लघुगणक के योग का सूत्र। लघुगणक: उदाहरण और समाधान


इस लेख का फोकस है लोगारित्म. यहां हम लघुगणक की परिभाषा देंगे, स्वीकृत संकेतन दिखाएंगे, लघुगणक के उदाहरण देंगे, और प्राकृतिक और दशमलव लघुगणक के बारे में बात करेंगे। उसके बाद, मूल लघुगणकीय पहचान पर विचार करें।

पृष्ठ नेविगेशन।

लघुगणक की परिभाषा

एक लघुगणक की अवधारणा तब उत्पन्न होती है जब किसी समस्या को एक निश्चित अर्थ में उलटा हल किया जाता है, जब आपको डिग्री के ज्ञात मूल्य और ज्ञात आधार से घातांक खोजने की आवश्यकता होती है।

लेकिन पर्याप्त प्रस्तावना, "लघुगणक क्या है" प्रश्न का उत्तर देने का समय आ गया है? आइए एक उपयुक्त परिभाषा दें।

परिभाषा।

b से आधार a . का लघुगणक, जहां a>0 , a≠1 और b>0 वह घातांक है जिसके परिणामस्वरूप आपको b प्राप्त करने के लिए संख्या a को बढ़ाने की आवश्यकता होती है।

इस स्तर पर, हम ध्यान दें कि बोले गए शब्द "लघुगणक" को तुरंत दो आगामी प्रश्न उठाने चाहिए: "कौन सी संख्या" और "किस आधार पर।" दूसरे शब्दों में, कोई लघुगणक नहीं होता है, लेकिन किसी आधार में किसी संख्या का केवल लघुगणक होता है।

हम तुरंत परिचय देंगे लघुगणक संकेतन: आधार a से संख्या b का लघुगणक आमतौर पर log a b के रूप में दर्शाया जाता है। आधार ई से संख्या बी के लघुगणक और आधार 10 के लघुगणक के अपने विशेष पदनाम क्रमशः lnb और lgb हैं, अर्थात, वे log e b नहीं, बल्कि lnb लिखते हैं, और लॉग 10 b नहीं, बल्कि lgb लिखते हैं।

अब आप ला सकते हैं: .
और रिकॉर्ड इसका कोई मतलब नहीं है, क्योंकि उनमें से पहले में लघुगणक के संकेत के तहत एक ऋणात्मक संख्या है, दूसरे में - आधार में एक ऋणात्मक संख्या, और तीसरे में - लघुगणक के संकेत के तहत एक ऋणात्मक संख्या और दोनों आधार में एक इकाई।

अब बात करते हैं लघुगणक पढ़ने के नियम. प्रविष्टि लॉग a b को "b से आधार a के लघुगणक" के रूप में पढ़ा जाता है। उदाहरण के लिए, लॉग 2 3 तीन से आधार 2 का लघुगणक है, और पांच के वर्गमूल के दो आधार तिहाई के दो पूर्णांकों का लघुगणक है। आधार e का लघुगणक कहलाता है प्राकृतिक, और संकेतन lnb को "b के प्राकृतिक लघुगणक" के रूप में पढ़ा जाता है। उदाहरण के लिए, ln7 सात का प्राकृतिक लघुगणक है, और हम इसे pi के प्राकृतिक लघुगणक के रूप में पढ़ेंगे। आधार 10 के लघुगणक का भी एक विशेष नाम है - दशमलव लघुगणक, और संकेतन lgb को "दशमलव लघुगणक b" के रूप में पढ़ा जाता है। उदाहरण के लिए, lg1 एक का दशमलव लघुगणक है, और lg2.75 दो दशमलव पचहत्तर सौवें का दशमलव लघुगणक है।

यह शर्तों पर अलग से रहने लायक है a>0, a≠1 तथा b>0, जिसके तहत लघुगणक की परिभाषा दी गई है। आइए बताते हैं कि ये प्रतिबंध कहां से आते हैं। ऐसा करने के लिए, हमें फॉर्म की समानता से मदद मिलेगी, जिसे कहा जाता है, जो ऊपर दिए गए लॉगरिदम की परिभाषा से सीधे अनुसरण करता है।

आइए a≠1 से शुरू करें। चूँकि एक किसी भी घात के बराबर है, तो समानता केवल b=1 के लिए ही सही हो सकती है, लेकिन log 1 1 कोई भी वास्तविक संख्या हो सकती है। इस अस्पष्टता से बचने के लिए, a≠1 स्वीकार किया जाता है।

आइए हम शर्त a>0 की समीचीनता की पुष्टि करें। a=0 के साथ, लघुगणक की परिभाषा के अनुसार, हमारे पास समानता होगी, जो केवल b=0 के साथ ही संभव है। लेकिन फिर लॉग 0 0 कोई भी गैर-शून्य वास्तविक संख्या हो सकती है, क्योंकि शून्य से किसी भी गैर-शून्य शक्ति शून्य है। a≠0 की स्थिति से इस अस्पष्टता से बचा जा सकता है। और एक के लिए<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

अंत में, स्थिति b>0 असमानता a>0 से अनुसरण करती है, क्योंकि, और एक सकारात्मक आधार के साथ डिग्री का मान हमेशा सकारात्मक होता है।

इस पैराग्राफ के निष्कर्ष में, हम कहते हैं कि लॉगरिदम की आवाज वाली परिभाषा आपको लॉगरिदम के मूल्य को तुरंत इंगित करने की अनुमति देती है जब लॉगरिदम के संकेत के तहत संख्या एक निश्चित डिग्री आधार होती है। वास्तव में, लघुगणक की परिभाषा हमें यह दावा करने की अनुमति देती है कि यदि b=a p , तो आधार a से संख्या b का लघुगणक p के बराबर है। अर्थात्, समता लघुगणक a a p =p सत्य है। उदाहरण के लिए, हम जानते हैं कि 2 3 =8, फिर 2 8=3 लॉग करें। हम इस बारे में लेख में और बात करेंगे।

