Магнитное поле и его графическое изображение. • Магнитное поле и его графическое

Постоянные магниты – тела, сохраняющие длительное время намагниченность. Полюс - место магнита, где обнаруживается наиболее сильное действие N – северный полюс магнита S – южный полюс магнита S N S Дугообразный магнит Полосовой магнит N 2

В чем же причины намагничивания? Гипотеза Ампера + S Согласно гипотезы Ампера (1775 - 1836 г.) в атомах и молекулах в результате движения электронов возникают кольцевые токи. В 1897 г. гипотезу подтвердил английский учёный Томсон, а в 1910 г. измерил токи американский учёный Милликен. - е N При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом. 3

Движение электронов представляет собой круговой ток, а вокруг проводника с электрическим током существует магнитное поле. 4 4

Искусственные и естественные магниты. Искусственные магниты -полученные намагничиванием железа при внесении его в магнитное поле. Естественные магниты - магнитный железняк. Природные магниты, т. е. кусочки магнитного железняка магнетита 5

Свойства магнитов: 1. Наиболее сильное магнитное действие обнаруживают полюса магнитов; 2. Хорошо притягиваются магнитом чугун, сталь, железо и некоторые сплавы; 3. Железо, сталь, никель в присутствии магнитного железняка приобретают магнитные свойства; 4. Разноименные магнитные полюса притягиваются, одноименные отталкиваются. 6 6

Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. 7

Магнитное поле постоянных магнитов Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками. Магнитное поле - составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц. 8

Магнитные поля изображаются с помощью магнитных линий. Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита. 9

По картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля. В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг у другу, гуще, чем в тех местах, где поле слабее. 10

НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ Сила, с которой действует поле магнита может быть различной как по модулю, так и по направлению. Такое поле называют неоднородным. Характеристики неоднородного магнитного поля: магнитные линии искривлены; густота магнитных линий различна; сила, с которой магнитное поле действует на магнитную стрелку, различна в разных точках этого поля по величине и направлению. 12

Где существует неоднородное магнитное поле? Вокруг прямого проводника с током. На рисунке изображен участок такого проводника, расположенный перпендикулярно плоскости чертежа. Ток направлен от нас. Видно, что магнитные линии представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника 13

ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ Характеристики однородного магнитного поля: магнитные линии параллельные прямые; густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, одинакова во всех точках этого поля по величине и направлению. 15

Где существует однородное магнитное поле? Внутри полосового магнита и внутри соленоида, если его длина много больше, чем диаметр 16

Это интересно Магнитные полюсы Земли много раз менялись местами (инверсии). За последний миллион лет это случалось 7 раз. 570 лет назад магнитные полюса Земли были расположены в районе экватора 17

Это интересно Если на Солнце происходит мощная вспышка, то усиливается солнечный ветер. Это вызывает возмущение земного магнитного поля и приводит к магнитной буре. Пролетающие мимо Земли частицы солнечного ветра создают дополнительные магнитные поля. Магнитные бури причиняют серьёзный вред: они оказывают сильное влияние на радиосвязь, на линии электросвязи, многие измерительные приборы показывают неверные результаты. 18

Это интересно Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно. В состав космического излучения, кроме электронов, протонов, входят и другие частицы, движущиеся в пространстве с огромными скоростями. 19

Это интересно Результатом взаимодействия солнечного ветра с магнитным полем Земли является полярное сияние. Вторгаясь в земную атмосферу, частицы солнечного ветра (в основном электроны и протоны) направляются магнитным полем и определённым образом фокусируются. Сталкиваясь с атомами и молекулами атмосферного воздуха, они ионизируют и возбуждают их, в результате чего возникает свечение, которое называют полярным сиянием. 20

Это интересно Изучением влияния различных факторов погодных условий на организм здорового и больного человека занимается специальная дисциплина - биометрология. Магнитные бури вносят разлад в работу сердечно -сосудистой, дыхательной и нервной системы, а также изменяют вязкость крови; у больных атеросклерозом и тромбофлебитом она становится гуще и быстрее свёртывается, а у здоровых людей, напротив, повышается. 21

