आयत को झुकाएं। बॉक्स की परिभाषा

इस पाठ में, हर कोई "आयताकार बॉक्स" विषय का अध्ययन करने में सक्षम होगा। पाठ की शुरुआत में, हम दोहराएंगे कि एक मनमाना और सीधे समानांतर चतुर्भुज क्या हैं, उनके विपरीत चेहरों और समानांतर चतुर्भुज के विकर्णों के गुणों को याद करें। फिर हम विचार करेंगे कि घनाभ क्या है और इसके मुख्य गुणों पर चर्चा करेंगे।

विषय: रेखाओं और विमानों की लंबवतता

पाठ: घनाभ

दो समान समांतर चतुर्भुज एबीसीडी और ए 1 बी 1 सी 1 डी 1 और चार समांतर चतुर्भुज एबीबी 1 ए 1, बीसीसी 1 बी 1, सीडीडी 1 सी 1, डीएए 1 डी 1 से बना एक सतह कहलाता है। समानांतर खात(चित्र एक)।

चावल। 1 समानांतरपिंड

अर्थात्: हमारे पास दो समान समांतर चतुर्भुज ABCD और A 1 B 1 C 1 D 1 (आधार) हैं, वे समानांतर विमानों में स्थित हैं ताकि भुजाएँ AA 1, BB 1, DD 1, CC 1 समानांतर हों। इस प्रकार, समांतर चतुर्भुजों से बनी सतह को कहा जाता है समानांतर खात.

इस प्रकार, एक समानांतर चतुर्भुज की सतह समानांतर चतुर्भुज बनाने वाले सभी समांतर चतुर्भुजों का योग है।

1. समानांतर चतुर्भुज के विपरीत फलक समानांतर और बराबर होते हैं।

(आंकड़े बराबर हैं, यानी उन्हें ओवरले द्वारा जोड़ा जा सकता है)

उदाहरण के लिए:

एबीसीडी \u003d ए 1 बी 1 सी 1 डी 1 (परिभाषा के अनुसार समांतर चतुर्भुज),

एए 1 बी 1 बी \u003d डीडी 1 सी 1 सी (चूंकि एए 1 बी 1 बी और डीडी 1 सी 1 सी समानांतर चतुर्भुज के विपरीत चेहरे हैं),

एए 1 डी 1 डी \u003d बीबी 1 सी 1 सी (चूंकि एए 1 डी 1 डी और बीबी 1 सी 1 सी समानांतर चतुर्भुज के विपरीत चेहरे हैं)।

2. समांतर चतुर्भुज के विकर्ण एक बिंदु पर प्रतिच्छेद करते हैं और उस बिंदु को समद्विभाजित करते हैं।

समानांतर चतुर्भुज AC 1, B 1 D, A 1 C, D 1 B के विकर्ण एक बिंदु O पर प्रतिच्छेद करते हैं, और प्रत्येक विकर्ण इस बिंदु से आधे में विभाजित होता है (चित्र 2)।

चावल। 2 समांतर चतुर्भुज के विकर्ण प्रतिच्छेद करते हैं और प्रतिच्छेदन बिंदु को समद्विभाजित करते हैं।

3. समांतर चतुर्भुज के समान और समानांतर किनारों के तीन चौगुने होते हैं: 1 - एबी, ए 1 बी 1, डी 1 सी 1, डीसी, 2 - एडी, ए 1 डी 1, बी 1 सी 1, बीसी, 3 - एए 1, बीबी 1, एसएस 1, डीडी 1.