समाज के विकास के साथ-साथ उत्पादन की जटिलता, गणित का भी विकास हुआ। सरल से जटिल की ओर गति। जोड़ और घटाव की सामान्य लेखांकन पद्धति से, उनकी बार-बार पुनरावृत्ति के साथ, वे गुणा और भाग की अवधारणा पर आए। बार-बार होने वाले ऑपरेशन में कमी घातांक की अवधारणा बन गई। आधार पर संख्याओं की निर्भरता और घातांक की संख्या की पहली तालिकाएँ भारतीय गणितज्ञ वरसेना द्वारा 8वीं शताब्दी में संकलित की गई थीं। उनसे, आप लघुगणक की घटना के समय की गणना कर सकते हैं।

ऐतिहासिक रूपरेखा

16वीं शताब्दी में यूरोप के पुनरुद्धार ने यांत्रिकी के विकास को भी प्रेरित किया। टी गणना की एक बड़ी मात्रा की आवश्यकता हैबहु-अंकीय संख्याओं के गुणन और विभाजन से संबंधित। प्राचीन तालिकाओं ने बहुत अच्छी सेवा की। उन्होंने जटिल कार्यों को सरल लोगों के साथ बदलना संभव बना दिया - जोड़ और घटाव। एक बड़ा कदम आगे 1544 में प्रकाशित गणितज्ञ माइकल स्टीफेल का काम था, जिसमें उन्होंने कई गणितज्ञों के विचार को महसूस किया। इससे न केवल अभाज्य संख्याओं के रूप में अंशों के लिए, बल्कि मनमाने परिमेय संख्याओं के लिए भी तालिकाओं का उपयोग करना संभव हो गया।

1614 में, स्कॉट्समैन जॉन नेपियर ने इन विचारों को विकसित करते हुए, पहली बार "एक संख्या का लघुगणक" शब्द पेश किया। साइन और कोसाइन के लघुगणक, साथ ही स्पर्शरेखाओं की गणना के लिए नई जटिल तालिकाएँ संकलित की गईं। इसने खगोलविदों के काम को बहुत कम कर दिया।

नई तालिकाएँ दिखाई देने लगीं, जिनका वैज्ञानिकों द्वारा तीन शताब्दियों तक सफलतापूर्वक उपयोग किया गया। बीजगणित में नए ऑपरेशन को अपना तैयार रूप हासिल करने से पहले बहुत समय बीत गया। लघुगणक को परिभाषित किया गया और इसके गुणों का अध्ययन किया गया।

केवल 20वीं शताब्दी में, कैलकुलेटर और कंप्यूटर के आगमन के साथ, मानव जाति ने उन प्राचीन तालिकाओं को त्याग दिया जो 13वीं शताब्दी में सफलतापूर्वक संचालित हो रही थीं।

आज हम संख्या x को आधार बनाने के लिए b का लघुगणक कहते हैं, जो कि संख्या b प्राप्त करने के लिए a की घात है। यह एक सूत्र के रूप में लिखा गया है: x = log a(b)।

उदाहरण के लिए, लॉग 3(9) 2 के बराबर होगा। यदि आप परिभाषा का पालन करते हैं तो यह स्पष्ट है। यदि हम 3 को 2 के घात तक बढ़ाते हैं, तो हमें 9 प्राप्त होता है।

इस प्रकार, तैयार की गई परिभाषा केवल एक प्रतिबंध लगाती है, संख्याएँ a और b वास्तविक होनी चाहिए।

लघुगणक की किस्में

शास्त्रीय परिभाषा को वास्तविक लघुगणक कहा जाता है और यह वास्तव में समीकरण a x = b का समाधान है। विकल्प a = 1 सीमा रेखा है और इसमें कोई रुचि नहीं है। नोट: किसी भी घात के लिए 1 होता है।

लघुगणक का वास्तविक मूल्यकेवल तभी परिभाषित किया जाता है जब आधार और तर्क 0 से अधिक हों, और आधार 1 के बराबर न हो।

गणित के क्षेत्र में विशेष स्थानलघुगणक खेलें, जिनका नाम उनके आधार के मान के आधार पर रखा जाएगा:

नियम और प्रतिबंध

लघुगणक का मूल गुण नियम है: किसी उत्पाद का लघुगणक लघुगणक योग के बराबर होता है। लॉग एबीपी = लॉग ए (बी) + लॉग ए (पी)।

इस कथन के एक प्रकार के रूप में, यह होगा: लॉग सी (बी / पी) \u003d लॉग सी (बी) - लॉग सी (पी), भागफल फ़ंक्शन फ़ंक्शन के अंतर के बराबर है।

पिछले दो नियमों से यह देखना आसान है कि: लॉग ए (बी पी) = पी * लॉग ए (बी)।

अन्य गुणों में शामिल हैं:

टिप्पणी। सामान्य गलती न करें - योग का लघुगणक लघुगणक के योग के बराबर नहीं होता है।

कई शताब्दियों के लिए, लघुगणक को खोजने का कार्य काफी समय लेने वाला कार्य था। गणितज्ञों ने बहुपद में विस्तार के लघुगणकीय सिद्धांत के प्रसिद्ध सूत्र का उपयोग किया:

एलएन (1 + एक्स) = एक्स - (एक्स^2)/2 + (एक्स^3)/3 - (एक्स^4)/4 + ... + ((-1)^(एन + 1))* ((x^n)/n), जहां n 1 से बड़ी एक प्राकृत संख्या है, जो गणना की सटीकता को निर्धारित करती है।

अन्य आधारों के साथ लघुगणक की गणना एक आधार से दूसरे आधार में संक्रमण और उत्पाद के लघुगणक की संपत्ति पर प्रमेय का उपयोग करके की गई थी।

चूंकि यह विधि बहुत श्रमसाध्य है और व्यावहारिक समस्याओं को हल करते समयलागू करना मुश्किल था, उन्होंने लॉगरिदम की पूर्व-संकलित तालिकाओं का उपयोग किया, जिससे पूरे काम में तेजी आई।

