Какие бывают световые явления в физике. Невероятные световые явления

93. Что называют источниками света (§49)?

Все тела, от которых исходит свет, называют источниками света . Различают тепловые и люминесцирующие источники света, источники отраженного света:

- тепловые источники света излучают свет потому, что имеют высокую температуру (Солнце, звезды, пламя, нить электрической лампы); тела начинают излучать свет при температуре около 800 °С; электрическую лампу изобрёл Александр Николаевич Лодыгин (1847-1923, Россия), современный вид лампе передал Томас Эдисон (1847-1931, США);

- люминесцирующие источники света – это холодные источники света, излучение которых не зависит от температуры (люминесцентные и газосветные лампы, экран телевизора, монитор компьютера, дисплей электронных устройств, светодиоды, гнилушки, светлячки, некоторые морские животные);

- источники отраженного света сами не излучают; они светятся только тогда, когда на них падает свет от некоторого источника. Например, Луна, планеты и их спутники, искусственные спутники Земли отражают свет Солнца; ночью предметы видим потому, что они отражают лунный свет или свет от тепловых и люминесцентных источников.

94. Как распространяется свет в однородной среде (§50)?

В однородной среде, состоящей из одного и того же вещества (например, воздуха, стекла, воды) свет распространяется прямолинейно .

Прямолинейное распространение света установил основатель геометрии Евклид (325-265 до н. э., Др. Греция).

95. Что такое световой пучок и световой луч (§51)?

- Световой пучок представляет собой узкий ограниченный световой поток; световые пучки можно выделить с помощью малых отверстий в непрозрачных пластинах, называемых диафрагмами .

Пучок света может быть параллельным (а), расходящимся (б), сходящимся (в).

Световые пучки от разных источников не зависят друг от друга и не влияют на распространение друг друга. Это свойство называют независимостью световых пучков .

- Световой луч – это линия, указывающая направление распространения света и используется для изображения световых пучков.

96. Что такое точечный источник света (§52)?

Точечный источник света – это такой источник, размеры которого малы по сравнению с расстоянием от него до наблюдателя.

97. Что такое тень и полутень (§52).

- Тень – это область пространства за предметом, в которую не попадает свет от источника. Тень от предметов образуется при освещении их точечными источниками света.

- Полутень – это область, в которую попадает свет только от части источника света.


При освещении предметов протяженными источниками света образуется область тени и полутени. Например, когда Луна оказывается между Солнцем и Землей, от Луны на Землю падает область тени (полное солнечное затмение) и полутени (частное солнечное затмение).

98. В чём заключается закон отражения света (§53)?

Закон отражения света заключается в том, что:

Угол отражения света равен углу падения:

Падающий луч, отражённый луч и перпендикуляр, восставленный в точке падения луча к границе раздела двух сред, лежат в одной плоскости.

Падающий и отражённый лучи обратимы. Например, если световой пучок падает на зеркало в направлении АО, то отражаться он будет в направлении ОВ; если же свет будет падать на зеркало в направлении ВО, то отраженным будет луч ОА.

99. Что такое зеркальное и диффузное отражение света (§53)?

- Зеркальным называют такое отражение, когда гладкую (зеркальную) поверхность, остается параллельным и после отражения. Зеркально отражают гладкие полированные поверхности, зеркала, водная гладь.

- Диффузным называют такое отражение, когда параллельный пучок света, падающий на шероховатую поверхность, отражается рассеянно, т.е. лучи будут направлены в разные стороны. Благодаря диффузному (рассеянному) отражению мы видим окружающие предметы, окружающий мир.

100. По каким законам изображается предмет в плоском зеркале (§54)?

- Плоское зеркало даёт прямое и мнимое изображение предмета.

Изображение предмета в плоском зеркале имеет те же размеры, что и предмет.

Расстояние от предмета до плоского зеркала равно расстоянию от зеркала до изображения, т.е. предмет и его изображение симметричны относительно зеркала.

Плоское зеркало даёт мнимое (недействительное, кажущееся) изображение предмета.

101. Какие сферические зеркала вы знаете и какими параметрами они характеризуются (§55)?

- Сферические зеркала являются частью поверхности полого шара. Сферические зеркала бывают вогнутые и выпуклые . У вогнутого зеркала зеркальной является внутренняя вогнутая поверхность полого шара. У выпуклого зеркала зеркальной является внешняя выпуклая поверхность полого шара.