परिभाषा। एक समानांतर चतुर्भुज को सीधा कहा जाता है यदि इसके पार्श्व किनारे आधारों के लंबवत हों।

मान लीजिए कि भुजा AA 1 आधार से लंबवत है (चित्र 3)। इसका अर्थ है कि रेखा AA 1 रेखा AD और AB के लंबवत है, जो आधार के तल में स्थित है। और, इसलिए, आयत पार्श्व फलकों में स्थित हैं। और आधार मनमानी समांतर चतुर्भुज हैं। निरूपित करें, BAD = , कोण कोई भी हो सकता है।

चावल। 3 राइट बॉक्स

तो, एक दायां बॉक्स एक बॉक्स होता है जिसमें किनारे के किनारे बॉक्स के आधार पर लंबवत होते हैं।

परिभाषा। समांतर चतुर्भुज को आयताकार कहा जाता है,यदि इसके पार्श्व किनारे आधार के लंबवत हैं। आधार आयताकार हैं।

समांतर चतुर्भुज 1 В 1 С 1 D 1 आयताकार है (चित्र 4) यदि:

1. AA 1 ABCD (पार्श्व किनारा आधार के तल पर लंबवत है, अर्थात एक सीधा समानांतर चतुर्भुज)।

2. ZBAD = 90°, अर्थात् आधार एक आयत है।

चावल। 4 घनाभ

एक आयताकार बॉक्स में एक मनमाना बॉक्स के सभी गुण होते हैं।लेकिन अतिरिक्त गुण हैं जो एक घनाभ की परिभाषा से प्राप्त होते हैं।

इसलिए, घनाभएक समानांतर चतुर्भुज है जिसके पार्श्व किनारे आधार के लंबवत हैं। घनाभ का आधार एक आयत है.

1. एक घनाभ में, सभी छह फलक आयताकार होते हैं।

एबीसीडी और ए 1 बी 1 सी 1 डी 1 परिभाषा के अनुसार आयत हैं।

2. पार्श्व पसलियां आधार के लंबवत होती हैं. इसका अर्थ है कि घनाभ के सभी पार्श्व फलक आयताकार होते हैं।

3. घनाभ के सभी विकर्ण कोण समकोण होते हैं।

उदाहरण के लिए, एक किनारे AB के साथ एक आयताकार समानांतर चतुर्भुज के डायहेड्रल कोण पर विचार करें, यानी, एबीबी 1 और एबीसी के विमानों के बीच का डायहेड्रल कोण।

एबी एक किनारा है, बिंदु ए 1 एक विमान में स्थित है - विमान एबीबी 1 में और दूसरे में बिंदु डी - विमान ए 1 बी 1 सी 1 डी 1 में है। तब माना गया द्विफलक कोण इस प्रकार भी निरूपित किया जा सकता है: 1 D।

बिंदु A को किनारे AB पर लें। एए 1 विमान एबीबी-1 में किनारे एबी के लंबवत है, एडी विमान एबीसी में किनारे एबी के लंबवत है। अत: A 1 AD दिए गए द्विफलकीय कोण का रैखिक कोण है। A 1 AD \u003d 90 °, जिसका अर्थ है कि किनारे AB पर डायहेड्रल कोण 90 ° है।

(ABB 1, ABC) = ∠(AB) = A 1 ABD= A 1 AD = 90°।

इसी प्रकार यह भी सिद्ध होता है कि एक आयताकार समांतर चतुर्भुज का कोई भी द्विफलकीय कोण समकोण होता है।

एक घनाभ के विकर्ण का वर्ग उसके तीनों आयामों के वर्गों के योग के बराबर होता है।

टिप्पणी। घनाभ के एक ही शीर्ष से निकलने वाले तीन किनारों की लंबाई घनाभ की माप है। उन्हें कभी-कभी लंबाई, चौड़ाई, ऊंचाई कहा जाता है।

दिया गया है: ABCDA 1 B 1 C 1 D 1 - एक आयताकार समांतर चतुर्भुज (चित्र 5)।

सिद्ध करना: ।

चावल। 5 घनाभ

सबूत:

रेखा CC 1 समतल ABC पर लंब है, और इसलिए रेखा AC पर। अतः त्रिभुज CC 1 A एक समकोण त्रिभुज है। पाइथागोरस प्रमेय के अनुसार:

एक समकोण त्रिभुज ABC पर विचार करें। पाइथागोरस प्रमेय के अनुसार:

लेकिन BC और AD आयत की विपरीत भुजाएँ हैं। तो बीसी = एडी। फिर:

इसलिये , एक , फिर। चूँकि CC 1 = AA 1, तो क्या साबित करना आवश्यक था।

एक आयताकार समांतर चतुर्भुज के विकर्ण बराबर होते हैं।

आइए हम समांतर चतुर्भुज एबीसी के आयामों को ए, बी, सी (आकृति 6 देखें) के रूप में नामित करें, फिर एसी 1 = सीए 1 = बी 1 डी = डीबी 1 =

|
समानांतर चतुर्भुज, समानांतर चतुर्भुज फोटो
समानांतर खात(प्राचीन ग्रीक παραλληλ-επίπεδον अन्य ग्रीक παρ-άλληλος से - "समानांतर" और अन्य ग्रीक ἐπί-πεδον - "प्लेन") - एक प्रिज्म, जिसका आधार एक समांतर चतुर्भुज है, या (समान रूप से) एक पॉलीहेड्रॉन है, जिसमें छह चेहरे हैं और उनमें से प्रत्येक - समानांतर चतुर्भुज.

  • 1 प्रकार के बॉक्स
  • 2 मूल तत्व
  • 3 गुण
  • 4 मूल सूत्र
    • 4.1 दायां बॉक्स
    • 4.2 घनाभ
    • 4.3 घन
    • 4.4 मनमाना बॉक्स
  • 5 गणितीय विश्लेषण
  • 6 नोट्स
  • 7 कड़ियाँ

बॉक्स के प्रकार

घनाभ

कई प्रकार के समानांतर चतुर्भुज हैं:

  • घनाभ एक घनाभ है जिसके फलक सभी आयत हैं।
  • एक तिरछा बॉक्स एक ऐसा बॉक्स होता है जिसके पार्श्व फलक आधारों के लंबवत नहीं होते हैं।

मुख्य तत्व

समानांतर चतुर्भुज के दो चेहरे जिनमें एक आम किनारा नहीं होता है उन्हें विपरीत कहा जाता है, और जिनके पास एक आम किनारा होता है उन्हें आसन्न कहा जाता है। समानांतर चतुर्भुज के दो शीर्ष जो एक ही फलक से संबंधित नहीं होते हैं, विपरीत कहलाते हैं। विपरीत शीर्षों को जोड़ने वाले खंड को समांतर चतुर्भुज का विकर्ण कहा जाता है। एक घनाभ के तीन किनारों की लंबाई जिनमें एक उभयनिष्ठ शीर्ष होता है, इसकी विमाएँ कहलाती हैं।

गुण

  • समानांतर चतुर्भुज अपने विकर्ण के मध्य बिंदु के बारे में सममित है।
  • समानांतर चतुर्भुज की सतह से संबंधित और इसके विकर्ण के बीच से गुजरने वाले किसी भी खंड को इसके द्वारा आधे में विभाजित किया जाता है; विशेष रूप से, समांतर चतुर्भुज के सभी विकर्ण एक बिंदु पर प्रतिच्छेद करते हैं और इसे समद्विभाजित करते हैं।
  • समानांतर चतुर्भुज के विपरीत फलक समानांतर और बराबर होते हैं।
  • एक घनाभ के विकर्ण की लंबाई का वर्ग उसके तीन आयामों के वर्गों के योग के बराबर होता है।

मूल सूत्र

दायां समांतर चतुर्भुज

पार्श्व सतह Sb \u003d Po * h का क्षेत्रफल, जहाँ Ro आधार की परिधि है, h ऊँचाई है

कुल सतह क्षेत्र Sp \u003d Sb + 2So, जहां आधार का क्षेत्रफल है

वॉल्यूम वी = तो * एच

घनाभ

मुख्य लेख: घनाभ

पार्श्व सतह का क्षेत्रफल Sb=2c(a+b), जहाँ a, b आधार की भुजाएँ हैं, c आयताकार समांतर चतुर्भुज का पार्श्व किनारा है

कुल पृष्ठीय क्षेत्रफल Sp=2(ab+bc+ac)