Закрепление 1. 2. 3. 4. 5. 6. Какие тела называют постоянными магнитами? Чем порождается магнитное поле постоянного магнита? Что называют магнитными полюсами магнита? Чем отличаются однородные магнитные поля от неоднородных? Как взаимодействуют между собой полюсы магнитов? Объясните, почему иголка притягивает скрепку? (см. рис) 22

: установить связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике. Ввести понятие неоднородного и однородного магнитных полей. На практике получить картину силовых линий магнитного поля постоянного магнита, соленоида, проводника по которому течет электрический ток. Систематизировать знания по основным вопросам темы “Электромагнитное поле”, продолжить учить решать качественные и экспериментальные задачи.

  • Развивающие : активизировать познавательную деятельность обучающихся на уроках физики. Развивать познавательную активность учащихся.
  • Воспитательные : содействовать формированию идеи познаваемости мира. Воспитывать трудолюбие, взаимопонимание между учениками и учителем.
  • Задачи:

    • Образовательная
    : углубление и расширение знаний о магнитном поле, обосновать связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике.

  • Воспитательная : показать причинно – следственные связи при изучении магнитного поля прямого тока и магнитных линий, что беспричинных явлений не существует, что опыт- критерий истинности знаний.
  • Развивающая : продолжить работу над формированием умений анализировать и обобщать знания о магнитном поле и его характеристиках. Вовлечение учащихся в активную практическую деятельность при выполнении экспериментов.
  • Оборудование. Интерактивная доска, прибор для демонстрации расположения железных опилок вокруг прямого проводника с током, прибор для демонстрации расположения железных опилок вокруг соленоида, источник тока, катушка на 220 Вт, полосовые магниты, подковообразные магниты, магнитные стрелки, медный провод, железные опилки, магнитики, компас. Презентация (Приложение 1 ).Дополнительный материал (Приложение 2 ).

    Тип урока: урок изучения нового материала.

    Вид урока: урок исследование.

    Ход урока

    1. Организационный этап

    Этап актуализации знаний и действий.

    2. Мотивационный этап

    • Получение научного факта о связи между направлением линий магнитного поля тока с направлением тока в проводнике и в соленоиде.
    • Применение правила буравчика для определения направления линий магнитного поля по направлению тока.
    • Применение правила правой руки для определения направления линий магнитного поля по направлению тока.
    • Применение правила правой руки для определения направления линий магнитного поля по направлению тока в соленоиде.
    • Решение практических задач.
    • Подведение итогов.
    • Домашнее задание.

    Образовательные результаты, которые буду достигнуты учащимися:

    1. Учащиеся поймут смысл терминов: “неоднородное и однородное магнитное поле”, “магнитные линии неоднородного и однородного магнитных полей”.
    2. Школьники осознают зависимость между направлением линий магнитного поля тока с направлением тока в проводнике и в соленоиде.
    3. Ученики смогут решать практические задачи:

    – на определение направления линий магнитного поля тока по направлению тока в проводнике;
    – на определение направления линий магнитного поля тока по направлению тока в соленоиде;
    – по направлению тока в проводнике определять направление магнитных линий магнитного поля тока;
    – по направлению тока в соленоиде определять направление магнитных линий магнитного поля тока.

    1. Этап актуализации знаний и действий

    Магнетизм известен с пятого века до нашей эры, но изучение его сущности продвигалось очень медленно. Впервые свойства магнита были описаны в 1269 году. В этом же году ввели понятие магнитного полюса. Слово “магнит” (от греческого magnetis eitos. Минерал, состоящий из – FeO (31%) Fe 2 O 3 (69%)) означает название руды, добывавшейся в местности Магнессия (теперь это город Маниса в Турции). Магнит – “камень Геркулеса”, “любящий камень”, “мудрое железо”, и “царственный камень”.

    Слайд 1. Происхождение слова – магнит.
    Название это было придумано древнегреческим драматургом Еврипидом (в V век до н.э.) Богатые залежи магнитного железняка имеются на Урале, на Украине, в Карелии и Курской области. В настоящее время удалось создать искусственные магниты, обладающие большими магнитными свойствами, чем естественные. Материалом для них служат сплавы на основе железа, никеля, кобальта и некоторых других металлов.