Сферические зеркала характеризуются полюсом , оптическим центром, радиусом, главной оптической осью, главным фокусом и фокусным расстоянием.

На рисунке: т. С – полюс зеркала; т. О – оптический центр; СО – радиус зеркала; прямая СО – главная оптическая ось зеркала; т. F – главный фокус зеркала; расстояние FC – фокусное расстояние зеркала.

Вогнутые зеркала применяются:

Когда нужно создать параллельный пучок света. Для этого светящуюся лампу помещают в фокусе зеркала. Это используется в фонарях, фарах автомобилей, прожекторах:

Когда нужно собрать в фокусе падающий на зеркало пучок параллельных лучей. Это используется в телескопе-рефлекторе.

102. Что называют преломлением света (§57)?

Изменение направления распространения света при переходе из одной среды в другую называют преломлением света.

103. Чем характеризуется оптическая плотность среды (§57)?

Оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света, тем меньше оптическая плотность среды. Например, оптическая плотность вакуума, где скорость света максимальная и составляет = 300 000 км/с, равна 1.

104. Как формулируется закон преломления света (§57)?

- Если луч света переходит из среды оптически менее плотной в среду оптически более плотную (например, из воздуха в воду), то угол преломления меньше угла падения ( < ).

Если свет переходит из среды оптически более плотной в среду оптически менее плотную (например, из воды в воздух), то угол преломления больше угла падения ( > ).

Лучи падающий и преломлённый, а также перпендикуляр, восставленный в точке падения луча к границе раздела двух сред, лежат в одной плоскости.

- Синус угла падения так относится к синусу угла преломления, как скорость света в первой среде к скорости света во второй среде: .

105. Что называют предельным углом полного внутреннего отражения (§58)?

Явление полного внутреннего отражения наблюдается при переходе луча света из оптически более плотной среды в оптически менее плотную среду. Угол падения, при котором наступает полное внутреннее отражение, называют предельным углом полного внутреннего отражения.

Явление полного внутреннего отражения используется, например, в призмах для изменения направления световых лучей. Такие призмы применяются в биноклях, перископах.

106. Что называют световодом и волоконной оптикой (§59)?

Гибкие стеклянные стержни, в которых входящий с одного конца световой луч, многократно испытывая полное внутреннее отражение, полностью выйдет с другого конца, называется световодом. Новая отрасль оптики, основанная на использовании световодов для передачи информации, называется волоконной оптикой.

107. Что называют линзой? Какие бывают типы линз (§60)?

Линзой называют прозрачное тело, ограниченное двумя сферическими поверхностями. Линзы бывают выпуклые (собирающие) и вогнутые (рассеивающие).

108. Что называют оптическим центром, главным фокусом и фокусным расстоянием линзы (§60)?

- Главная оптическая ось – это линия, проходящая через центры сферических поверхностей, ограничивающих линзу.

- Оптический центр линзы – это точка, через которую лучи света проходят без преломления. Через оптический центр линзы лучи проходят без преломления.

- Главный фокус линзы – это точка, в которой после преломления соберутся лучи света, падающие на линзу параллельно главной оптической оси.

109. Что называют оптической силой линзы (§60)?

Величину, обратную фокусному расстоянию, называют оптической силой линзы: . Оптическая сила измеряется в диоптриях (дптр). 1 дптр = 1/м.

110. Как читается формула линзы (§61)?

Сумма величин, обратных расстояниям от предмета до линзы и от линзы до изображения , равна величине, обратной фокусному расстоянию : .

111. Чему равно увеличение линзы (§61)?

Увеличение линзы равно отношению расстояния от линзы до изображения к расстоянию от предмета до линзы : .

112. Из каких частей состоит глаз (§63)?

Глаз человека имеет шарообразную форму диаметром 25 см. Снаружи покрыт прочной белой оболочкой, называемой склерой (1) . Передняя прозрачная часть склеры называется роговицей (2) . За роговицей расположена радужная оболочка (3), определяющая цвет глаза. В центре радужной оболочки находится зрачок , за которым расположен прозрачный хрусталик (4) , имеющий форму собирающей линзы. Оптическая система глаза даёт на его задней стенке, называемой сетчаткой (5) , действительное, уменьшенное и перевёрнутое изображение предмета.

