Свободно падающее тело двигается. Свободное падение тел

Известно, что все тела, предоставленные самим себе, падают на Землю. Тела, брошенные вверх, возвращаются на Землю. Мы говорим, что это падение происходит вследствие притяжения Земли.

Это всеобщее явление, и уже поэтому изучение законов свободного падения тел только под действием притяжения Земли представляет особый интерес. Однако повседневные наблюдения показывают, что в обычных условиях тела падают по-разному. Тяжелый шар падаетбыстро, легкий лист бумаги падает медленно и по сложной траектории.

Характер движения, скорость и ускорение падающих тел в обычных условиях оказываются зависящими от тяжести тел, их размеров и формы.

Опыты говорят о том, что эти различия обусловлены действием воздуха на движущиеся тела. Это сопротивление воздуха используется и практически, например при прыжках с парашютом. Падение парашютиста до и после раскрытия парашюта носит разный характер. Раскрытие парашюта изменяет характер движения, меняются скорость и ускорение парашютиста.

Само собой понятно, что такие движения тел нельзя называть свободным падением под действием одного только земного притяжения. Если мы хотим изучить свободное падение тел, то должны или полностью освободиться от действия воздуха, или хотя бы как-то уравнять влияние формы и размеров тел на их движение.

Первым пришел к этой мысли великий итальянский ученый Галилео Галилей. В 1583 г. он провел в г. Пизе первые наблюдения за особенностями свободного падения тяжелых шаров одинакового диаметра, исследовал законы движения тел по наклонной плоскости и движения тел, брошенных под углом к горизонту.

Результаты этих наблюдений и позволили Галилею открыть один из важнейших законов современной механики, который носит название закона Галилея: все тела под действием земного притяжения падают на Землю с одинаковым ускорением.

В справедливости закона Галилея можно наглядно убедиться на простом опыте. Поместим в длинную стеклянную трубку несколько тяжелых дробинок, легкие перышки и кусочки бумаги. Если поставить эту трубку вертикально, то все эти предметы будут падать в ней по-разному. Если откачать из трубки воздух, то при повторении опыта эти же тела будут падать совершенно одинаково.

В свободном падении все тела вблизи поверхности Земли движутся равноускоренно. Если, например, сделать ряд моментальных снимков падающего шарика через равные промежутки времени, то по расстояниям между последовательными положениями шарика можно определить, что движение действительно было равноускоренным. Измеряя эти расстояния, также легко рассчитать и числовое значение ускорения свободного падения, которое принято обозначать буквой

В различных точках земного шара числовое значение ускорения свободного падения неодинаково. Оно изменяется примерно от на полюсе до на экваторе. Условно значение принимается за «нормальное» значение ускорения свободного падения. Это значение мы и будем использовать при решении практических задач. Для грубых расчетов иногда будем брать значение специально оговаривая это в начале решения задачи.

Значение закона Галилея очень велико. Он выражает одно из важнейших свойств материи, позволяет понять и объяснить многие особенности строения нашей Вселенной.

Закон Галилея под названием принципа эквивалентности вошел в фундамент общей теории всемирного тяготения (гравитации), которая была создана А. Эйнштейном в начале нашего века. Эту теорию Эйнштейн назвал общей теорией относительности.

О важности закона Галилея говорит также и то, что равенство ускорений в падении тел проверяется непрерывно и со все возрастающей точностью в течение почти четырехсот лет. Последние наиболее известные измерения принадлежат венгерскому ученому Этвешу и советскому физику В. Б. Брагинскому. Этвеш в 1912 г. проверил равенство ускорений свободного падения с точностью до восьмого знака за запятой. В. Б. Брагинский в 1970-1971 гг., используя современную электронную аппаратуру, проверил справедливость закона Галилея с точностью до двенадцатого знака за запятой при определении числового значения

Теория

Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г. Галилей опытным путем с доступной для того времени точностью установил, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких.

Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение gоказывается неодинаковым, изменяясь примерно от 9,83 м/с 2 на полюсах до 9,78 м/с 2 на экваторе. На широте Москвы g = 9,81523 м/с 2 . Обычно, если в расчетах не требуется высокая точность, то числовое значение g у поверхности Земли принимают равным 9,8 м/с 2 или даже 10 м/с 2 .


ОПЫТЫ ГАЛИЛЕЯ С ПАДАЮЩИМИ ТЕЛАМИ

Галилей впервые выяснил, что тяжелые предметы падают вниз так же быстро, как и легкие. Чтобы проверить это предположение Галилео Галилей сбрасывал с Пизанской башни в один и тот же момент пушечное ядро массой 80 кг и значительно более легкую мушкетную пулю массой 200 г. Оба тела имели примерно одинаковую обтекаемую форму и достигли земли одновременно. До него господствовала точка зрения Аристотеля, который утверждал, что легкие тела падают с высоты медленнее тяжелых.

Такова легенда. В архивах не сохранилось никаких подтверждений, что такой эксперимент действительно проводился. Более того, пушечное ядро и пуля имеют разный радиус, на них будет действовать разная сила сопротивления воздуха и, поэтому, они не могут достичь земли одновременно. Это понимал и Галилей. Однако он писал, что "...различие в скорости движения в воздухе шаров из золота, свинца, меди, порфира и других тяжелых материалов настолько незначительно, что шар из золота при свободном падении на расстоянии в одну сотню локтей наверняка опередил бы шар из меди не более чем на четыре пальца. Сделав это наблюдение, я пришел к заключению, что в среде, полностью лишенной всякого сопротивления, все тела падали бы с одинаковой скоростью". Предположив, что произошло бы в случае свободного падения тел в вакууме, Галилей вывел следующие законы падения тел для идеального случая:
1. Все тела при падении движутся одинаково: начав падать одновременно, они движутся с одинаковой скоростью
2. Движение происходит с постоянным ускорением.