कुछ मामलों में, लघुगणक के विशेष रूप से संकलित रेखांकन का उपयोग किया गया था, जो कम सटीकता देता था, लेकिन वांछित मूल्य की खोज में काफी तेजी लाता था। फ़ंक्शन का वक्र y = लॉग a(x), कई बिंदुओं पर निर्मित, किसी अन्य बिंदु पर फ़ंक्शन के मूल्यों को खोजने के लिए सामान्य शासक का उपयोग करने की अनुमति देता है। लंबे समय तक, इंजीनियरों ने इन उद्देश्यों के लिए तथाकथित ग्राफ पेपर का इस्तेमाल किया।

17वीं शताब्दी में, पहली सहायक एनालॉग कंप्यूटिंग स्थितियां सामने आईं, जिन्होंने 19वीं शताब्दी तक एक पूर्ण रूप प्राप्त कर लिया था। सबसे सफल उपकरण को स्लाइड नियम कहा जाता था। डिवाइस की सादगी के बावजूद, इसकी उपस्थिति ने सभी इंजीनियरिंग गणनाओं की प्रक्रिया को काफी तेज कर दिया है, और इसे कम करना मुश्किल है। वर्तमान में, बहुत कम लोग इस उपकरण से परिचित हैं।

कैलकुलेटर और कंप्यूटर के आगमन ने किसी भी अन्य उपकरण का उपयोग करना व्यर्थ बना दिया है।

समीकरण और असमानता

लघुगणक का उपयोग करके विभिन्न समीकरणों और असमानताओं को हल करने के लिए निम्नलिखित सूत्रों का उपयोग किया जाता है:

  • एक आधार से दूसरे में संक्रमण: लॉग ए (बी) = लॉग सी (बी) / लॉग सी (ए);
  • पिछले संस्करण के परिणामस्वरूप: लॉग ए (बी) = 1 / लॉग बी (ए)।

असमानताओं को हल करने के लिए, यह जानना उपयोगी है:

  • लघुगणक का मान केवल तभी धनात्मक होगा जब आधार और तर्क दोनों एक से अधिक या कम हों; यदि कम से कम एक शर्त का उल्लंघन किया जाता है, तो लघुगणक का मान ऋणात्मक होगा।
  • यदि लघुगणक फलन असमानता के दाएँ और बाएँ पक्षों पर लागू होता है, और लघुगणक का आधार एक से बड़ा होता है, तो असमानता का चिह्न संरक्षित रहता है; अन्यथा, यह बदल जाता है।

कार्य उदाहरण

लघुगणक और उनके गुणों का उपयोग करने के लिए कई विकल्पों पर विचार करें। समीकरणों को हल करने के उदाहरण:

लघुगणक को डिग्री में रखने के विकल्प पर विचार करें:

  • कार्य 3. 25^लॉग 5(3) की गणना करें। समाधान: समस्या की स्थितियों में, संकेतन निम्न (5^2)^log5(3) या 5^(2 * log 5(3)) के समान है। आइए इसे अलग तरीके से लिखें: 5^लॉग 5(3*2), या किसी संख्या के वर्ग को फ़ंक्शन तर्क के रूप में फ़ंक्शन के वर्ग के रूप में ही लिखा जा सकता है (5^लॉग 5(3))^2। लघुगणक के गुणों का उपयोग करते हुए, यह व्यंजक 3^2 है। उत्तर: गणना के परिणामस्वरूप हमें 9 प्राप्त होते हैं।

प्रायोगिक उपयोग

विशुद्ध रूप से गणितीय उपकरण होने के नाते, यह वास्तविक जीवन से बहुत दूर लगता है कि वास्तविक दुनिया में वस्तुओं का वर्णन करने में लघुगणक ने अचानक बहुत महत्व प्राप्त कर लिया है। ऐसा विज्ञान खोजना मुश्किल है जहां इसका उपयोग नहीं किया जाता है। यह पूरी तरह से न केवल प्राकृतिक पर लागू होता है, बल्कि ज्ञान के मानविकी क्षेत्रों पर भी लागू होता है।

लॉगरिदमिक निर्भरता

यहाँ संख्यात्मक निर्भरता के कुछ उदाहरण दिए गए हैं:

यांत्रिकी और भौतिकी

ऐतिहासिक रूप से, यांत्रिकी और भौतिकी हमेशा गणितीय अनुसंधान विधियों का उपयोग करके विकसित हुए हैं और साथ ही साथ गणित के विकास के लिए एक प्रोत्साहन के रूप में कार्य किया है, जिसमें लॉगरिदम भी शामिल है। भौतिकी के अधिकांश नियमों का सिद्धांत गणित की भाषा में लिखा जाता है। हम लघुगणक का उपयोग करते हुए भौतिक नियमों के वर्णन के केवल दो उदाहरण देते हैं।

Tsiolkovsky सूत्र का उपयोग करके रॉकेट की गति के रूप में इतनी जटिल मात्रा की गणना करने की समस्या को हल करना संभव है, जिसने अंतरिक्ष अन्वेषण के सिद्धांत की नींव रखी:

वी = मैं * एलएन(एम1/एम2), जहां

  • V वायुयान की अंतिम गति है।
  • मैं इंजन का विशिष्ट आवेग है।
  • एम 1 रॉकेट का प्रारंभिक द्रव्यमान है।
  • एम 2 - अंतिम द्रव्यमान।

एक और महत्वपूर्ण उदाहरण- यह एक अन्य महान वैज्ञानिक मैक्स प्लैंक के सूत्र में उपयोग है, जो थर्मोडायनामिक्स में संतुलन की स्थिति का मूल्यांकन करने का कार्य करता है।

एस = के * एलएन (Ω), जहां

  • S एक ऊष्मागतिकीय गुण है।
  • k बोल्ट्जमान नियतांक है।
  • Ω विभिन्न राज्यों का सांख्यिकीय भार है।

रसायन विज्ञान

लघुगणक के अनुपात वाले रसायन विज्ञान में सूत्रों का उपयोग कम स्पष्ट होगा। यहाँ सिर्फ दो उदाहरण हैं:

  • नर्नस्ट समीकरण, पदार्थों की गतिविधि और संतुलन स्थिरांक के संबंध में माध्यम की रेडॉक्स क्षमता की स्थिति।
  • ऑटोप्रोलिसिस इंडेक्स और समाधान की अम्लता जैसे स्थिरांक की गणना भी हमारे कार्य के बिना पूरी नहीं होती है।

मनोविज्ञान और जीव विज्ञान

और यह पूरी तरह से समझ से बाहर है कि मनोविज्ञान का इससे क्या लेना-देना है। यह पता चला है कि उत्तेजना की तीव्रता को इस फ़ंक्शन द्वारा उत्तेजना तीव्रता मूल्य के कम तीव्रता मूल्य के विपरीत अनुपात के रूप में अच्छी तरह से वर्णित किया गया है।

उपरोक्त उदाहरणों के बाद, अब यह आश्चर्य की बात नहीं है कि जीव विज्ञान में लघुगणक का विषय भी व्यापक रूप से उपयोग किया जाता है। लॉगरिदमिक सर्पिल के अनुरूप जैविक रूपों के बारे में संपूर्ण खंड लिखे जा सकते हैं।

अन्य क्षेत्र

ऐसा लगता है कि इस कार्य के संबंध के बिना दुनिया का अस्तित्व असंभव है, और यह सभी कानूनों को नियंत्रित करता है। खासकर जब प्रकृति के नियम ज्यामितीय प्रगति से जुड़े हों। यह MatProfi वेबसाइट को संदर्भित करने योग्य है, और गतिविधि के निम्नलिखित क्षेत्रों में ऐसे कई उदाहरण हैं:

सूची अंतहीन हो सकती है। इस समारोह के बुनियादी नियमों में महारत हासिल करने के बाद, आप अनंत ज्ञान की दुनिया में उतर सकते हैं।

    चलो साथ - साथ शुरू करते हैं एकता के लघुगणक के गुण. इसका सूत्रीकरण इस प्रकार है: एकता का लघुगणक शून्य के बराबर होता है, अर्थात, लॉग ए 1=0किसी के लिए a>0 , a≠1 । प्रमाण सीधा है: चूंकि a 0 =1 किसी भी a के लिए जो उपरोक्त शर्तों a>0 और a≠1 को संतुष्ट करता है, तो सिद्ध समानता लॉग a 1=0 तुरंत लघुगणक की परिभाषा से अनुसरण करता है।

    आइए मानी गई संपत्ति के आवेदन के उदाहरण दें: लॉग 3 1=0 , lg1=0 तथा ।

    आइए अगली संपत्ति पर चलते हैं: आधार के बराबर किसी संख्या का लघुगणक एक के बराबर होता है, अर्थात, लॉग ए = 1 a>0 , a≠1 के लिए। वास्तव में, चूंकि a 1 =a किसी भी a के लिए है, तो लघुगणक की परिभाषा के अनुसार a a=1 लॉग करें।

    लघुगणक के इस गुण का उपयोग करने के उदाहरण हैं log 5 5=1 , log 5.6 5.6 और lne=1 ।

    उदाहरण के लिए, लघुगणक 2 2 7 =7 , लघुगणक 10 -4 = -4 और .

    दो धनात्मक संख्याओं के गुणनफल का लघुगणक x और y इन संख्याओं के लघुगणक के गुणनफल के बराबर हैं: log a (x y)=log a x+log a y, a>0 , a≠1 । आइए हम उत्पाद के लघुगणक के गुण को सिद्ध करें। डिग्री के गुणों के कारण a log a x+log a y =a log a x a log a y, और चूंकि मुख्य लघुगणकीय पहचान द्वारा a log a x =x और a log a y =y , तो a log a x a log a y =x y । इस प्रकार, a log a x+log a y =x y , जहां से आवश्यक समानता लघुगणक की परिभाषा के अनुसार होती है।

    आइए उत्पाद के लघुगणक की संपत्ति का उपयोग करने के उदाहरण दिखाएं: लॉग 5 (2 3)=लॉग 5 2+लॉग 5 3 और .

    गुणनफल लघुगणक गुण को धनात्मक संख्याओं x 1, x 2, ..., x n की एक परिमित संख्या n के गुणनफल के रूप में सामान्यीकृत किया जा सकता है लॉग ए (x 1 x 2 ... x n)= लॉग a x 1 + लॉग a x 2 +…+ लॉग a x n . यह समानता आसानी से सिद्ध हो जाती है।

    उदाहरण के लिए, किसी उत्पाद के प्राकृतिक लघुगणक को संख्या 4, ई, और के तीन प्राकृतिक लघुगणकों के योग से बदला जा सकता है।

    दो धनात्मक संख्याओं के भागफल का लघुगणक x और y इन संख्याओं के लघुगणक के बीच के अंतर के बराबर हैं। भागफल लघुगणक गुण प्रपत्र के एक सूत्र से मेल खाता है, जहाँ a>0 , a≠1 , x और y कुछ धनात्मक संख्याएँ हैं। इस सूत्र की वैधता उत्पाद के लघुगणक के सूत्र की तरह सिद्ध होती है: चूँकि , फिर लघुगणक की परिभाषा के अनुसार।

    लघुगणक की इस संपत्ति का उपयोग करने का एक उदाहरण यहां दिया गया है: .