113. Что называют (§63): аккомодацией глаза? углом зрения ? расстоянием наилучшего зрения?

- Аккомодацией глаза называется приспособление глаза к изменению расстояния до предмета за счёт регулирования кривизны хрусталика.

- Углом зрения называют угол, под которым виден предмет из оптического центра глаза.

- Расстояние наилучшего зрения у нормального глаза взрослого человека составляет 25 см, у детей – около 10 см.

114. Чем отличаются недостатки зрения близорукость и дальнозоркость (§64)?

Известны два основных недостатка зрения: близорукость и дальнозоркость .

Отчётливое изображение предмета у близоруких людей получается перед сетчаткой, у дальнозорких – за сетчаткой глаза.

Близорукость исправляется ношением очков с рассеивающими (вогнутыми) линзами, дальнозоркость – с собирающими (выпуклыми) линзами.

115. Назовите оптические приборы и их назначения (§64).

Оптическими приборами называются приборы, действие которых основано на использовании линз. Это:

- очки , применяемые для исправления близорукости и дальнозоркости;

- лупа – линза с малым фокусным расстоянием (от 1 до 10 см), используемая для рассматривания мелких предметов;

- микроскоп , предназначенный для рассмотрения микроскопических тел;

- бинокль для наблюдения удалённых тел;

- телескоп для изучения небесных тел;

- перископ для наблюдения из-за укрытия;

- фотоаппарат для получения четких фотографических снимков предметов;

- проекционные аппараты – диапроектор, кинопроектор, графопроектор – предназначенные для получения увеличенного изображения предмета на экране.

116. Как вычисляют увеличение лупы (§64)?

Лупа – это линза с малым фокусным расстоянием (от 1 до 10 см), используемая для рассматривания мелких предметов.

Увеличение лупы равно отношению расстояния наилучшего зрения к фокусному расстоянию лупы : .

117. Что называют спектром белого цвета (§65)?

Белый цвет сложный; он состоит из семи простых цветов.

Спектром белого цвета называется разноцветная полоса, полученная в результате разложения белого света и состоящая из семи простых цветов: красного, оранжевого, желтого, зелёного, голубого, синего и фиолетового (каждый охотник желает знать, где сидит фазан).

Если параллельный пучок света направить на трехгранную призму, то на экране получается разноцветная полоса, называемая спектром белого света. Спектр возникает потому, что пучки разного цвета по-разному преломляются призмой. Лучи красного цвета преломляются слабее, а лучи фиолетового цвета – сильнее. Остальные цвета располагаются между ними.

Примером спектра солнечного света является радуга, образующаяся при разложении белого света на прозрачных каплях дождя.

118. Какие цвета называют (§66): дополнительными? основными?

- Дополнительными называют цвета, дающие при сложении белый цвет.

- Три спектральных цвета – красный, зелёный и синий – называют основными . Потому что ни один из них нельзя получить при сложении других цветов спектра; сложение этих трёх цветов может дать белый цвет; в зависимости о того, в какой пропорции складываются эти цвета, можно получить разные цвета и оттенки.

119. Объясните происхождение (§67): а) бесцветности тел, б) прозрачности тел, в) цвета поверхности тел.

На границе раздела двух сред происходят три явления: отражение (рассеивание), преломление, поглощение света. Цвет тела, освещаемого белым светом, зависит от того, свет какого цвета это тело рассеивает, пропускает или поглощает.

Прозрачные или бесцветные тела, (например, стекло, вода, воздух), слабо отражают и попускают насквозь все цвета белого света.

Красное стекло поглощает все цвета, кроме красного. Зеленое стекло поглощает все цвета, кроме зеленого.

Цвет тела, освещаемого белым светом, определяется тем цветом, который он отражает. Например, красное тело отражает красный цвет, а остальные цвета поглощает.

Белое тело (бумага, снег, холст) отражает все цвета.

Позволяет определять расположение и движение планет, Солнца, Луны и других светил. Световые явления в природе мы наблюдаем повсеместно. В этом нам помогают глаза, а также специальные приборы, которые дают возможность узнать о строении небесных тел, даже тех, что находятся на расстоянии миллиардов километров от Земли. Наблюдения в телескоп и фотографирование планет позволило изучить облачный покров, скорость вращения, особенности поверхностей.