आयतन V=abc, जहाँ a, b, c - एक आयताकार समानांतर चतुर्भुज का माप।

घनक्षेत्र

सतह क्षेत्र:
आयतन: , घन का किनारा कहाँ है।

मनमाना बॉक्स

एक तिरछा बॉक्स में आयतन और अनुपात को अक्सर वेक्टर बीजगणित का उपयोग करके परिभाषित किया जाता है। एक समानांतर चतुर्भुज का आयतन एक शीर्ष से आने वाले समानांतर चतुर्भुज के तीन पक्षों द्वारा परिभाषित तीन वैक्टरों के मिश्रित उत्पाद के निरपेक्ष मान के बराबर होता है। समानांतर चतुर्भुज की भुजाओं की लंबाई और उनके बीच के कोणों के बीच का अनुपात यह बयान देता है कि इन तीन वैक्टरों का ग्राम निर्धारक उनके मिश्रित उत्पाद के वर्ग के बराबर है: 215।

गणितीय विश्लेषण में

गणितीय विश्लेषण में, एक एन-आयामी आयताकार समानांतर चतुर्भुज को फॉर्म के बिंदुओं के एक सेट के रूप में समझा जाता है

टिप्पणियाँ

  1. Dvoretsky'sप्राचीन यूनानी-रूसी शब्दकोश "παραλληλ-επίπεδον"
  2. गुसियातनिकोव पी.बी., रेज्निचेंको एस.वी. उदाहरणों और समस्याओं में सदिश बीजगणित। - एम .: हायर स्कूल, 1985. - 232 पी।

लिंक

विक्षनरी में एक लेख है "समानांतर"
  • घनाभ
  • समानांतर, शैक्षिक फिल्म

घनाभ, घनाभ डाल्गामेल, घनाभ जुराग, घनाभ और समांतर चतुर्भुज, गत्ते से बना घनाभ, घनाभ चित्र, घनाभ आयतन, घनाभ परिभाषा, घनाभ सूत्र, घनाभ फोटो

बॉक्स जानकारी के बारे में

समांतर चतुर्भुज का अर्थ ग्रीक में विमान है। एक समानांतर चतुर्भुज एक प्रिज्म है जिसका आधार एक समांतर चतुर्भुज है। समांतर चतुर्भुज पाँच प्रकार के होते हैं: तिरछा, सीधा और आयताकार समानांतर चतुर्भुज। घन और समचतुर्भुज भी समांतर चतुर्भुज से संबंधित हैं और इसकी विविधता हैं।

बुनियादी अवधारणाओं पर आगे बढ़ने से पहले, आइए कुछ परिभाषाएँ दें:

  • समानांतर चतुर्भुज का विकर्ण एक खंड है जो समानांतर चतुर्भुज के कोने को जोड़ता है जो एक दूसरे के विपरीत होते हैं।
  • यदि दो फलकों का एक उभयनिष्ठ किनारा है, तो हम उन्हें आसन्न किनारे कह सकते हैं। यदि कोई उभयनिष्ठ किनारा नहीं है, तो फलकों को विपरीत कहा जाता है।
  • दो शीर्ष जो एक ही फलक पर नहीं होते हैं, विपरीत कहलाते हैं।

समानांतर चतुर्भुज के गुण क्या हैं?

  1. विपरीत पक्षों पर स्थित एक समानांतर चतुर्भुज के फलक एक दूसरे के समानांतर और एक दूसरे के बराबर होते हैं।
  2. यदि आप एक शीर्ष से दूसरे शीर्ष पर विकर्ण खींचते हैं, तो इन विकर्णों का प्रतिच्छेदन बिंदु उन्हें आधे में विभाजित कर देगा।
  3. आधार से समान कोण पर स्थित एक समांतर चतुर्भुज की भुजाएँ समान होंगी। दूसरे शब्दों में, कूटदिशा पक्षों के कोण एक दूसरे के बराबर होंगे।

समानांतर चतुर्भुज के प्रकार क्या हैं?