    चलिए आगे बढ़ते हैं डिग्री के लघुगणक की संपत्ति. एक डिग्री का लघुगणक घातांक के गुणनफल और इस डिग्री के आधार के मापांक के लघुगणक के बराबर होता है। हम डिग्री के लघुगणक के इस गुण को सूत्र के रूप में लिखते हैं: लॉग ए बी पी = पी लॉग ए |बी|, जहां a>0 , a≠1 , b और p ऐसी संख्याएं हैं कि b p की डिग्री समझ में आती है और b p >0 ।

    हम पहले इस गुण को धनात्मक b के लिए सिद्ध करते हैं। मूल लघुगणकीय पहचान हमें संख्या b को a log a b के रूप में निरूपित करने की अनुमति देती है, फिर b p =(a log a b) p, और परिणामी व्यंजक, power गुण के कारण, a p log a b के बराबर होता है। इसलिए हम समानता b p =a p log a b पर पहुंचते हैं, जिससे, लघुगणक की परिभाषा से, हम यह निष्कर्ष निकालते हैं कि log a b p =p log a b ।

    यह इस गुण को ऋणात्मक b के लिए सिद्ध करना शेष है। यहाँ हम ध्यान दें कि व्यंजक लॉग a b p ऋणात्मक b के लिए केवल सम घातांक p के लिए अर्थ रखता है (क्योंकि घात b p का मान शून्य से अधिक होना चाहिए, अन्यथा लघुगणक का कोई अर्थ नहीं होगा), और इस स्थिति में b p =|b| पी । फिर बी पी == बी | p =(a log a |b|) p =a p log a |b|, कहाँ से लॉग a b p =p log a |b| .

    उदाहरण के लिए, और ln(-3) 4 =4 ln|-3|=4 ln3 ।

    यह पिछली संपत्ति से इस प्रकार है जड़ से लघुगणक की संपत्ति: nवें अंश के मूल का लघुगणक भिन्न 1/n के गुणनफल और मूल व्यंजक के लघुगणक के बराबर होता है, अर्थात्, , जहां a>0 , a≠1 , n एक से बड़ी प्राकृत संख्या है, b>0 ।

    सबूत समानता (देखें) पर आधारित है, जो किसी भी सकारात्मक b के लिए मान्य है, और डिग्री के लघुगणक की संपत्ति: .

    इस संपत्ति का उपयोग करने का एक उदाहरण यहां दिया गया है: .

    चलिए अब साबित करते हैं लघुगणक के नए आधार में रूपांतरण सूत्रतरह . ऐसा करने के लिए, यह समानता लॉग c b=log a b log c a की वैधता को साबित करने के लिए पर्याप्त है। मूल लघुगणकीय पहचान हमें संख्या b को लॉग a b के रूप में निरूपित करने की अनुमति देती है, फिर log c b=log c a log a b के रूप में। यह डिग्री के लघुगणक की संपत्ति का उपयोग करने के लिए बनी हुई है: लॉग सी ए लॉग ए बी = लॉग ए बी लॉग सी ए. इस प्रकार, समानता लॉग c b=log a b log c a सिद्ध होता है, जिसका अर्थ है कि लघुगणक के नए आधार में संक्रमण का सूत्र भी सिद्ध होता है।

    आइए लघुगणक के इस गुण को लागू करने के कुछ उदाहरण दिखाते हैं: और .

    एक नए आधार पर जाने का सूत्र आपको "सुविधाजनक" आधार वाले लघुगणक के साथ काम करने की अनुमति देता है। उदाहरण के लिए, इसका उपयोग प्राकृतिक या दशमलव लघुगणक पर स्विच करने के लिए किया जा सकता है ताकि आप लघुगणक की तालिका से लघुगणक के मान की गणना कर सकें। लघुगणक के एक नए आधार में संक्रमण का सूत्र कुछ मामलों में किसी दिए गए लघुगणक के मूल्य को खोजने की अनुमति देता है, जब अन्य आधारों के साथ कुछ लघुगणक के मान ज्ञात होते हैं।

    फॉर्म के c=b के लिए लॉगरिदम के एक नए आधार में संक्रमण के लिए सूत्र का एक विशेष मामला अक्सर उपयोग किया जाता है . यह दर्शाता है कि लॉग a b और लॉग b a – । उदाहरण के लिए, .

    अक्सर इस्तेमाल किया जाने वाला सूत्र है , जो लघुगणक मानों को खोजने के लिए उपयोगी है। अपने शब्दों की पुष्टि करने के लिए, हम दिखाएंगे कि फॉर्म के लॉगरिदम के मूल्य की गणना कैसे की जाती है। हमारे पास है . सूत्र सिद्ध करने के लिए यह लघुगणक के नए आधार के लिए संक्रमण सूत्र का उपयोग करने के लिए पर्याप्त है a: .

    यह लघुगणक के तुलनात्मक गुणों को साबित करने के लिए बनी हुई है।

    आइए हम सिद्ध करें कि किसी भी धनात्मक संख्या b 1 और b 2 , b 1 . के लिए लॉग a b 2 , और a>1 के लिए, असमानता लॉग a b 1

    अंत में, यह लघुगणक के सूचीबद्ध गुणों में से अंतिम को साबित करना बाकी है। हम स्वयं को इसके पहले भाग को सिद्ध करने तक ही सीमित रखते हैं, अर्थात हम यह सिद्ध करते हैं कि यदि a 1 >1 , a 2 >1 और a 1 1 सत्य है लॉग ए 1 बी>लॉग ए 2 बी। लघुगणक के इस गुण के शेष कथन इसी सिद्धांत से सिद्ध होते हैं।

    आइए विपरीत विधि का उपयोग करें। मान लीजिए कि a 1 >1 , a 2 >1 और a 1 . के लिए 1 log a 1 b≤log a 2 b सत्य है। लघुगणक के गुणों से, इन असमानताओं को फिर से लिखा जा सकता है और क्रमशः, और उनसे यह निम्नानुसार है कि लॉग बी ए 1 लॉग बी ए 2 और लॉग बी ए 1 लॉग बी ए 2, क्रमशः। फिर, समान आधार वाले घातों के गुणों से, समानताएं b log b a 1 ≥b log b a 2 और b log b a 1 ≥b log b a 2 को संतुष्ट किया जाना चाहिए, अर्थात a 1 a 2 । इस प्रकार, हम 1 . की स्थिति के विरोधाभास पर पहुंच गए हैं