Природа планеты Земля дарит нам неповторимые, редкие, красивые и невероятные явления природы.

Разновидности световых эффектов

Вот только некоторые из них:

Окологоризонтальная дуга. Ее еще называют "огненной радугой". Когда свет проходит сквозь кристаллы льда перистых облаков, небосвод покрывается цветными полосами, а небо как будто покрыто "радужной пленкой". Подобные световые явления встречаются очень редко, так как природный феномен возникает только тогда, когда кристаллы льда и солнечные лучи по отношению друг к другу оказываются под определенным углом.

Радужные облака. Такой эффект тоже зависит от того, как Солнце расположено к капелькам воды из облаков. Расцветку определяет различная длина световых волн.

"Призрак Броккена". Удивительные световые явления наблюдаются в некоторых районах нашей планеты: если за спиной человека, стоящего на холме или горе, заходит или восходит солнце, он может обнаружить, что его тень, которая падает на облака, увеличивается до неправдоподобных размеров. Это происходит из-за преломления солнечных лучей мельчайшими каплями тумана. Такой эффект регулярно наблюдается на вершине Броккен в Германии.

Гало. Иногда вокруг Луны и Солнца возникают белые окружности. Это происходит в результате отражения или преломления света кристаллами снега или льда. В морозную погоду гало, которые образуются кристаллами снега и льда на земле, отражают свет и рассеивают его в разных направлениях, в результате чего образуется эффект, называемый "бриллиантовой пылью".

Паргелий. Слово "паргелий" означает "ложное солнце". Является разновидностью гало: на небе наблюдается несколько дополнительных Солнц, расположенных на уровне с настоящим.

Всем известно такое атмосферное явление как радуга, которое возникает после дождя - самое прекрасное атмосферное явление.

Северное сияние. Подобные световые явления наблюдаются в полярных областях. Предполагается, что такой же феномен есть и в атмосфере других планет, Венеры, например. Ученые считают, что полярные сияния возникают в результате бомбардировки верхнего атмосферного слоя заряженными частицами, которые движутся к Земле параллельно силовым линиям геомагнитного поля из космического пространства, называемого плазменным слоем.

Поляризация - это ориентированность в пространстве электромагнитных колебаний световых волн. Это явление возникает тогда, когда свет падает на поверхность под определенным углом и, отражаясь, становится поляризованным. Такое небо можно увидеть при помощи фильтра фотокамеры.

Звездный след. Явление можно запечатлеть фотокамерой, а невооруженным глазом это сделать невозможно.

Корона вокруг Солнца - это небольшие цветные венцы вокруг данной планеты или ярких объектов. Они изредка наблюдаются в тех случаях, когда источники света скрыты за полупрозрачными облаками, и возникает при рассеивании лучей света водяными мелкими капельками, образующими облако.

Мираж - этот оптический эффект, который обусловлен преломлением лучей света при прохождении сквозь слои воздуха с разной плотностью. Он выражается возникновением обманного изображения. Миражи чаще всего наблюдаются в жарком климате, преимущественно в пустынях. Иногда они отображают целые объекты, которые находятся от наблюдателя на большом расстоянии.

Столбы света. Это такие световые явления, когда свет отражается от кристаллов льда, и образуются вертикальные светящиеся столбы, будто выходящие с поверхности земли. Источником в этом случае является Луна, Солнце или искусственные огни.

Сложно переоценить. От него зависит вся человеческая деятельность от начальных периодов до наших дней. Для световых потоков находящаяся в постоянном движении атмосфера Земли - это своеобразная оптическая система, в которой постоянно меняются параметры.

Примеры световых явлений в атмосфере

Слои газовой оболочки нашей планеты перемешиваются, меняя свою плотность, прозрачность, в них отражается часть света, освещая земную поверхность. В определенных случаях ход лучей искривляется, создавая самые удивительные и красочные явления в атмосфере. Некоторые из них встречаются очень часто, а другие недостаточно известны людям.

Нашему глазу доступны не все физические явления. Световые картины звездного шлейфа, например, можно обнаружить только при помощи камеры с большой выдержкой, которая запечатлевает, как звезды оставляют в небе уникальные следы при вращении земли вокруг оси. Поэтому часто применяются специальные оптические устройства.