    Слайд 2. Искусственные магниты.
    Магнит обладает на разных участках различной притягивающей силой, на полюсах эта сила наиболее заметна. Вам уже известно, что вокруг любого магнита существует магнитное поле. Это поле и притягивает железо к магниту.

    Слайд 3. Различная притягивающая сила магнитов на полюсах.
    Внешнее, расплавленное, ядро Земли находится в постоянном движении. В результате этого в нем возникают магнитные поля, формирующие в конечном итоге магнитное поле Земли.

    Слайд 4. Земной шар – большой магнит.
    Ранее вами изучены различные действия электрического тока, в частности – магнитное действие. Проявляется оно в том, что между проводниками с током возникают силы взаимодействия, которые называются магнитными. Первые опыты по обнаружению магнитного поля вокруг проводника с током провел Ганс Христиан Эрстед в 1820 году.

    Слайд 5. Опыт Ганса Христиана Эрстеда в 1820 году.

    Слайд 6. Схема опыта Ганса Христиана Эрстеда в 1820 году.

    Его неожиданные и простые опыты с отклонением магнитной стрелки вблизи проводника с током были проверены рядом ученых. Эта проверка принесла и новые результаты,которые составили экспериментальную основу первой теории магнетизма.Он впервые высказал предположение о возможной связи электрического тока и магнетизма, а зафиксирована в1735 году в одном из научных лондонских журналов.Однако разгадка наступила только тогда, когда исследователи научились получать электрический ток.

    Рассмотрим серию опытов. Опыт по обнаружению магнитного поля тока. Соберем электрическую цепь по схеме. Расположим вблизи проводника магнитную стрелочку. Ответим на вопрос: “Как взаимодействуют проводник с током и магнитная стрелка, если цепь не замкнута?”.

    Слайд 7. Опыт по обнаружению магнитного поля тока.
    Ответим на вопрос: “Как взаимодействуют проводник с током и магнитная стрелка, если цепь замкнута?”.

    Слайд 8. Опыт по обнаружению магнитного поля тока.
    Ответим на вопрос: “Как взаимодействуют проводник с током и магнитная стрелка при размыкании цепи?”.

    Слайд 9. Опыт по обнаружению магнитного поля тока.
    Опыты навели на мысль о существовании вокруг проводника с током магнитного поля. Из опытов видно, что магнитная стрелка, которая может свободно вращаться вокруг своей оси, всегда устанавливается, ориентируясь определенным образом, в данной области магнитного поля. Исходя из этого, вводится понятие о направлении магнитного поля в данной точке.
    Железные опилки притягиваются к постоянному магниту. На основании имеющихся знаний утверждаем, что это происходит благодаря магнитному полю, возникающему вокруг постоянных магнитов.

    Слайд 10. Опыт. Железные опилки притягиваются к постоянному магниту..
    Делаем вывод о том, что источником магнитного поля являются:

    а) движущиеся электрические заряды;
    б) постоянные магниты.

    Слайд 11. Источники магнитного поля.
    С помощью железных опилок демонстрируем спектр магнитного поля прямого тока в данной точке.

    Слайд 12. Расположение металлических опилок вокруг прямолинейного проводника с током.
    Ответим на вопрос: “Как можно обнаружить магнитное поле?”.

    а) с помощью железных опилок. Попадая в магнитное поле, железные опилки намагничиваются и располагаются вдоль магнитных линий.
    б) по действию на проводник с током. Попадая в магнитное поле, проводник с током начинает двигаться, т.к. со стороны магнитного поля на него действует сила.

    Слайд 13. Варианты обнаружения магнитного поля.
    Определим на основании имеющихся знаний причины возникновения магнитного поля.
    Утверждаем, что магнитное поле порождается постоянными магнитами и движущимися электрическими зарядами и обнаруживается по действию на движущиеся электрические заряды. С удалением от источника магнитное поле ослабевает.

    Слайд 14. Магнитное поле и причины его возникновения. Сделаем выводы:
    Вокруг проводника с током (т.е. вокруг движущихся зарядов) существует магнитное поле. Оно действует на магнитную стрелку, отклоняя её.
    Электрический ток и магнитное поле неотделимы друг от друга.