ग्रंथ सूची।

  • कोलमोगोरोव ए.एन., अब्रामोव ए.एम., डुडनित्सिन यू.पी. और अन्य। बीजगणित और विश्लेषण की शुरुआत: सामान्य शैक्षिक संस्थानों के ग्रेड 10-11 के लिए एक पाठ्यपुस्तक।
  • गुसेव वी.ए., मोर्दकोविच ए.जी. गणित (तकनीकी स्कूलों के आवेदकों के लिए एक मैनुअल)।

के संदर्भ में

दिए गए अन्य दो में से तीन संख्याओं में से किसी एक को खोजने का कार्य निर्धारित किया जा सकता है। दिया गया है और फिर घातांक द्वारा N पाया जाता है। यदि N दिया जाता है और फिर घात x (या घातांक) का मूल निकालकर a पाया जाता है। अब उस स्थिति पर विचार करें, जब a और N दिए जाने पर x ज्ञात करना आवश्यक हो।

मान लीजिए कि संख्या N धनात्मक है: संख्या a धनात्मक है और एक के बराबर नहीं है: ।

परिभाषा। संख्या N से आधार a का लघुगणक वह घातांक है जिससे आपको संख्या N प्राप्त करने के लिए a को ऊपर उठाने की आवश्यकता होती है; लघुगणक द्वारा निरूपित किया जाता है

इस प्रकार, समानता (26.1) में, घातांक N के आधार a के लघुगणक के रूप में पाया जाता है। प्रविष्टियां

एक ही अर्थ रखते हैं। समानता (26.1) को कभी-कभी लघुगणक के सिद्धांत की मूल पहचान कहा जाता है; वास्तव में, यह लघुगणक की अवधारणा की परिभाषा को व्यक्त करता है। इस परिभाषा के अनुसार, लघुगणक का आधार हमेशा सकारात्मक होता है और एकता से अलग होता है; लघुगणकीय संख्या N धनात्मक है। ऋणात्मक संख्याओं और शून्य में लघुगणक नहीं होते हैं। यह सिद्ध किया जा सकता है कि दिए गए आधार वाली किसी भी संख्या का एक सुपरिभाषित लघुगणक होता है। इसलिए समानता जरूरी है। ध्यान दें कि यहां शर्त आवश्यक है, अन्यथा निष्कर्ष उचित नहीं होगा, क्योंकि समानता x और y के किसी भी मान के लिए सत्य है।

उदाहरण 1. खोजें

फेसला। संख्या प्राप्त करने के लिए, आपको आधार 2 को शक्ति तक बढ़ाने की आवश्यकता है।

आप ऐसे उदाहरणों को निम्नलिखित रूप में हल करते समय रिकॉर्ड कर सकते हैं:

उदाहरण 2. खोजें।

फेसला। हमारे पास है

उदाहरण 1 और 2 में, हमने तर्कसंगत घातांक के साथ आधार की डिग्री के रूप में लघुगणकीय संख्या का प्रतिनिधित्व करके वांछित लघुगणक को आसानी से पाया। सामान्य स्थिति में, उदाहरण के लिए, आदि के लिए, ऐसा नहीं किया जा सकता, क्योंकि लघुगणक का एक अपरिमेय मान होता है। आइए इस कथन से संबंधित एक प्रश्न पर ध्यान दें। 12 में हमने किसी दी गई धनात्मक संख्या की वास्तविक घात ज्ञात करने की संभावना की अवधारणा दी है। लॉगरिदम की शुरूआत के लिए यह आवश्यक था, जो सामान्य रूप से, अपरिमेय संख्याएं हो सकती हैं।

लघुगणक के कुछ गुणों पर विचार करें।

संपत्ति 1. यदि संख्या और आधार समान हैं, तो लघुगणक एक के बराबर है, और, इसके विपरीत, यदि लघुगणक एक के बराबर है, तो संख्या और आधार समान हैं।

प्रमाण। चलो लघुगणक की परिभाषा के अनुसार, हमारे पास है और कहां से

इसके विपरीत, फिर परिभाषा के अनुसार

गुण 2. किसी भी आधार से एकता का लघुगणक शून्य के बराबर होता है।

प्रमाण। लघुगणक की परिभाषा के अनुसार (किसी भी धनात्मक आधार की शून्य घात एक के बराबर होती है, देखें (10.1))। यहां से

क्यू.ई.डी.

विलोम कथन भी सत्य है: यदि , तो N = 1. वास्तव में, हमारे पास .

लघुगणक के निम्नलिखित गुण बताने से पहले, हम यह कहने के लिए सहमत हैं कि दो संख्याएँ a और b तीसरी संख्या c के एक ही तरफ स्थित हैं यदि वे दोनों या तो c से बड़ी हैं या c से कम हैं। यदि इनमें से एक संख्या c से बड़ी है और दूसरी c से छोटी है, तो हम कहते हैं कि वे c के विपरीत दिशा में स्थित हैं।

संपत्ति 3. यदि संख्या और आधार एकता के एक ही तरफ हैं, तो लघुगणक धनात्मक है; यदि संख्या और आधार एकता के विपरीत पक्षों पर स्थित हैं, तो लघुगणक ऋणात्मक होता है।

गुण 3 का प्रमाण इस तथ्य पर आधारित है कि यदि आधार एक से बड़ा है और घातांक धनात्मक है, या आधार एक से कम है और घातांक ऋणात्मक है तो a की घात एक से अधिक है। यदि आधार एक से बड़ा है और घातांक ऋणात्मक है, या आधार एक से कम है और घातांक धनात्मक है तो अंश एक से कम है।

विचार करने के लिए चार मामले हैं:

हम उनमें से पहले के विश्लेषण के लिए खुद को सीमित रखते हैं, पाठक बाकी पर विचार करेगा।

मान लीजिए कि समानता में घातांक न तो ऋणात्मक है और न ही शून्य के बराबर है, इसलिए, यह सकारात्मक है, अर्थात, जिसे सिद्ध करना आवश्यक था।

उदाहरण 3. ज्ञात कीजिए कि निम्नलिखित में से कौन-से लघुगणक धनात्मक हैं और कौन-से ऋणात्मक हैं:

हल, क) क्योंकि संख्या 15 और आधार 12 इकाई के एक ही तरफ स्थित हैं;

बी) , चूंकि 1000 और 2 इकाई के एक ही तरफ स्थित हैं; साथ ही, यह आवश्यक नहीं है कि आधार लघुगणक संख्या से बड़ा हो;

सी), चूंकि 3.1 और 0.8 एकता के विपरीत पक्षों पर स्थित हैं;

जी) ; क्यों?

