируемой пробой и хроматографируют в одинаковых условиях. На практике часто используют относительную величину:

R f rel = R f x / R f stand (6.2)

где R f stand также рассчитывают по формуле (6.1). Эффективность хроматографического разделения характеризуют числом эквивалентных теоретических тарелок и их высотой . Так, в методе ТСХ число эквивалентных теоретических тарелок N А для компонента А разделяемой смеси рассчитывают по формуле:

N A = 16 (l OA / a (A )) 2 (6.3)

Значения l OA и а (А ) определяют, как показано на рис. 6.1. Тогда высота эквивалентной теоретической тарелки Н А составляет:

H A = l OA / N = a (A ) 2 / 16 l OA . (6.4)

Разделение практически возможно, если R f (А) R f (В) 0,1 .

Для характеристики разделения двух компонентов А и В используют степень (критерий) разделения Rs :

Rs = l / (a (A) / 2 + a (B) / 2)= 2 l / (a (A) + a (B)) (6.5)

где l расстояние между центрами пятен компонентов А и В ;

а (А) и а (В) диаметры пятен А и В на хроматограмме (рис. 6.1). Чем больше Rs , тем чётче разделены пятна компонентов А и В на хроматограмме. Условия хроматографирования подбирают так, чтобы величина Rs отличалась от нуля и единицы, оптимальное значение Rs составляет 0,30,7. Для оценки селективности разделения двух компонентов А и В используют коэффициент разделения α :

α = l B / l A (6.6)

Если α = 1, то компоненты А и В не разделяются.

9801 0

ВЭЖХ - это жидкостная колоночная хроматография, механизмы сорбции в которой могут использоваться самые различные. По существу, ВЭЖХ -это современная форма реализации классической жидкостной колоночной хроматографии. Ниже перечислены некоторые наиболее существенные качественные характеристики ВЭЖК:
- высокая скорость процесса, позволившая сократить продолжительность разделения от нескольких часов и суток до минут;
- минимальная степень размывания хроматографических зон, что дает возможность разделять соединения, лишь незначительно различающиеся по константам сорбции;
- высокая степень механизации и автоматизации разделения и обработки информации, благодаря чему колоночная жидкостная хроматография достигла нового уровня воспроизводимости и точности.

Интенсивные исследования последних десятилетий, громадный объем накопленных экспериментальных данных позволяют сегодня уже говорить о классификации вариантов в рамках метода высокоэффективной жидкостной хроматографии. Конечно, при этом остается в силе классификация по механизму сорбции, приведенная выше.

Распространена классификация, основанная на сравнительной полярности подвижной и неподвижной фаз. При этом различают нормально- и обращенно-фазовую хроматографию.

Нормально-фазовая хроматография (НФХ) - такой вариант ВЭЖХ, когда подвижная фаза менее полярна, чем неподвижная, и есть основания считать, что основной фактор, определяющий удерживание, - это взаимодействие сорбатов непосредственно с поверхностью либо объемом сорбента.

Обращенно-фазовая хроматография (ОФХ) - такой вариант ВЭЖХ, когда подвижная фаза более полярна, чем неподвижная, и удерживание определяется непосредственным контактом молекул сорбата с поверхностью или объемом сорбента; при этом ионизированные сорбаты не обмениваются на ионы подвижной фазы, сорбированные на поверхности.

Ионообменная хроматография - вариант, при котором сорбция осуществляется путем обмена сорбированных ионов подвижной фазы на ионы хроматографируемых веществ; полностью аналогично можно определить лигандообменную хроматографию.

Хроматография на динамически модифицированных сорбентах - вариант ВЭЖХ, при котором сорбат не взаимодействует непосредственно с поверхностью сорбента, а вступает в ассоциацию с молекулами приповерхностных слоев элюента.
Ион-парная хроматография - такой вариант обращенно-фазовой хроматографии ионизированных соединений, при котором в подвижную фазу добавляется гидрофобный противоион, качественно изменяющий сорбционные характеристики системы.

Эксклюзионная хроматография - способ разделения соединений по их молекулярным массам, основанный на различии в скорости диффузии в порах неподвижной фазы молекул различных размеров.