    Ответим на вопросы :

    • Вокруг неподвижных зарядов существует … поле.
    • Вокруг подвижных зарядов … .

    Слайд 15. Выводы.

    2. Мотивация нового учебного материала

    Графическое изображение магнитного поля. Все магниты имеют два вида полюсов. Эти полюса называются южными (S) и северными (N) .

    Слайд 16. Полюса магнитов.
    Представление о магнитном поле можно получить с помощью современных методов. Но это можно сделать и с помощью железных опилок.

    Слайд 17. Силовые линии магнитного поля.
    Для того чтобы получить вид магнитного поля постоянного магнита необходимо проделать следующее: положить лист картона на полосовой магнит, и равномерно посыпьте его железными опилками. Не сдвигая, магнит и лист картона относительно друг друга, осторожно постучать по листу, чтобы опилки могли свободно перераспределяться. Следить, как выстраиваются опилки на картоне.

    Слайд 18. Силовые линии магнитного поля полосового магнита..
    Силовые линии магнитного поля – замкнутые линии. Вне магнитные силовые линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита.
    Линии, образуемые магнитными стрелками или железными опилками в магнитном поле, стали называть силовыми линиями магнитного поля.

    Слайд 19. Графическое изображение магнитного поля тока.
    Линии вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называются линиями магнитного поля .
    Магнитные линии магнитного поля тока представляют собой замкнутые кривые , охватывающие проводник.
    Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитных линей магнитного поля.

    3. Осмысление нового учебного материала

    Мы продолжаем познавать мир. Тема сегодняшнего урока “ Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле. Зависимость направления магнитных линий от направления тока в проводнике”.

    Из курса физики 8 класса вы узнали, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создается электронами, направленно движущимися вдоль проводника. Магнитное поле возникает и в том случае, когда ток проходит через раствор электролита, где носителями зарядов являются положительно и отрицательно заряженные ионы, движущиеся навстречу друг другу.

    Поскольку электрический ток – это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными. Напомним, что согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

    Слайд 20. Направление магнитной линии в точке В
    Для наглядного представления магнитного поля мы пользовались магнитными линиями (их называют также линиями магнитного поля) Напомним, что магнитные линии это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. За направление магнитной линии условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенный в эту точку.

    Слайд 21. Магнитные линии являются замкнутыми.

    Слайд 22. Магнитное поле катушки и постоянного магнита.
    Катушка с током, как и магнитная стрелка, имеет 2 полюса – северный и южный.
    Магнитное действие катушки тем сильнее, чем больше витков в ней.
    При увеличении силы тока магнитное поле катушки усиливается.
    Магнитные линии являются замкнутыми.
    Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

    Слайд 23. Магнитные линии прямолинейного проводника с током. Слайд 24. Рассмотрим магнитные линии соленоида.
    Неоднородное и однородное магнитное поле.
    Рассмотрим картину линий магнитного поля постоянного полосового магнита, изображенную на рисунке.

    Слайд 25. Представление магнитного поля с помощью магнитных линий.
    Из курса физики 8 класса мы знаем, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность. Вне магнита линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает.Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на неё поле магнита.Поскольку магнитные линии искривлены, то направление силы с которой поле действует на стрелку,тоже меняется от точке к точке. Таким образом, сила с которой поле полосового магнита действует на помещённую в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называется неоднородным.

    Линии неоднородного магнитного поля искривлены, их густо та меняется от точки к точке.
    Свойства магнитных линий:если магнитные линии искривлены и расположены с неодинаковой густотой, то магнитное поле – является неоднородным.

    Слайд 26. Свойства магнитных линий.

    В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению. Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Однородным является также поле внутри постоянного полосового магнита в центральной его части.

    Слайд 27. Свойства магнитных линий.

    Слайд 28. Однородные и неоднородные магнитные поля.

    Что нужно знать о магнитных линиях?

    Слайд 29. Что нужно знать о магнитных линиях?
    Для изображения магнитного поля пользуются следующим приемом.
    Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам – то точками. Как и в случае с током, каждый крестик – это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка – острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).

    Слайд 30. Изображение однородного магнитного поля.
    Для определения направления магнитных линий существует несколько способов.