अब आइए जानें कि समांतर चतुर्भुज क्या हैं। जैसा कि ऊपर उल्लेख किया गया है, इस आकृति के कई प्रकार हैं: एक सीधा, आयताकार, तिरछा समानांतर चतुर्भुज, साथ ही एक घन और एक समचतुर्भुज। वे एक दूसरे से कैसे भिन्न हैं? यह उन सभी विमानों के बारे में है जो उन्हें बनाते हैं और जो कोण बनाते हैं।

आइए प्रत्येक सूचीबद्ध प्रकार के समानांतर चतुर्भुज पर करीब से नज़र डालें।

  • जैसा कि नाम से पता चलता है, एक झुके हुए बॉक्स में तिरछे फलक होते हैं, अर्थात् वे फलक जो आधार के संबंध में 90 डिग्री के कोण पर नहीं होते हैं।
  • लेकिन एक समांतर चतुर्भुज के लिए, आधार और चेहरे के बीच का कोण सिर्फ नब्बे डिग्री है। यही कारण है कि इस प्रकार के समानांतर चतुर्भुज का ऐसा नाम है।
  • यदि समांतर चतुर्भुज के सभी फलक समान वर्ग हैं, तो इस आकृति को घन माना जा सकता है।
  • आयताकार समानांतर चतुर्भुज का नाम इसे बनाने वाले विमानों के कारण मिला। यदि वे सभी आयत (आधार सहित) हैं, तो यह एक घनाभ है। इस प्रकार का समानांतर चतुर्भुज इतना आम नहीं है। ग्रीक में, rhombohedron का अर्थ है चेहरा या आधार। यह एक त्रि-आयामी आकृति का नाम है, जिसमें फलक समचतुर्भुज होते हैं।



समानांतर चतुर्भुज के लिए मूल सूत्र

एक समानांतर चतुर्भुज का आयतन आधार के क्षेत्रफल के गुणनफल के बराबर होता है और इसकी ऊँचाई आधार के लंबवत होती है।

पार्श्व सतह का क्षेत्रफल आधार की परिधि और ऊंचाई के गुणनफल के बराबर होगा।
मूल परिभाषाओं और सूत्रों को जानकर, आप आधार क्षेत्र और आयतन की गणना कर सकते हैं। आप अपनी पसंद का आधार चुन सकते हैं। हालांकि, एक नियम के रूप में, एक आयत का उपयोग आधार के रूप में किया जाता है।

पांचवीं शताब्दी ईसा पूर्व में, एलिया के प्राचीन यूनानी दार्शनिक ज़ेनो ने अपने प्रसिद्ध एपोरिया तैयार किए, जिनमें से सबसे प्रसिद्ध एपोरिया "अकिलीज़ एंड द कछुआ" है। यहां बताया गया है कि यह कैसा लगता है:

मान लीजिए कि अकिलीस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। जिस समय के दौरान अकिलीज़ इतनी दूरी चलाता है, कछुआ उसी दिशा में सौ कदम रेंगता है। जब अकिलीज़ सौ कदम दौड़ चुका होता है, तो कछुआ दस कदम और रेंगता है, और इसी तरह। प्रक्रिया अनिश्चित काल तक जारी रहेगी, अकिलीज़ कछुआ को कभी नहीं पकड़ पाएगा।

यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक आघात बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, गिल्बर्ट ... उन सभी को, एक तरह से या किसी अन्य, ज़ेनो के अपोरिया माना जाता है। झटका इतना जोरदार था कि " ... वर्तमान समय में चर्चा जारी है, वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार के बारे में एक आम राय में आने में कामयाब नहीं हुआ है ... गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण इस मुद्दे के अध्ययन में शामिल थे। ; उनमें से कोई भी समस्या का सार्वभौमिक रूप से स्वीकृत समाधान नहीं बन पाया ..."[विकिपीडिया," ज़ेनो के एपोरियास "]। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखा क्या है।

गणित के दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में मूल्य से संक्रमण को स्पष्ट रूप से प्रदर्शित किया। यह संक्रमण स्थिरांक के बजाय आवेदन करने का तात्पर्य है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों को लागू करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। हमारे सामान्य तर्क का प्रयोग हमें एक जाल में ले जाता है। हम, सोच की जड़ता से, समय की निरंतर इकाइयों को व्युत्क्रम पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि जब अकिलीज़ कछुए को पकड़ता है, तो समय पूरी तरह से रुक जाता है। यदि समय रुक जाता है, तो अकिलीज़ कछुआ से आगे नहीं निकल सकता।

