Что называют дефектом масс атомного ядра. Атомное ядро

Ядра атомов представляют собой сильно связанные системы из большого числа нуклонов.
Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А.

Энергией связи называют энергию, равную работе, которую надо совершить, чтобы расщепить ядро на свободные нуклоны.

Е связи = - А

По закону сохранения энергия связи одновременно равна энергии, которая выделяется при образовании ядра из отдельных свободных нуклонов.

Удельная энергия связи

Это энергия связи, приходящаяся на один нуклон.

Если не считать самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Максимальную удельную энергию связи (8,6МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60. Ядра этих элементов наиболее устойчивы.

По мере перегрузки ядер нейтронами удельная энергия связи убывает.
Для элементов в конце таблицы Менделеева она равна 7,6 МэВ/нуклон (например для урана).


Выделение энергии в результате расщепления или синтеза ядра

Для того, чтобы расщепить ядро надо затратить определенную энергию для преодоления ядерных сил.
Для того, чтобы синтезировать ядро из отдельных частиц надо преодолеть кулоновские силы отталкивания (для этого надо затратить энергию, чтобы разогнать эти частицы до больших скоростей).
То есть, чтобы провести расщепление ядра или синтез ядра надо затратить какую-то энергию.

При синтезе ядра на малых расстояниях на нуклоны начинают действовать ядерные силы, которые побуждают их двигаться с ускорением.
Ускоренные нуклоны излучают гамма-кванты, которые и обладают энергией, равной энергии связи.

На выходе реакции расщепления ядра или синтеза энергия выделяется.

Есть смысл проводить расщепление ядра или синтез ядра, если получаемая, т.е. выделенная энергия в результате расщепления или синтеза, будет больше, чем затраченная
Согласно графику, выйгрыш в энергии можно получить или при делении (расщеплении) тяжелых ядер, или при при слиянии легких ядер, что и делается на практике.


Дефект масс

Измерения масс ядер показывают, что масса ядра (Мя) всегда меньше суммы масс покоя слагающих его свободных нейтронов и протонов.

При делении ядра: масса ядра всегда меньше суммы масс покоя образовавшихся свободных частиц.

При синтезе ядра: масса образовавшегося ядра всегда меньше суммы масс покоя свободных частиц, его образовавших.

Дефект масс является мерой энергии связи атомного ядра.

Дефект масс равен разности между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра:

где Мя – масса ядра (из справочника)
Z – число протонов в ядре
mp – масса покоя свободного протона (из справочника)
N – число нейтронов в ядре
mn – масса покоя свободного нейтрона (из справочника)

Уменьшение массы при образовании ядра означает, что при этом уменьшается энергия системы нуклонов.

Расчет энергии связи ядра

Энергия связи ядра численно равна работе, которую нужно затратить для расщепления ядра на отдельные нуклоны, или энергии, выделяющейся при синтезе ядер из нуклонов.
Мерой энергии связи ядра является дефект массы.

Формула для расчета энергии связи ядра - это формула Эйнштейна:
если есть какая-то система частиц, обладающая массой, то изменение энергии этой системы приводит к изменению ее массы.

Здесь энергия связи ядра выражена произведением дефекта масс на квадрат скорости света.

В ядерной физике массу частиц выражают в атомных единицах массы (а.е.м.)

в ядерной физике принято выражать энергию в электронвольтах (эВ):

Просчитаем соответствие 1 а.е.м. электронвольтам:

Теперь расчетная формула энергии связи (в электронвольтах) будет выглядеть так:

ПРИМЕР РАСЧЕТА энергии связи ядра атома гелия (Не)

>

Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру значительную энергию.

Энергия связи атомного ядра Е св характеризует интенсивность взаимодействия нуклонов в ядре и равна той максимальной энергии, которую необходимо затратить, чтобы разделить ядро на отдельные невзаимодействующие нуклоны без сообщения им кинетической энергии. У каждого ядра своя энергия связи. Чем больше эта энергия, тем более устойчиво атомное ядро. Точные измерения масс ядра показывают, что масса покоя ядра m я всегда меньше суммы масс покоя, составляющих его протонов и нейтронов. Эту разность масс называют дефектом массы:

Именно эта часть массы Дт теряется при выделении энергии связи. Применяя закон взаимосвязи массы и энергии, получим:

где m н - масса атома водорода.