Удивительными по красоте и доступными для наблюдения являются природные атмосферные явления, являющиеся взаимодействием игры света и газовой оболочки нашей планеты. Чаще всего они возникают из-за рассеивания лучей, их преломления и дифракции, когда они огибают границы непрозрачных тел. В статье рассмотрим уникальные примеры световых явлений, возникающих в атмосфере.

Радуга

В древности ее считали мостом, соединяющим землю и небо. Философ Декарт обосновал теорию возникновения радуги, основанную на преломлении световых лучей. Однако ни он, ни Ньютон, дополнивший знания, не смогли объяснить происхождение нескольких таких явлений, одновременно наблюдаемых в небе. И только в XIX веке астроном Эри смог дать объяснение этому феномену: завеса дождя им рассматривалась как структура, при которой возникала дифракция света. Его теория актуальна и до сегодняшнего дня. Радуга наблюдается при освещении солнечными лучами пелены дождя, находящейся на стороне неба, противоположной светилу. Часто взглядам восхищенного зрителя предстает не одна, а несколько радуг, но расположение цветов в них всегда одинаково.

Такие световые явления в живой природе наблюдаются не только при дымке дождя, но и на каплях воды фонтанов, а источником света служат луна, солнце и обыкновенный прожектор. Интересно, что ученые, задавшиеся целью воспроизвести явление в искусственных условиях, получали около девятнадцати изображений.

Обычную радугу видели, несомненно, все, а вот ночная считается редким природным явлением. В лунном свете она кажется белой, но как только капли дождя становятся крупнее, сразу превращается в цветную. Такой феномен еще часто наблюдается над падающими водопадами.

Огненная радуга

Ученые относят ее к редчайшему Она появляется при особом расположении солнца над линией горизонта на фоне состоящих из кристаллов льда, чьи грани находятся параллельно земле. Только при таких условиях свет проходит в вертикальную грань, преломляется и выходит в горизонтальную. И тогда нашим изумленным взорам предстают облачка, напоминающие разноцветный полыхающий огонь, небо словно покрывается радужной пленкой.

Световой столб

В древности часто принимали за мистические предзнаменования созданные солнцем световые явления. Физика же объясняет такие столбы игрой солнечных лучей с кристалликами льда, образованными в верхних У природного явления всегда будет цвет источника света, а им может оказаться солнце, луна или любой фонарь. Но если они образованы природными светилами, то такие колонны оказываются намного длиннее.

Звуковые и световые явления сопровождают появление полярного сияния, ведь к ярким вспышкам присоединяются шумы и трески, которые влияют на радиопередатчики, вследствие чего связь прерывается или полностью прекращается.

В заключение

Физическая природа световых явлений становилась предметом исследования людей с древних времен. Оптические эффекты, возникающие в атмосферных слоях земли, рассмотрены и обоснованы с научной точки зрения. Примеры световых явлений в физике, приведенные в обзоре, да и не только они, неоднократно становились настоящим потрясением для человека, однако, даже самые сложные и причудливые картины сейчас находят свое объяснение. А многие явления были повторены в искусственных условиях. Игра света издавна привлекала и еще долгое время будет предметом восхищения других поколений, наблюдающих, как солнечный луч или лунное сияние придают нашей планете неповторимый вид.

Атмосферные оптические явления поражают воображение красотой и многообразием создаваемых иллюзий. Наиболее эффектными являются столбы света, ложные солнца, огненные кресты, глория и брокенский призрак, которые часто люди незнающие принимают за Чудо или Богоявление.

Окологоризонтальная дуга, или "огненная радуга". Свет проходит через кристаллы льда в перистых облаках. Очень редкое явление, так как и кристаллы льда, и солнечный свет должны оказаться под определенным углом друг к другу, чтобы создать эффект "огненной радуги".

"Призрак Броккена". Своё название явление получило по имени вершины Броккен в Германии, где можно регулярно наблюдать этот эффект: человек, стоящий на холме или горе, за спиной которого восходит или заходит солнце, обнаруживает, что его тень, упавшая на облака, становится неправдоподобно огромной. Это происходит из-за того, что мельчайшие капли тумана особым образом преломляют и отражают солнечный свет.