Для ВЭЖК очень важной характеристикой является величина сорбентов, обычно 3-5 мкм, сейчас до 1 ,8 мкм. Это позволяет разделять сложные смеси веществ быстро и полно (среднее время анализа от 3 до 30 мин).

Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводят точно отмеренную дозу пробы. Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.

Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок, можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.

Сорбенты. Становление ВЭЖХ в значительной мере связано с созданием новых поколений сорбентов с хорошими кинетическими свойствами и разнообразными термодинамическими свойствами. Основной материал для сорбентов в ВЭЖХ- силикагель. Он механически прочен, обладает значительной пористостью, что дает большую обменную емкость при небольших размерах колонки. Наиболее ходовой размер частиц 5-10 мкм. Чем ближе к шарообразной форма частиц, тем меньше сопротивление потоку, выше эффективность, особенно, если отсеяна очень узкая фракция (например, 7 +1 мкм).

Удельная поверхность силикагеля 10-600 м /г. Силикагель может быть модифицирован различными химическими группами, привитыми к поверхности (С-18, CN, NH2, SO3H), что позволяет использовать сорбенты на его основе для разделения самых различных классов соединений. Основной недостаток силикагеля - малая химическая стойкость при рН < 2 и рН > 9 (кремнезем растворяется в щелочах и кислотах). Поэтому в настоящее время идет интенсивный поиск сорбентов на базе полимеров, стойких при рН от 1 до 14, например, на основе полиметилметакрилата, полистирола и т.д.

Сорбенты для ионообменной хроматографии. В силу особенностей разделения (в кислой или щелочной среде) основной материал сорбенто-в полистирол с дивинилбензолом различной степени сшивки с привитыми к их поверхности группами SO3 -H+ (сильнокислые катионообменники) или -СОО-Naf (слабокислые катионообменники), -H2N+(CH3)3Cl- (сильноосновные анионообменники) или -N+HR2Cl- (слабоосновные анионообменники).

Сорбенты для гель-проникающей хроматографии. Основной тип - стирол-ДВБ. Используются также макропористые стекла, метилметакрилат, силикагель. Для ионо-эксклюзионной хроматографии используются те же сорбенты.
Насосы. Для обеспечения расхода подвижной фазы (ПФ) через колонку с указанными параметрами используются насосы высокого давления. К наиболее важным техническим характеристикам насосов для ЖХ относятся: диапазон расхода; максимальное рабочее давление; воспроизводимость расхода; диапазон пульсаций подачи растворителя.

По характеру подачи растворителя насосы могут быть постоянной подачи (расхода) и постоянного давления. В основном при аналитической работе используется режим постоянного расхода, при заполнении колонок - постоянного давления. По принципу действия насосы делятся на шприцевые и на плунжерные возвратно поступательные.

Шприцевые насосы. Для насосов этого типа характерно практически полное отсутствие пульсаций потока подвижной фазы в ходе работы. Недостатки насоса: а) большой расход времени и растворителя на промывку при смене растворителя; б) приостановка разделения во время заполнения насоса; в) большие габариты и вес при обеспечении большого расхода и давления (нужен мощный двигатель и большое усилие поршня с его большой площадью).

Плунжерные возвратно-поступательные насосы. Насосы этого типа обеспечивают постоянную объемную подачу подвижной фазы длительное время. Максимальное рабочее давление 300-500 атм, расход 0,01-10 мл/мин. Воспроизводимость объемной подачи - 0,5 %. Основной недостаток- растворитель подается в систему в виде серии последовательных импульсов, поэтому существуют пульсации давления и потока.

Это является основной причиной повышенного шума и снижения чувствительности почти всех детекторов, применяемых в ЖХ, особенно электрохимического. Способы борьбы с пульсациями: с использованием сдвоенных насосов или двухплунжерного насоса Баг-лая, применением демпфирующих устройств и электронных устройств.

Величина объемной подачи определяется тремя параметрами: диаметром плунжера (обычно 3,13; 5,0; 7,0 мм), его амплитудой (12-18 мм) и частотой (что зависит от скорости вращения двигателя и редуктора).