इ) ; क्यों?

निम्नलिखित गुण 4-6 को अक्सर लघुगणक के नियम कहा जाता है: वे अनुमति देते हैं, कुछ संख्याओं के लघुगणक को जानने के लिए, उनके उत्पाद के लघुगणक, भागफल, उनमें से प्रत्येक की डिग्री का पता लगाने के लिए।

गुण 4 (उत्पाद के लघुगणक के लिए नियम)। किसी दिए गए आधार में कई धनात्मक संख्याओं के गुणनफल का लघुगणक एक ही आधार में इन संख्याओं के लघुगणक के योग के बराबर होता है।

प्रमाण। सकारात्मक अंक दिए जाने दें।

उनके उत्पाद के लघुगणक के लिए, हम लघुगणक को परिभाषित करते हुए समानता (26.1) लिखते हैं:

यहाँ से हम पाते हैं

प्रथम और अंतिम व्यंजकों के घातांकों की तुलना करने पर हमें अपेक्षित समानता प्राप्त होती है:

ध्यान दें कि शर्त आवश्यक है; दो ऋणात्मक संख्याओं के गुणनफल का लघुगणक समझ में आता है, लेकिन इस मामले में हमें मिलता है

सामान्य तौर पर, यदि कई कारकों का गुणनफल सकारात्मक होता है, तो इसका लघुगणक इन कारकों के मॉड्यूल के लघुगणक के योग के बराबर होता है।

गुण 5 (भागफल लघुगणक नियम)। धनात्मक संख्याओं के भागफल का लघुगणक समान आधार में लिए गए लाभांश और भाजक के लघुगणक के बीच के अंतर के बराबर होता है। प्रमाण। लगातार खोजें

क्यू.ई.डी.

संपत्ति 6 ​​(डिग्री के लघुगणक का नियम)। किसी भी धनात्मक संख्या की घात का लघुगणक उस संख्या के घातांक के गुणा के लघुगणक के बराबर होता है।

प्रमाण। हम संख्या के लिए फिर से मुख्य पहचान (26.1) लिखते हैं:

क्यू.ई.डी.

परिणाम। एक धनात्मक संख्या के मूल का लघुगणक मूल संख्या के लघुगणक के बराबर होता है जो मूल के घातांक से विभाजित होता है:

हम गुण 6 को कैसे और किस प्रकार उपयोग करके प्रस्तुत करते हैं, हम इस उपफल की वैधता को सिद्ध कर सकते हैं।

उदाहरण 4. आधार का लघुगणक a:

ए) (यह माना जाता है कि सभी मान बी, सी, डी, ई सकारात्मक हैं);

बी) (ऐसा माना जाता है)।

हल, क) इस व्यंजक में भिन्नात्मक घातों को पारित करना सुविधाजनक है:

समानता के आधार पर (26.5)-(26.7) अब हम लिख सकते हैं:

हम देखते हैं कि संख्याओं के लघुगणक पर स्वयं संख्याओं की तुलना में सरल संचालन किया जाता है: संख्याओं को गुणा करते समय, उनके लघुगणक जोड़े जाते हैं, विभाजित होने पर उन्हें घटाया जाता है, आदि।

इसीलिए अभिकलनात्मक अभ्यास में लघुगणक का उपयोग किया गया है (देखें भाग 29)।

लघुगणक के विपरीत क्रिया को पोटेंशिएशन कहा जाता है, अर्थात्: पोटेंशिएशन वह क्रिया है जिसके द्वारा यह संख्या स्वयं किसी संख्या के दिए गए लघुगणक द्वारा पाई जाती है। संक्षेप में, पोटेंशिएशन कोई विशेष क्रिया नहीं है: यह आधार को एक शक्ति (संख्या के लघुगणक के बराबर) तक बढ़ाने के लिए नीचे आता है। शब्द "पोटेंशिएशन" को "घातांक" शब्द का पर्याय माना जा सकता है।

पोटेंशियेटिंग करते समय, उन नियमों का उपयोग करना आवश्यक है जो लघुगणक के नियमों के विपरीत हैं: लघुगणक के योग को उत्पाद के लघुगणक से बदलें, भागफल के लघुगणक के साथ लघुगणक का अंतर, आदि। विशेष रूप से, यदि वहाँ है लॉगरिदम के संकेत के सामने कोई भी कारक, फिर पोटेंशिएशन के दौरान इसे लघुगणक के संकेत के तहत संकेतक डिग्री में स्थानांतरित किया जाना चाहिए।

उदाहरण 5. यदि ज्ञात हो कि N ज्ञात कीजिए

फेसला। पोटेंशिएशन नियम के संबंध में अभी कहा गया है, कारक 2/3 और 1/3, जो इस समानता के दाईं ओर लघुगणक के संकेतों के सामने हैं, इन लघुगणक के संकेतों के तहत घातांक को स्थानांतरित कर दिए जाएंगे; हम पाते हैं

अब हम लघुगणक के अंतर को भागफल के लघुगणक से बदलते हैं:

समानता की इस श्रृंखला में अंतिम अंश प्राप्त करने के लिए, हमने पिछले अंश को हर में अपरिमेयता से मुक्त किया (धारा 25)।

संपत्ति 7. यदि आधार एक से बड़ा है, तो बड़ी संख्या में एक बड़ा लघुगणक होता है (और छोटे वाले का एक छोटा होता है), यदि आधार एक से कम होता है, तो बड़ी संख्या में एक छोटा लघुगणक होता है (और छोटा होता है) एक के पास एक बड़ा है)।