Околозенитная дуга. Дуга с центром в точке зенита, расположенная выше Солнца приблизительно на 46°. Она видна редко и только в течение нескольких минут, имеет яркие цвета, четкие очертания и всегда параллельна горизонту. Стороннему наблюдателю она напомнит улыбку Чеширского Кота или перевернутую радугу.

"Туманная" радуга. Туманный ореол похож на бесцветную радугу. Туман, рождающий этот ореол, состоит из более мелких частиц воды, и свет, преломляясь в крошечных капельках, не расцвечивает его.

Глория. Наблюдать этот эффект можно только на облаках, которые находятся прямо перед зрителем или ниже его, в точке, которая находится на противоположной стороне к источнику света. Таким образом, увидеть Глорию можно только с горы или из самолета, причем источники света (Солнце или Луна) должны находиться прямо за спиной наблюдателя.

Гало в 22º. Белые световые окружности вокруг Солнца или Луны, которые возникают в результате преломления или отражения света находящимися в атмосфере кристаллами льда или снега, называются гало. В холодное время года гало, образованные кристаллами льда и снега на поверхности земли, отражают солнечный свет и рассеивают его в разных направлениях, образуя эффект под названием "бриллиантовая пыль".

Радужные облака. Когда Солнце располагается под определенным углом к капелькам воды, из которых состоит облако, эти капли преломляют солнечный свет и создают необычный эффект "радужного облака", окрашивая его во все цвета радуги.

Лунная радуга (ночная радуга) - радуга, порождаемая луной в большей степени, чем солнцем. Лунная радуга сравнительно более бледная, чем обычная. Это объясняется тем, что луна производит меньше света, чем солнце. Лунная радуга всегда находится на противоположной от луны стороне неба.

Паргелий - одна из форм гало, при которой на небе наблюдается одно или несколько дополнительных изображений Солнца.
В «Слове о полку Игореве» упоминается, что перед наступлением половцев и пленением Игоря «четыре солнца засияли над русской землей». Воины восприняли это как знак надвигающейся большой беды.

Северное (Полярное) сияние - свечение верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

Огни святого Эльма - разряд в форме светящихся пучков или кисточек, возникающих на острых концах высоких предметов (башни, мачты, одиноко стоящие деревья, острые вершины скал и т. п.) при большой напряжённости электрического поля в атмосфере.

Зодиакальный свет. Рассеянное свечение ночного неба, создаваемого солнечным светом, отраженным от частиц межпланетной пыли, называют еще зодиакальным светом. Зодиакальный свет можно наблюдать вечером на западе или утром на востоке.

Столбы света. Плоские кристаллы льда отражают свет в верхних слоях атмосферы и образуют вертикальные столбы света, словно выходящие из земной поверхности. Источниками света могут являться Луна, Солнце или огни искусственного происхождения.

Звездный след. Невидим невооруженным глазом, его можно запечатлеть на фотокамеру.

Белая радуга. Фото сделано на мосту Золотые Ворота в Сан-Франциско

Свет Будды. Явление схоже с Призраком Броккена. Солнечные лучи отражаются от атмосферных капелек воды над морем и тень самолёта посреди радужного круга...

Зелёный луч. "Когда заходящее Солнце полностью скрывается из виду, последний проблеск выглядит поразительно зеленым. Эффект можно наблюдать только из мест, где горизонт низок и далек. Он продолжается всего несколько секунд."

Мираж, давно всем известное природное явление...

Лунная Радуга - это довольно редкое явление в атмосфере Земли и появляется только при полной Луне. Для возникновения лунной радуги необходимо: полная Луна, не закрытая облаками, и выпадение ливневого дождя. Настоящая лунная радуга имеет размер в половину небосвода.

Тень горы, наблюдаемая на фоне вечерних облаков:

Из пяти органов чувств больше всего информации об окружающем мире дает нам зрение. Но видеть мир вокруг мы можем только потому, что нам в глаза попадает свет. Итак, начинаем изучение световых, или оптических (греч. optikos — зрительный), явлений, то есть явлений, связанных со светом.

Наблюдаем световые явления

Со световыми явлениями мы сталкиваемся каждый день, ведь они являются частью природной среды, в которой мы живем.