Дозаторы. Назначение дозатора заключается в переносе пробы, находящейся при атмосферном давлении, на вход колонки, находящейся при давлении вплоть до нескольких атмосфер. Важно, чтобы в дозаторе отсутствовали непромываемые подвижной фазой «мертвые» объемы и размывание пробы в ходе дозирования. На первых порах дозаторы в ЖХ были аналогичны газовым с проколом мембраны. Однако более 50-100 атм мембраны не держат, химическая стойкость их недостаточна, их кусочки загрязняют фильтры колонок и капилляры.

В жидкой фазе гораздо меньше скорости диффузии, чем в газовой. Поэтому можно дозировать с остановкой потока - проба не успевает размыться в дозаторе. На время ввода в дозатор пробы специальный кран перекрывает поток растворителя. Давление на входе в колонку быстро снижается, через несколько секунд пробу можно вводить в камеру дозатора обычным микрошприцем. Далее дозатор запирается, включается поток растворителя, идет разделение.

Давление, которое держит этот кран, до 500-800 атм. Но при остановке потока нарушается равновесие в колонке, что может приводить к появлению «вакантных» дополнительных пиков.

Наибольшее распространение получили петлевые дозаторы. При заполнении дозатора под высоким давлением оказываются входы 1,2 и канал между ними. Входы 3-6, каналы между ними и дозирующая петля оказываются под атмосферным давлением, что позволяет заполнить петлю с помощью шприца или насоса. При повороте дозатора поток подвижной фазы вытесняет пробу в колонку. Для снижения погрешности петля промывается 5-10-кратным объемом пробы. Если пробы мало, то ее можно ввести в петлю микрошприцем. Объем петли обычно 5-50 мкл.

Н.А. Воинов, Т.Г. Волова

(преимущественно межмолекулярных) на границе раздела фаз. Как способ анализа, ВЭЖХ входит в состав группы методов, которая, ввиду сложности исследуемых объектов, включает предварительное разделение исходной сложной смеси на относительно простые. Полученные простые смеси анализируются затем обычными физико-химическими методами или специальными методами, созданными для хроматографии .

Метод ВЭЖХ находит широкое применение в таких областях, как химия , нефтехимия , биология , биотехнология , медицина , пищевая промышленность , охрана окружающей среды , производство лекарственных препаратов и во многих других.

По механизму разделения анализируемых или разделяемых веществ ВЭЖХ делится на адсорбционную , распределительную , ионообменную , эксклюзионную , лигандообменную и другие.

Следует иметь в виду, что в практической работе разделение часто протекает не по одному, а по нескольким механизмам одновременно. Так, эксклюзионное разделение бывает осложнено адсорбционными эффектами, адсорбционное - распределительными, и наоборот. При этом чем больше различие веществ в пробе по степени ионизации , основности или кислотности , по молекулярной массе, поляризуемости и другим параметрам, тем больше вероятность проявления другого механизма разделения для таких веществ.

Нормально-фазовая ВЭЖХ

Неподвижная фаза более полярна, чем подвижная, поэтому в составе элюента преобладает неполярный растворитель:

  • Гексан:изопропанол = 95:5 (для малополярных веществ)
  • Хлороформ:метанол = 95:5 (для среднеполярных веществ)
  • Хлороформ:метанол = 80:20 (для сильнополярных веществ)

Обращённо-фазовая ВЭЖХ

Неподвижная фаза менее полярна, чем подвижная, поэтому в составе элюента почти всегда присутствует вода. В этом случае всегда можно обеспечить полное растворение БАС в подвижной фазе, почти всегда возможно использовать УФ-детектирование, почти все подвижные фазы взаимно смешиваются, можно использовать градиентное элюирование, можно быстро переуравновесить колонку, колонку можно регенерировать.

Обычными элюентами для обращенно-фазовой ВЭЖХ являются:

  • Ацетонитрил:вода
  • Метанол:вода
  • Изопропанол:вода

Матрицы для ВЭЖХ

В качестве матриц в ВЭЖХ используются неорганические соединения, такие как оксид кремния (силикагель) или оксид алюминия , либо органические полимеры, такие как полистирол (сшитый дивинилбензолом) или полиметакрилат. Силикагель, конечно, в настоящее время общепризнан.