Такая замена удобна для проведения расчетов, и расчетная ошибка, возникающая при этом, незначительна. Если в формулу энергии связи подставить Дт в а.е.м. то для Е св можно записать:

Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

Удельная энергия связи Е уд - энергия связи ядра, приходящаяся на 1 нуклон:

На рис. 116 приведен сглаженный график экспериментально установленной зависимости Е уд от А.

Кривая на рисунке имеет слабо выраженный максимум. Наибольшую удельную энергию связи имеют элементы с массовыми числами от 50 до 60 (железо и близкие к нему элементы). Ядра этих элементов наиболее устойчивы.

Из графика видно, что реакция деления тяжелых ядер на ядра элементов средней части таблицы Д. Менделеева, а также реакции синтеза легких ядер (водород, гелий) в более тяжелые - энергетически выгодные реакции, так как они сопровождаются образованием более устойчивых ядер (с большими Е уд) и, следовательно, протекают с выделением энергии (Е > 0).

Поскольку большинство ядер устойчиво, то между нуклонами существует особое ядерное (сильное) взаимодействие - притяжение, которое обеспечивает устойчивость ядер, несмотря на отталкивание одноименно заряженных протонов.

Энергией связи ядра называется физическая величина, равная работе, которую надо совершить, чтобы расщепить ядро на составляющие его нуклоны, не сообщая им кинетической энергии.

Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех нуклонов в ядре и их энергией в свободном состоянии.

Энергия связи нуклонов в атомном ядре:

где, - соответственно массы протона, нейтрона и ядра; - масса атома водорода; - атомная масса данного вещества.

Масса, соответствующая энергии связи:

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них ядра.

Удельной энергией связи называется энергия связи, приходящаяся на один нуклон: . Она характеризует устойчивость (прочность) атомных ядер, т.е. чем больше, тем прочнее ядро.

Зависимость удельной энергии связи от массового числа приведена на рисунке. Наиболее устойчивы ядра средней части периодической таблицы (28<A <138). В этих ядрах составляет приблизительно 8,7 МэВ/нуклон (для сравнения, энергия связи валентных электронов в атоме порядка 10эВ, что в миллион раз меньше).

При переходе к более тяжелым ядрам удельная энергия связи уменьшается, поскольку при увеличении числа протонов в ядре увеличивается энергия их кулоновского отталкивания (например, для урана она составляет 7,6 МэВ). Поэтому связь между нуклонами становится менее сильной, сами ядра менее прочными.

Энергетически выгодно: 1) деление тяжелых ядер на более легкие; 2) слияние легких ядер друг с другом в более тяжелые. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время реализованы практически; реакции деления ядер и реакции термоядерного синтеза ядер.

Как уже отмечалось (см § 138), нуклоны прочно связаны в ядре атома ядерными силами. Для разрыва этой связи, т. е. для полного разобщения нуклонов, необходимо затратить некоторое количество энергии (совершить некоторую работу).

Энергия, необходимая для разобщения нуклонов, составляющих ядро, называется энергией связи ядра, Величину энергии связи можно определить на основе закона сохранения энергии (см. § 18) и закона пропорциональности массы и энергии (см. § 20).

Согласно закону сохранения энергии, энергия нуклонов, связанных в ядре, должна быть меньше энергии разобщенных нуклонов на величину энергии связи ядра 8. С другой стороны, согласно закону пропорциональности массы и энергии, изменение энергии системы сопровождается пропорциональным изменением массы системы

где с - скорость света в вакууме. Так как в рассматриваемом случае и есть энергия связи ядра то масса атомного ядра должна быть меньше суммы масс нуклонов, составляющих ядро, на величину которая называется дефектом массы ядра. По формуле (10) можно рассчитать энергию связи ядра если известен дефект массы этого ядра

В настоящее время массы атомных ядер определены с высокой степенью точности посредством масс-спектрографа (см. § 102); массы нуклонов также известны (см. § 138). Это дает возможность определять дефект массы любого ядра и рассчитывать по формуле (10) энергию связи ядра.