Некоторые оптические явления кажутся нам настоящим чудом, например миражи в пустыне, полярные сияния. Но согласитесь, что и более привычные световые явления: блеск капельки росы в солнечном луче, лунная дорожка на воде, семицветный мост радуги после летнего дождя, молния в грозовых облаках, мерцание звезд в ночном небе — тоже удивительны, ведь они делают мир вокруг нас прекрасным, полным волшебной красоты и гармонии.

Выясняем, что такое источники света

Источники света — это физические тела, частицы (атомы, молекулы, ионы) которых излучают свет.

Посмотрите вокруг, обратитесь к своему опыту — и вы, без сомнения, назовете много источников света: звезда, вспышка молнии, пламя свечи, лампа, монитор компьютера и т. д. (см., например, рис. 9.1). Свет могут излучать и организмы: светлячки — яркие точки света, которые можно увидеть теплыми летними ночами в лесной траве, некоторые морские животные, радиолярии и др.

В ясную лунную ночь можно достаточно хорошо видеть предметы, освещенные лунным светом. Однако Луну нельзя считать источником света, ведь она не излучает, а только отражает свет, идущий от Солнца.

Можно ли назвать источником света зеркало, с помощью которого вы пускаете «солнечный зайчик»? Поясните свой ответ.

Различаем источники света

Рис. 9.2. Мощные источники искусственного света — галогенные лампы в фарах современного автомобиля

Рис. 9.3. Сигналы современных светофоров хорошо заметны даже при ярком солнце.

В таких светофорах лампы накаливания заменены светодиодными

В зависимости от происхождения различают естественные и искусственные (созданные человеком) источники света.

К естественным источникам света относятся Солнце и звезды, раскаленная лава и полярное сияние, некоторые живые организмы (глубоководная каракатица, светящиеся бактерии, светлячки) и т. д.

Еще в древности люди начали создавать искусственные источники света. Сначала это были костры, лучины, позже — факелы, свечи, масляные и керосиновые лампы; в конце XIX в. была изобретена электрическая лампа. Сегодня разные виды электрических ламп используются повсюду (рис. 9.2, 9.3).

Какие виды электрических ламп используют в жилых домах? Какие лампы применяют для разноцветной иллюминации?

Различают также тепловые и люминесцентные источники света.

Тепловые источники излучают свет благодаря тому, что имеют высокую температуру (рис. 9.4).

Для свечения люминесцентных источников света не нужна высокая температура: световое излучение может быть достаточно интенсивным, а источник при этом остается относительно холодным. Примерами люминесцентных источников света могут быть полярное сияние и морской планктон, экран телефона, лампа дневного света, покрытый люминесцентной краской дорожный знак и т. д.

Рис. 9.4. Некоторые тепловые источники света


Изучаем точечные и протяженные источники света

Источник света, который излучает свет одинаково во всех направлениях и размерами которого, учитывая расстояние до места наблюдения, можно пренебречь, называют точечным источником света.

Наглядный пример точечных источников света — звезды: мы наблюдаем их с Земли, то есть с расстояния, которое в миллионы раз превышает размеры самих звезд.

Источники света, которые не являются точечными, называют протяженными источниками света. В большинстве случаев мы имеем дело именно с протяженными источниками света. Это и лампа дневного света, и экран мобильного телефона, и пламя свечи, и огонь костра.

В зависимости от условий один и тот же источник света может считаться как протяженным, так и точечным.

На рис. 9.5 изображен светильник для ландшафтного освещения сада. Как вы думаете, в каком случае этот светильник можно считать точечным источником света?

Характеризуем приемники света

Приемники света — это устройства, которые изменяют свои свойства под действием света и с помощью которых можно выявить световое излучение.

Приемники света бывают искусственные и естественные. В любом приемнике света энергия светового излучения преобразуется в другие виды энергии — тепловую, которая проявляется в нагревании тел, поглощающих свет, электрическую, химическую и даже механическую. В результате таких преобразований приемники определенным образом реагируют на свет или его изменение.

Например, некоторые системы охраны работают на фотоэлектрических приемниках света — фотоэлементах. Пучки света, пронизывающие пространство вокруг охраняемого объекта, направлены на фотоэлементы (рис. 9.6). Если перекрыть один из таких пучков, фотоэлемент не получит световую энергию и сразу об этом «сообщит».