Основные характеристики матрицы:

  • Размер частиц (мкм);
  • Размер внутренних пор (Å, нм).

Получение силикагеля для ВЭЖХ:

  1. Формование микросфер поликремневой кислоты;
  2. Сушка частиц силикагеля;
  3. Воздушное сепарирование.

Частицы сорбента:

  • Регулярные (сферические): выше устойчивость к давлению, выше стоимость;
  • Несферические: ниже устойчивость к давлению.

Размер пор в ВЭЖХ - один из наиболее важных параметров. Чем меньше размер пор, тем хуже их проницаемость для молекул элюируемых веществ. А следовательно, тем хуже сорбционная емкость сорбентов. Чем крупнее поры, тем, во-первых, меньше механическая устойчивость частиц сорбента, а, во-вторых, тем меньше сорбционная поверхность, следовательно, хуже эффективность.

Прививки неподвижной фазы

Нормально-фазовая ВЭЖХ:

  • Неподвижная фаза с пропилнитрильной прививкой (нитрильной);
  • Неподвижная фаза с пропиламинной прививкой (аминной).

Обращенно-фазовая ВЭЖХ:

  • Неподвижная фаза с алкильной прививкой;
  • Неподвижная фаза с алкилсилильной прививкой.

Энд-кэппирование - защита непривитых участков сорбента дополнительной прививкой «маленькими» молекулами. Гидрофобный энд-кэппинг (С1, С2): выше селективность, хуже смачиваемость; гидрофильный энд-кэппинг (диол): ниже селективность, выше смачиваемость.

Детекторы для ВЭЖХ

  • Ультрафиолетовый
  • Диодно-матричный
  • Флуоресцентный
  • Электрохимический
  • Рефрактометрический
  • Масс-селективный

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Высокоэффективная жидкостная хроматография" в других словарях:

    высокоэффективная жидкостная хроматография - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high performance liquid chromatographyHPLC … Справочник технического переводчика

    Термин высокоэффективная жидкостная хроматография Термин на английском high performance liquid chromatography Синонимы Аббревиатуры ВЭЖХ, HPLC Связанные термины адсорбция, олигопептид, протеомика, сорбент, фуллерен, эндоэдральный, хроматография… …

    Жидкостная хроматография, в к рой для повышения эффективности разделения р ритель (элюент) под давлением (более 3х107 Па) прокачивают через колонки, заполненные сорбентом с частицами малого диаметра (до 1 мкм), а также используют перфузионные… …

    Вид хрома тографии, в к рой подвижной фазой служитжидкость (элюент), а неподвижной та. сорбент, тв. носитель с нанесённой на его поверхность жидкостью или гель. Осуществляют в колонке, заполненной сорбентом (колоночная хроматография), на плоской… … Естествознание. Энциклопедический словарь

    - [κρώμα (υрома) цвет] процесс, основанный на неодинаковой способности отдельных компонентов смеси (жидкой или газообразной) удерживаться на поверхности адсорбента как при поглощении их из потока носителя, так и при… … Геологическая энциклопедия

    - (от др. греч … Википедия

    Термин хроматография Термин на английском chromatography Синонимы Аббревиатуры Связанные термины высокоэффективная жидкостная хроматография, клатрат, лаборатория на чипе, порометрия, протеом, протеомика, сорбент, фермент, фуллерен, эндоэдральный… … Энциклопедический словарь нанотехнологий

    Жидкостная хроматография, основанная на разл. способности разделяемых ионов к ионному обмену с фиксир. ионами сорбента, образующимися в результате диссоциации ионогенных групп последнего. Для разделения катионов используют катиониты, для… … Химическая энциклопедия

    ВЭЖХ - высокоэффективная жидкостная хроматография … Словарь сокращений русского языка

    Высокоэффективная жидкостная хроматография (ВЭЖХ) один из эффективных методов разделения сложных смесей веществ, широко применяемый как в аналитической химии, так и в химической технологии. Основой хроматографического разделения является участие … Википедия

Книги

  • Практическая высокоэффективная жидкостная хроматография , Вероника Р. Майер. Представляем читателю 5-е издание книги, которое расширено за счет современных методов и оборудования. В книге многое доработано и добавлено большое количество ссылок. Те места в тексте, где…