Вскоре после Галилея были созданы воздушные насосы, которые позволили произвести эксперименты со свободным падением в вакууме. С этой целью Ньютон выкачал воздух из длинной стеклянной трубки и бросил сверху одновременно птичье перо и золотую монету. Даже столь сильно различающиеся по своей плотности тела падали с одинаковой скоростью.

Из повседневной жизни нам известно, что земное притяжение заставляет тела, освобождённые от связей, падать на поверхность Земли. Например, груз, подвешенный на нити, висит неподвижно, а стоит только перерезать нить, как он начинает падать вертикально вниз, постепенно увеличивая свою скорость. Мяч, брошенный, вертикально вверх, под влиянием притяжения Земли сначала уменьшает свою скорость, на мгновенье останавливается и начинает падать вниз, постепенно увеличивая свою скорость. Камень, брошенный вертикально вниз, под влиянием земного притяжения также постепенно увеличивает свою скорость. Тело можно также бросить под углом к горизонту или горизонтально…

Обычно тела падают в воздухе, поэтому на них, кроме притяжения Земли, влияет ещё и сопротивление воздуха. А оно может быть существенным. Возьмём, например, два одинаковых листа бумаги и, скомкав один из них, уроним оба листка одновременно с одинаковой высоты. Хотя земное притяжение одинаково для обоих листков, мы увидим, что скомканный листок быстрее достигает земли. Так происходит потому, что сопротивление воздуха для него меньше, чем для несмятого листка. Сопротивление воздуха искажает законы падения тел, поэтому для изучения этих законов нужно сначала изучить падение тел в отсутствии сопротивления воздуха. Это возможно, если падение тел происходит в безвоздушном пространстве.

Чтобы убедиться в том, что в отсутствии воздуха и легкие и тяжелые тела падают одинаково, можно воспользоваться трубкой Ньютона. Это толстостенная трубка длиной около метра, один конец которой запаян, а другой снабжён краном. В трубке находятся три тела: дробинка, кусочек поролоновой губки и легкое перышко. Если трубку быстро перевернуть, то быстрее всех будет падать дробинка, затем губка, а последней достигнет дна трубки перышко. Так падают тела, когда в трубке есть воздух. Теперь откачаем насосом воздух из трубки и, закрыв кран после откачки, снова перевернем трубку, мы увидим, что все тела падают с одинаковой мгновенной скоростью и достигают дна трубки практически одновременно.

Падение тел в безвоздушном пространстве под действием одной только силы тяжести называют свободным падением.

Если сила сопротивления воздуха пренебрежимо мала по сравнению с силой тяжести, то движение тела очень близко к свободному (например, при падении маленького тяжелого гладкого шарика).

Поскольку сила тяжести, действующая на каждое тело вблизи поверхности Земли, постоянна, то свободно падающее тело должно двигаться с постоянным ускорением, т. е. равноускоренно (это вытекает из второго закона Ньютона). Это ускорение называется ускорением свободного падения и обозначается буквой . Оно направлено вертикально вниз, к центру Земли. Значение ускорения свободного падения вблизи поверхности Земли можно вычислить по формуле

(формула получается из закона всемирного тяготения),g =9,81 м/с 2 .

Ускорение свободного падения, как и сила тяжести, зависит от высоты над поверхностью Земли (

), от формы Земли (Земля сплюснута с полюсов, поэтому полярный радиус меньше экваториального, а ускорение свободного падения на полюсе больше, чем на экваторе:g п =9,832 м/с 2 , g э =9,780 м/с 2 ) и от залежей плотных земных пород. В местах залежей, например, железной руды плотность земной коры больше и ускорение свободного падения тоже больше. А там, где имеются залежи нефти, g меньше. Этим пользуются геологи при поиске полезных ископаемых.

Таблица 1. Ускорение свободного падения на различной высоте над Землей.

h , км

g , м/с 2

h , км

g , м/с 2

Таблица 2. Ускорение свободного падения для некоторых городов.

Географические координаты

(по Гринвичу)

Высота над уровнем моря, м

Ускорение свободного падения, м/с 2

Долгота

Широта

Вашингтон

Стокгольм

Так как ускорение свободного падения вблизи поверхности Земли одинаково, то свободное падение тел - это движение равноускоренное. Значит, оно может быть описано следующими выражениями:

и

. При этом учитывают, что при движении вверх вектор скорости тела и вектор ускорения свободного падения направлены в противоположные стороны, поэтому их проекции имеют разные знаки. При движении вниз вектор скорости тела и вектор ускорения свободного падения направлены в одну сторону, поэтому их проекции имеют одинаковые знаки.

Если тело брошено под углом к горизонту или горизонтально, то его движение можно разложить на два: равноускоренное по вертикали и равномерное по горизонтали. Тогда для описания движения тела нужно добавить еще два уравнения: v x = v 0 x и s x = v 0 x t .

Подставив в формулу

вместо массы и радиуса Земли соответственно массу и радиус какой-либо другой планеты или её спутника, можно определить приблизительное значение ускорения свободного падения на поверхности любого из этих небесных тел.

Таблица 3. Ускорение свободного падения на поверхности некоторых

небесных тел (для экватора), м/с 2 .