В качестве примера рассчитаем энергию связи ядра атома гелия. Оно состоит из двух протонов и двух нейтронов. Масса протона масса нейтрона Следовательно, масса нуклонов, образующих ядро, равна Масса же ядра атома гелия Таким образом, дефект атомного ядра гелия равен

Тогда энергия связи ядра гелия равна

Общая формула для расчета энергии связи любого ядра в джоулях по его дефекту массы будет, очевидно, иметь вид

где атомный номер, А - массовое число. Выражая массу нуклонов и ядра в атомных единицах массы и учитывая, что

можно написать формулу энергии связи ядра в мегаэлектронвольтах:

Энергия связи ядра, приходящаяся на один нуклон, называется удельной энергией связи Следовательно,

У ядра гелия

Удельная энергия связи характеризует устойчивость (прочность) атомных ядер: чем больше в, тем устойчивее ядро. Согласно формулам (11) и (12),

Еще раз подчеркнем, что в формулах и (13) массы нуклонов и ядра выражены в атомных единицах массы (см. § 138).

По формуле (13) можно рассчитывать удельную энергию связи любых ядер. Результаты этих расчетов представлены графически на рис. 386; по оси ординат отложены удельные энергии связи в по оси абсцисс - массовые числа А. Из графика следует, что удельная энергия связи максимальна (8,65 МэВ) у ядер с массовыми числами порядка 100; у тяжелых и у легких ядер она несколько меньше (например, урана, гелия). У атомного ядра водорода удельная энергия связи равна нулю, что вполне понятно, поскольку в этом ядре нечего разобщать: оно состоит только из одного нуклона (протона).

Всякая ядерная реакция сопровождается выделением или же поглощением энергии. График зависимости вот А позволяет определить, при каких превращениях ядра происходит выделение энергии и при каких - ее поглощение. При делении тяжелого ядра на ядра с массовыми числами А порядка 100 (и более) происходит выделение энергии (ядерной энергии). Поясним это следующим рассуждением. Пусть, например, произошло разделение ядра урана на два

атомных ядра («осколка») с массовыми числами Удельная энергия связи ядра урана удельная энергия связи каждого из новых ядер Для разобщения всех нуклонов, составляющих атомное ядро урана, необходимо затратить энергию, равную энергии связи ядра урана:

При объединении этих нуклонов в два новых атомных ядра с массовыми числами 119) выделится энергия, равная сумме энергий связи новых ядер:

Следовательно, в результате реакции деления ядра урана выделится ядерная энергия в количестве равном разности между энергией связи новых ядер и энергией связи ядра урана:

Выделение ядерной энергии происходит и при ядерных реакциях иного типа - при объединении (синтезе) нескольких легких ядер в одно ядро. В самом деле, пусть, например, имеет место синтез двух ядер натрия в ядро с массовым числом Удельная энергия связи ядра натрия удельная энергия связи синтезированного ядра Для разобщения всех нуклонов, образующих два ядра натрия, необходимо затратить энергию, равную удвоенной энергии связи ядра натрия:

При объединении этих нуклонов в новое ядро (с массовым числом 46) выделится энергия, равная энергии связи нового ядра:

Следовательно, реакция синтеза ядер натрия сопровождается выделением ядерной энергии в количестве равном разности энергии связи синтезированного ядра и энергии связи ядер натрия:

Таким образом, мы приходим к выводу, что

выделение ядерной энергии происходит как при реакциях деления тяжелых ядер, так и при реакциях синтеза легких ядер. Количество ядерной энергии выделяемое каждым прореагировавшим ядром, равно разности между энергией связи 8 2 продукта реакции и энергией связи 81 исходного ядерного материала:

Это положение является исключительно важным, поскольку на нем основаны промышленные способы получения ядерной энергии.

Отметим, что наиболее выгодной, в отношении энергетического выхода, является реакция синтеза ядер водорода или дейтерия

Поскольку, как это следует из графика (см. рис. 386), в данном случае разность энергий связи синтезируемого ядра и исходных ядер будет наибольшей.

Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь. Изучение этой связи может быть проведено без привлечения сведений о характере и свойствах ядерных сил, а основываясь на законе сохранения энергии. Введём определения.