अगर हम उस तर्क को बदल दें जिसके हम आदी हैं, तो सब कुछ ठीक हो जाता है। अखिलेश निरंतर गति से दौड़ता है। इसके पथ का प्रत्येक बाद का खंड पिछले वाले की तुलना में दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलीज़ असीम रूप से जल्दी से कछुए से आगे निकल जाएगा।"

इस तार्किक जाल से कैसे बचें? समय की निरंतर इकाइयों में बने रहें और पारस्परिक मूल्यों पर स्विच न करें। ज़ेनो की भाषा में, यह इस तरह दिखता है:

जिस समय में अकिलीस को एक हजार कदम चलने में लगता है, उसी दिशा में कछुआ सौ कदम रेंगता है। अगले समय अंतराल के दौरान, पहले के बराबर, अकिलीज़ एक और हज़ार कदम चलाएगा, और कछुआ एक सौ कदम क्रॉल करेगा। अब अकिलीस कछुआ से आठ सौ कदम आगे है।

यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह समस्या का पूर्ण समाधान नहीं है। प्रकाश की गति की दुर्गमता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द कछुआ" के समान है। हमें अभी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना है। और समाधान को असीम रूप से बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

ज़ेनो का एक और दिलचस्प एपोरिया उड़ते हुए तीर के बारे में बताता है:

एक उड़ता हुआ तीर गतिहीन होता है, क्योंकि वह हर क्षण विरामावस्था में होता है, और चूँकि वह प्रत्येक क्षण विरामावस्था में होता है, इसलिए वह सदैव विरामावस्था में रहता है।

इस एपोरिया में, तार्किक विरोधाभास को बहुत सरलता से दूर किया जाता है - यह स्पष्ट करने के लिए पर्याप्त है कि प्रत्येक क्षण में उड़ने वाला तीर अंतरिक्ष में विभिन्न बिंदुओं पर टिकी हुई है, जो वास्तव में गति है। यहां एक और बात ध्यान देने योग्य है। सड़क पर एक कार की एक तस्वीर से, उसके चलने के तथ्य या उससे दूरी का निर्धारण करना असंभव है। कार की गति के तथ्य को निर्धारित करने के लिए, एक ही बिंदु से समय में अलग-अलग बिंदुओं पर ली गई दो तस्वीरों की आवश्यकता होती है, लेकिन उनका उपयोग दूरी निर्धारित करने के लिए नहीं किया जा सकता है। कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होती है, लेकिन आप उनसे आंदोलन के तथ्य को निर्धारित नहीं कर सकते हैं (स्वाभाविक रूप से, आपको अभी भी गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी)। मैं जो विशेष रूप से इंगित करना चाहता हूं वह यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु दो अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए क्योंकि वे अन्वेषण के विभिन्न अवसर प्रदान करते हैं।

बुधवार, 4 जुलाई 2018

बहुत अच्छी तरह से विकिपीडिया में सेट और मल्टीसेट के बीच के अंतरों का वर्णन किया गया है। हम देखो।

जैसा कि आप देख सकते हैं, "सेट में दो समान तत्व नहीं हो सकते", लेकिन यदि सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। विवेकशील प्राणी बेतुकेपन के ऐसे तर्क को कभी नहीं समझेंगे। यह बात करने वाले तोते और प्रशिक्षित बंदरों का स्तर है, जिसमें मन "पूरी तरह से" शब्द से अनुपस्थित है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, अपने बेतुके विचारों का हमें प्रचार करते हैं।

एक बार की बात है, पुल का निर्माण करने वाले इंजीनियर पुल के परीक्षणों के दौरान पुल के नीचे एक नाव में थे। पुल ढह गया तो उसकी रचना के मलबे के नीचे औसत दर्जे का इंजीनियर मर गया। यदि पुल भार का सामना कर सकता है, तो प्रतिभाशाली इंजीनियर ने अन्य पुलों का निर्माण किया।