    1. При помощи магнитной стрелки.
    2. По правилу буравчика.
    3. По правилу правой руки.

    Слайд 31. Определение направления магнитных линий.

    Первое правило правой руки: если обхватить проводник ладонью правой руки, направив отставленный большой палец вдоль тока, то остальные пальцы этой руки укажут направление силовых линий магнитного поля данного тока.

    Слайд 32. Первое правило правой руки.

    Второе правило правой руки: если обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

    Слайд 33. Второе правило правой руки.
    Если поместить в некоторую точку магнитного поля рамку с током, то магнитное поле окажет на неё ориентирующее действие – рамка установится в магнитном поле определенным образом. Теперь к рамке нужно провести нормаль. По направлению нормали можно определить направление вектора магнитной индукции в этой точке магнитного поля.

    Правило буравчика: если ручку буравчика вращать по направлению тока в рамке, то направление хода буравчика покажет направление вектора магнитной индукции в данной точке поля.

    Слайд 34. Правило буравчика.
    Решение практических задач.

    Слайд 35. Какие утверждения являются верными?




    Слайд 36. Закончить фразу: “Вокруг проводника с током существует...

    а) Магнитное поле.
    б) Электрическое поле.
    в) Электрическое и магнитное поле.

    Слайд 37. Что нужно знать о магнитных линиях?

    1. Магнитные линии – замкнутые кривые, поэтому магнитное поле называют вихревым. Это означает, что в природе не существует магнитных зарядов.
    2. Чем гуще расположены магнитные линии, тем магнитное поле сильнее.
    3. Если магнитные линии расположены параллельно друг другу с одинаковой густотой, то такое магнитное поле называют однородным.
    4. Если магнитные линии искривлены – это значит, что сила, действующая на магнитную стрелку в разных точках магнитного поля, разная. Такое магнитное поле называют неоднородным.

    Слайд 38. На что указывает северный полюс магнитной стрелки? Какими бывают магнитные линии?

    Слайд 40. В какой точке магнитное поле самое сильное?

    Слайд 41. Определить направление тока по известному направлению магнитных линий.

    Слайд 42. Ответ. Определение направления тока по известному направлению магнитных линий.

    Слайд 43. Какой из вариантов соответствует схеме расположения магнитных линий вокруг прямолинейного проводника с током, расположенного перпендикулярно плоскости рисунка?

    Слайд 44. Какой из вариантов, соответствует схеме расположения магнитных линий вокруг прямолинейного проводника с током, расположенного вертикально?

    Слайд 45. Какой из вариантов соответствует схеме расположения магнитных линий вокруг соленоида?

    Слайд 46. Что собой представляют магнитные линии соленоида?

    4. Осознание учебного материала

    Вопросы : Слайд 47.

    1. Какие утверждения являются верными?

    А) В природе существуют электрические заряды.
    Б) В природе существуют магнитные заряды.
    В) В природе не существует электрических зарядов.
    Г) В природе не существует магнитных зарядов.

    а) А и Б, б) А и В, в) А и Г, г) Б, В и Г.

    2. Чем порождается магнитное поле?

    3. Чем создается магнитное поле постоянного магнита?

    4. Что такое магнитные линии?

    5. О чем можно судить по картине линий магнитного поля?

    6. Какое магнитное поле – однородное или неоднородное – образуется вокруг полосового магнита? вокруг прямолинейного проводника с током? внутри соленоида, длина которого значительно больше его диаметра?

    Слайд 49. Картины магнитных полей.

    Работа учащихся у доски.

    • Задание для первого человека: нарисовать магнитное поле прямолинейного проводника с током.
    • Задание для второго человека: нарисовать магнитное поле соленоида.
    • Задание для третьего человека: нарисовать магнитное поле постоянного магнита.

    Упражнение 33

    1. На рис. 88 изображен участок ВС проводника с током. Вокруг него в одной из плоскостей показаны линии магнитного поля, созданного этим током. Существует ли Магнитное поле в точке А?
    2. На рис. 88 изображены три точки: А, М, N. В какой из них магнитное поле тока, протекающего по проводнику ВС, будет действовать на магнитную стрелку с наибольшей силой? с наименьшей силой?