Энергией связи нуклона в ядре называется физическая величина, равная работе, которую необходимо совершить для удаления данного нуклона из ядра без сообщения ему кинетической энергии.

Полная энергия связи ядра определяется работой, которую нужно совершить для расщепления ядра на составляющие его нуклоны без придания им кинетической энергии.

Из закона сохранения энергии следует, что при образовании ядра из составляющих его нуклонов должна выделиться энергия, равная энергии связи ядра. Очевидно, что энергия связи ядра равна разности между суммарной энергией свободных нуклонов, составляющих данное ядро, и их энергией в ядре. Из теории относительности известно, что между энергией и массой имеется связь:

Е = mс 2 . (250)

Если через ΔЕ св обозначить энергию, выделяющуюся при образовании ядра, то с этим выделением энергии, согласно формуле (250), должно быть связано уменьшение суммарной массы ядра при его образовании из составных частиц:

Δm = ΔЕ св / с 2 (251)

Если обозначить через m p , m n , m Я соответственно массы протона, нейтрона и ядра, то Δm можно определить по формуле:

Dm = [Zm р + (A-Z)m n ] - m Я . (252)

Массу ядер очень точно можно определить с помощью масс-спектрометров - измерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами q/m . Масс-спектрометрические измерения показали, что, действительно, масса ядра меньше, чем сумма масс составляющих его нуклонов.

Разность между сумой масс нуклонов, составляющих ядро, и массой ядра называется дефектом массы ядра (формула (252)).

Согласно формуле (251), энергия связи нуклонов в ядре определится выражением:

ΔЕ СВ = [Zm p + (A-Z )m n – m Я ]с 2 . (253)

В таблицах обычно приводятся не массы ядер m Я , а массы атомов m а . Поэтому для энергии связи пользуются формулой

ΔЕ СВ = [Zm H + (A-Z )m n – m а ]с 2 (254)

где m H - масса атома водорода 1 Н 1 . Так как m H больше m р , на величину массы электрона m e , то первый член в квадратных скобках включает в себя массу Z электронов. Но, так как масса атома m а отличается от массы ядра m Я как раз на массу Z электронов, то вычисления по формулам (253) и (254) приводят к одинаковым результатам.

Часто вместо энергии связи ядра рассматривают удельную энергию связи dЕ СВ - это энер­гия связи, приходящаяся на один нуклон ядра. Она характеризует устойчивость (прочность) атомных ядер, т. е. чем больше dЕ СВ ,тем устойчивее ядро. Удельная энергия связи зависит от массового числа А элемента. Для легких ядер (А £ 12) удельная энергия связи круто возрастает до 6 ¸ 7 МэВ, претерпевая целый ряд скачков (см. рисунок 93). Например, для dЕ СВ =1,1 МэВ, для -7,1 МэВ, для -5,3 МэВ. При дальнейшем увеличении массового числа dЕ СВ возрастает более медленно до максимальной величины 8,7 МэВ у элементов с А =50¸60, а потом постепенно уменьшается для тяжелых элементов. Например, для она составляет 7,6 МэВ. Отметим для сравнения, что энергия связи валентных электронов в атомах составляет примерно 10 эВ (в 10 6 раз меньше). На кривой зависимости удельной энергии связи от массового числа для стабильных ядер (рисунок 93) можно отметить следующие закономерности:

А) Если отбросить самые легкие ядра, то в грубом, так сказать нулевом приближении, удельная энергия связи постоянна и равна примерно 8 МэВ на

нуклон. Приближенная независимость удельной энергии связи от числа нуклонов свидетельствует о свойстве насыщения ядерных сил. Это свойство состоит в том, что каждый нуклон может взаимодействовать только с несколькими соседними нуклонами.

б) Удельная энергия связи не строго постоянна, а имеет максимум (~8,7 МэВ/нуклон) при А = 56, т.е. в области ядер железа, и спадает к обоим краям. Максимум кривой соответствует наиболее стабильным ядрам. Легчайшим ядрам энергетически выгодно сливаться друг с другом с выделением термоядерной энергии. Для наиболее тяжелых ядер, наоборот, выгоден процесс деления на осколки, идущий с выделением энергии, получившей название атомной.