कोई फर्क नहीं पड़ता कि गणितज्ञ "माइंड मी, आई एम इन द हाउस" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि "गणित अमूर्त अवधारणाओं का अध्ययन करता है", एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह गर्भनाल धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश डेस्क पर बैठे हैं, वेतन दे रहे हैं। यहाँ एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसके लिए पूरी राशि गिनते हैं और उसे अपनी मेज पर अलग-अलग ढेर में रख देते हैं, जिसमें हम एक ही मूल्य के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "गणितीय वेतन सेट" देते हैं। हम गणित की व्याख्या करते हैं कि वह शेष बिल तभी प्राप्त करेगा जब वह यह साबित कर देगा कि समान तत्वों के बिना सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

सबसे पहले, डिप्टी का तर्क काम करेगा: "आप इसे दूसरों पर लागू कर सकते हैं, लेकिन मुझ पर नहीं!" इसके अलावा, आश्वासन शुरू हो जाएगा कि एक ही मूल्यवर्ग के बैंक नोटों पर अलग-अलग बैंकनोट नंबर हैं, जिसका अर्थ है कि उन्हें समान तत्व नहीं माना जा सकता है। खैर, हम वेतन को सिक्कों में गिनते हैं - सिक्कों पर कोई संख्या नहीं होती है। यहां गणितज्ञ भौतिकी को याद करेंगे: अलग-अलग सिक्कों में अलग-अलग मात्रा में गंदगी होती है, प्रत्येक सिक्के के लिए क्रिस्टल संरचना और परमाणुओं की व्यवस्था अद्वितीय होती है ...

और अब मेरे पास सबसे दिलचस्प सवाल है: वह सीमा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी रेखा मौजूद नहीं है - सब कुछ शेमस द्वारा तय किया जाता है, यहां विज्ञान भी करीब नहीं है।

यहाँ देखो। हम समान क्षेत्र वाले फुटबॉल स्टेडियमों का चयन करते हैं। खेतों का क्षेत्रफल समान है, जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम उन्हीं स्टेडियमों के नामों पर विचार करें तो हमें बहुत कुछ मिलता है, क्योंकि नाम अलग-अलग होते हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक ही समय में एक सेट और एक मल्टीसेट दोनों है। कितना सही? और यहाँ गणितज्ञ-शमन-शुलर अपनी आस्तीन से एक ट्रम्प इक्का निकालता है और हमें एक सेट या एक मल्टीसेट के बारे में बताना शुरू करता है। किसी भी मामले में, वह हमें विश्वास दिलाएगा कि वह सही है।

यह समझने के लिए कि आधुनिक शेमैन सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से बांधते हुए, एक प्रश्न का उत्तर देने के लिए पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको बिना किसी "एक पूरे के रूप में बोधगम्य" या "एक पूरे के रूप में बोधगम्य नहीं" के बिना दिखाऊंगा।

रविवार, 18 मार्च 2018

एक संख्या के अंकों का योग तंबूरा के साथ शेमस का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन वे उसके लिए शेमस हैं, अपने वंशजों को उनके कौशल और ज्ञान को सिखाने के लिए, अन्यथा शमां बस मर जाएंगे।

क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "संख्या के अंकों का योग" पृष्ठ खोजने का प्रयास करें। वह मौजूद नहीं है। गणित में ऐसा कोई सूत्र नहीं है जिससे आप किसी भी संख्या के अंकों का योग ज्ञात कर सकें। आखिरकार, संख्याएँ ग्राफिक प्रतीक हैं जिनके साथ हम संख्याएँ लिखते हैं, और गणित की भाषा में, कार्य इस तरह लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन शेमस इसे मूल रूप से कर सकते हैं।

आइए जानें कि दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, मान लें कि हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करना होगा? आइए क्रम में सभी चरणों पर विचार करें।

1. कागज के एक टुकड़े पर संख्या लिखिए। हमने क्या किया है? हमने संख्या को एक संख्या ग्राफिक प्रतीक में बदल दिया है। यह कोई गणितीय क्रिया नहीं है।

2. हमने एक प्राप्त तस्वीर को अलग-अलग संख्याओं वाले कई चित्रों में काट दिया। चित्र काटना कोई गणितीय क्रिया नहीं है।