В солнечных батареях фотоэлементы преобразуют энергию света в электрическую энергию. Многие современные солнечные электростанции — это большие «энергетические поля» из солнечных батарей.

Долгое время для получения фотографий применяли только фотохимические приемники света (фотопленку, фотобумагу), в которых в результате действия света происходят определенные химические реакции (рис. 9.7).

От ближайшей к нам звезды Альфа Центавра свет идет к Земле почти 4 года. Значит, когда мы смотрим на эту звезду, на самом деле видим, какой она была 4 года назад. А ведь существуют галактики, удаленные от нас на миллионы световых лет (то есть свет идет к ним миллионы лет!). Представьте себе, что в такой галактике существует высокотехнологичная цивилизация. Тогда получается, что они видят нашу планету такой, какой она была во времена динозавров!

В современных цифровых фотоаппаратах вместо фотопленки используют матрицу, состоящую из большого количества фотоэлементов. Каждый из таких элементов принимает «свою» часть светового потока, преобразует ее в электрический сигнал и передает этот сигнал в определенное место экрана.

Естественными приемниками света являются глаза живых существ (рис. 9.8). Под воздействием света в сетчатке глаза происходят определенные химические реакции, возникают нервные импульсы, вследствие чего мозг формирует представление об окружающем мире.

Узнаём о скорости распространения света

Когда вы смотрите на звездное небо, то вряд ли догадываетесь, что некоторые звезды уже погасли. Более того, несколько поколений наших предков любовались этими же звездами, а эти звезды не существовали уже тогда! Как может быть так, что свет от звезды есть, а самой звезды нет?

Дело в том, что свет распространяется в пространстве с конечной скоростью. Скорость c распространения света огромна, и в вакууме она составляет около трехсот тысяч километров в секунду:

Свет преодолевает многокилометровые расстояния за тысячные доли секунды. Именно поэтому, если расстояние от источника света до приемника невелико, кажется, что свет распространяется мгновенно. А вот от далеких звезд свет идет к нам тысячи и миллионы лет.


Подводим итоги

Физические тела, атомы и молекулы которых излучают свет, называют источниками света. Источники света бывают тепловые и люминесцентные; естественные и искусственные; точечные и протяженные. Например, полярное сияние — естественный протяженный люминесцентный источник света.

Устройства, которые изменяют свои параметры в результате действия света и с помощью которых можно выявить световое излучение, называют приемниками света. В приемниках света энергия светового излучения преобразуется в другие виды энергии. Органы зрения живых существ — естественные приемники света.

Свет распространяется в пространстве с конечной скоростью. Скорость

распространения света в вакууме составляет примерно: c = 3 10 м/с. Контрольные вопросы

1. Какую роль играет свет в жизни человека? 2. Дайте определение источника света. Приведите примеры. 3. Является ли Луна источником света? Поясните свой ответ. 4. Приведите примеры естественных и искусственных источников света. 5. Что общего у тепловых и люминесцентных источников света? Чем они отличаются? 6. При каких условиях источник света считают точечным? 7. Какие устройства называют приемниками света? Приведите примеры естественных и искусственных приемников света. 8. Какова скорость распространения света в вакууме?

Упражнение № 9

1. Установите соответствие между источником света (см. рисунок) и его видом.

А естественный тепловой Б искусственный тепловой В естественный люминесцентный Г искусственный люминесцентный

2. Для каждой строки определите «лишнее» слово или словосочетание.

а) пламя свечи, Солнце, звезда, Луна, светодиодная лампа;

б) экран включенного компьютера, молния, лампа накаливания, факел;

в) лампа дневного света, пламя газовой горелки, костер, радиолярия.

3. За какое приблизительно время свет проходит расстояние от Солнца до Земли — 150 млн км?

4. В каких из указанных случаев Солнце можно считать точечным источником света?

а) наблюдение солнечного затмения;

б) наблюдение Солнца с космического корабля, летящего за пределами Солнечной системы;

в) определение времени с помощью солнечных часов.

5. Одна из единиц длины, применяемая в астрономии, — световой год. Сколько метров составляет световой год, если он равен расстоянию, которое проходит свет в вакууме за один год?

6. Воспользуйтесь дополнительными источниками информации и узнайте, кто и как впервые измерил скорость распространения света.

Это материал учебника