    5. Итог урока

    6. Домашнее задание

    §§43–45. Упр. 33, 34, 35.

    Литература

    1. Перышкин А.В., Гутник Е.М. Учебник для общеобразовательных учреждений “Физика-9”, 12 издание. – М.: Дрофа, 2009.
    2. Громов С.В . “Физика-9”: Учебник для общеобразовательных учреждений. 3-е изд. – М.: Просвещение, 2002.
    3. Пинский А.А., Разумовский В.Г. Учебник для общеобразовательных учреждений “Физика-8”. М.: Просвещение, 2003.
    4. “Основы методики преподавания физики. Общие вопросы” под редакцией Л.И. Резникова, А.В. Перышкина, П.А. Знаменского. – М.: Просвещение, 1965.
    5. Научно-методический журнал “Физика в школе”, Издательство “Школа-Пресс”, 1999, 6.
    6. Журнал “Физика в школе”. – 2003. – 7. – с.30.
    7. Дубинин Э.М., Подгорный И.М. Магнитное поле небесных тел. – М.: Знание, 1998.
    8. “Основы методики преподавания физики. Общие вопросы” / под редакцией Л.И. Резникова, А.В. Перышкина, П.А. Знаменского – “Просвещение”, Москва, 1965.
    9. Громов С.В., Родина Н.А. Физика-9: Учебник для общеобразовательных учреждений– 3-е изд. – М.: Просвещение, 2002.
    10. Лукашик В.И. Сборник вопросов и задач по физике. 7–9 кл. – М.: Просвещение, 2002. – 192с.
    11. Марон А.Е., Марон Е.А. Контрольные тексты по физике. 7–9 кл. – М.: Просвещение, 2002. – 79с.

    Графическое изображение магнитного поля. Поток вектора магнитной индукции

    Магнитное поле можно изобразить графически при помощи линий магнитной индукции. Линией магнитной индукции называют линию, касательная к которой в каждой точке совпадает с направлением вектора индукции магнитного поля (рис. 6).

    Исследования показали, что линии магнитной индукции являются замкнутыми линиями, охватывающими токи. Густота линий магнитной индукции пропорциональна величине вектора в данном месте поля. В случае магнитного поля прямого тока линии магнитной индукции имеют форму концентрических окружностей, лежащих в плоскостях, перпендикулярных току, с центром на прямой с током. Направление линий магнитной индукции независимо от формы тока можно определить по правилу буравчика. В случае магнитного поля прямого тока буравчик необходимо вращать таким образом, чтобы его поступательное движение совпало с направлением тока в проводе, тогда вращательное движение ручки буравчика совпадет с направлением линий магнитной индукции (рис. 7).

    На рис. 8 и 9 изображены картины линий магнитной индукции поля кругового тока и поля соленоида. Соленоид представляет собой совокупность круговых токов с общей осью.

    Линии вектора индукции внутри соленоида параллельны друг другу, густота линий одинакова, поле однородно ( = const). Поле соленоида аналогично полю постоянного магнита. Конец соленоида, из которого выходят линии индукции аналогичен северному полюсу – N, противоположный конец соленоида аналогичен южному полюсу – S.

    Число линий магнитной индукции, пронизывающих определенную поверхность, называют магнитным потоком через эту поверхность. Обозначают магнитный поток буквой Ф в (или Ф).


    ,
    (3)

    Где α – угол, образуемый вектором и нормалью к поверхности (рис. 10).

    – проекция вектора на нормаль к площадке S.

    Измеряется магнитный поток в веберах (Вб): [Ф]=[B]× [S]=Тл× м 2 = =

    Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

    Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).

    Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

    Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,- дальше друг от друга. Силовые линии нигде не пересекаются.

    Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

    Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

    Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

    Ф = BS (40)

    где S - площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

    B = Ф /S (41)

    Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф 2 будет меньше Ф 1 .

    В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

    Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость? а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
    В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ? о = 4?*10 -7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости? а какого-либо вещества к магнитной проницаемости вакуума? о называют относительной магнитной проницаемостью:

    ? = ? а /? о (42)

    Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

    H = B/? а = B/(?? о) (43)

    Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
    Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).