3. अलग-अलग ग्राफिक वर्णों को संख्याओं में बदलें। यह कोई गणितीय क्रिया नहीं है।

4. परिणामी संख्याओं को जोड़ें। अब वह गणित है।

संख्या 12345 के अंकों का योग 15 है। ये गणितज्ञों द्वारा उपयोग किए जाने वाले शेमस के "काटने और सिलाई के पाठ्यक्रम" हैं। लेकिन वह सब नहीं है।

गणित की दृष्टि से इस बात से कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में अंक लिखते हैं। तो, विभिन्न संख्या प्रणालियों में, एक ही संख्या के अंकों का योग भिन्न होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। 12345 की एक बड़ी संख्या के साथ, मैं अपने सिर को मूर्ख नहीं बनाना चाहता, लेख से 26 नंबर पर विचार करें। आइए इस नंबर को बाइनरी, ऑक्टल, डेसीमल और हेक्साडेसिमल नंबर सिस्टम में लिखें। हम माइक्रोस्कोप के तहत प्रत्येक चरण पर विचार नहीं करेंगे, हम पहले ही ऐसा कर चुके हैं। आइए परिणाम देखें।

जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में, एक ही संख्या के अंकों का योग भिन्न होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह ऐसा है जैसे किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निकालने पर आपको पूरी तरह से अलग परिणाम मिलेंगे।

सभी संख्या प्रणालियों में शून्य समान दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है कि . गणितज्ञों के लिए एक प्रश्न: गणित में यह कैसे दर्शाया जाता है कि जो एक संख्या नहीं है? क्या, गणितज्ञों के लिए, संख्याओं के अलावा कुछ भी मौजूद नहीं है? शेमस के लिए, मैं इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए, नहीं। वास्तविकता केवल संख्या के बारे में नहीं है।

प्राप्त परिणाम को प्रमाण के रूप में माना जाना चाहिए कि संख्या प्रणाली संख्याओं के मापन की इकाइयाँ हैं। आखिरकार, हम माप की विभिन्न इकाइयों के साथ संख्याओं की तुलना नहीं कर सकते। यदि एक ही मात्रा के माप की विभिन्न इकाइयों के साथ एक ही क्रिया की तुलना करने के बाद अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

वास्तविक गणित क्या है? यह तब होता है जब गणितीय क्रिया का परिणाम संख्या के मूल्य, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

दरवाजे पर हस्ताक्षर करें दरवाजा खोलता है और कहता है:

आउच! क्या यह महिला शौचालय नहीं है?
- जवान महिला! स्वर्ग में स्वर्गारोहण पर आत्माओं की अनिश्चितकालीन पवित्रता का अध्ययन करने के लिए यह एक प्रयोगशाला है! शीर्ष पर निंबस और ऊपर तीर। और क्या शौचालय?

महिला... शीर्ष पर एक प्रभामंडल और नीचे एक तीर नर है।

यदि आपके पास दिन में कई बार आपकी आंखों के सामने डिजाइन कला का ऐसा काम है,

तब यह आश्चर्य की बात नहीं है कि आप अचानक अपनी कार में एक अजीब आइकन पाते हैं:

व्यक्तिगत रूप से, मैं अपने आप को एक शिकार करने वाले व्यक्ति (एक तस्वीर) में शून्य से चार डिग्री देखने का प्रयास करता हूं (कई चित्रों की संरचना: ऋण चिह्न, संख्या चार, डिग्री पदनाम)। और मैं इस लड़की को मूर्ख नहीं मानता जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों की धारणा का एक चाप स्टीरियोटाइप है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है।

1A "माइनस फोर डिग्री" या "वन ए" नहीं है। यह हेक्साडेसिमल संख्या प्रणाली में "पोपिंग मैन" या संख्या "छब्बीस" है। जो लोग इस संख्या प्रणाली में लगातार काम करते हैं, वे संख्या और अक्षर को एक ग्राफिक प्रतीक के रूप में स्वचालित रूप से देखते हैं।