यह गुण असमानताओं के लघुगणक के लिए एक नियम के रूप में भी तैयार किया गया है, जिसके दोनों भाग सकारात्मक हैं:

असमानताओं के लघुगणक को एक से अधिक आधार पर ले जाने पर, असमानता का चिन्ह संरक्षित रहता है, और जब एक लघुगणक को एक से कम के आधार पर ले जाया जाता है, तो असमानता का चिन्ह उलट जाता है (आइटम 80 भी देखें)।

सबूत गुण 5 और 3 पर आधारित है। उस स्थिति पर विचार करें जब यदि , तो और, लघुगणक लेते हुए, हम प्राप्त करते हैं

(ए और एन/एम एकता के एक ही तरफ स्थित हैं)। यहां से

केस ए इस प्रकार है, पाठक इसे अपने लिए समझ लेगा।

a (a > 0, a 1) को आधार बनाने के लिए b (b > 0) का लघुगणकवह घातांक है जिसके लिए आपको b प्राप्त करने के लिए संख्या a को बढ़ाने की आवश्यकता है।

b का आधार 10 लघुगणक इस प्रकार लिखा जा सकता है: लॉग (बी), और आधार e का लघुगणक (प्राकृतिक लघुगणक) - एलएन (बी).

लॉगरिदम के साथ समस्याओं को हल करते समय अक्सर उपयोग किया जाता है:

लघुगणक के गुण

चार मुख्य हैं लघुगणक के गुण.

मान लीजिए a > 0, a 1, x > 0 और y > 0.

संपत्ति 1. उत्पाद का लघुगणक

उत्पाद का लघुगणकलघुगणक के योग के बराबर है:

log a (x ⋅ y) = log a x + log a y

गुण 2. भागफल का लघुगणक

भागफल का लघुगणकलघुगणक के अंतर के बराबर है:

लॉग a (x / y) = लॉग a x - लॉग a y

संपत्ति 3. डिग्री का लघुगणक

डिग्री लघुगणकडिग्री और लघुगणक के गुणनफल के बराबर है:

यदि लघुगणक का आधार घातांक में है, तो दूसरा सूत्र लागू होता है:

गुण 4. जड़ का लघुगणक

यह गुण डिग्री के लघुगणक के गुण से प्राप्त किया जा सकता है, क्योंकि nth डिग्री का मूल 1/n की घात के बराबर होता है:

एक आधार में लघुगणक से दूसरे आधार में लघुगणक में जाने का सूत्र

लॉगरिदम के लिए विभिन्न कार्यों को हल करते समय अक्सर इस सूत्र का भी उपयोग किया जाता है:

विशेष मामला:

लघुगणक की तुलना (असमानता)

मान लीजिए कि हमारे पास समान आधार वाले लॉगरिदम के तहत 2 फ़ंक्शन f(x) और g(x) हैं और उनके बीच एक असमानता का संकेत है:

उनकी तुलना करने के लिए, आपको सबसे पहले लघुगणक के आधार को देखना होगा:

  • यदि a > 0, तो f(x) > g(x) > 0
  • अगर 0< a < 1, то 0 < f(x) < g(x)

लघुगणक के साथ समस्याओं को कैसे हल करें: उदाहरण

लघुगणक के साथ कार्यटास्क 5 और टास्क 7 में ग्रेड 11 के लिए गणित में यूएसई में शामिल, आप उपयुक्त अनुभागों में हमारी वेबसाइट पर समाधान के साथ कार्य पा सकते हैं। साथ ही, गणित में कार्यों के बैंक में लघुगणक वाले कार्य पाए जाते हैं। आप साइट पर खोज करके सभी उदाहरण पा सकते हैं।

एक लघुगणक क्या है

स्कूली गणित के पाठ्यक्रम में लघुगणक को हमेशा एक कठिन विषय माना गया है। लघुगणक की कई अलग-अलग परिभाषाएँ हैं, लेकिन किसी कारण से अधिकांश पाठ्यपुस्तकें उनमें से सबसे जटिल और दुर्भाग्यपूर्ण का उपयोग करती हैं।

हम लघुगणक को सरल और स्पष्ट रूप से परिभाषित करेंगे। आइए इसके लिए एक टेबल बनाएं:

तो, हमारे पास दो की शक्तियां हैं।

लघुगणक - गुण, सूत्र, कैसे हल करें

यदि आप नीचे की रेखा से संख्या लेते हैं, तो आप आसानी से उस शक्ति का पता लगा सकते हैं जिसके लिए आपको इस संख्या को प्राप्त करने के लिए दो को उठाना होगा। उदाहरण के लिए, 16 प्राप्त करने के लिए, आपको दो से चौथी शक्ति बढ़ाने की आवश्यकता है। और 64 प्राप्त करने के लिए, आपको दो को छठी शक्ति तक बढ़ाने की आवश्यकता है। इसे तालिका से देखा जा सकता है।

और अब - वास्तव में, लघुगणक की परिभाषा:

तर्क x का आधार a वह शक्ति है जिसके लिए संख्या x प्राप्त करने के लिए संख्या को उठाया जाना चाहिए।

नोटेशन: लॉग a x \u003d b, जहां a आधार है, x तर्क है, b वास्तव में लॉगरिदम के बराबर है।

उदाहरण के लिए, 2 3 = 8 लॉग 2 8 = 3 (8 का आधार 2 लघुगणक तीन है क्योंकि 2 3 = 8)। साथ ही 2 64 = 6 भी लॉग कर सकते हैं, क्योंकि 2 6 = 64।

किसी दिए गए आधार से किसी संख्या का लघुगणक ज्ञात करने की क्रिया कहलाती है। तो चलिए अपनी तालिका में एक नई पंक्ति जोड़ते हैं:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
लॉग 2 2 = 1 लॉग 2 4 = 2 लॉग 2 8 = 3 लॉग 2 16 = 4 लॉग 2 32 = 5 लॉग 2 64 = 6

दुर्भाग्य से, सभी लघुगणक को इतनी आसानी से नहीं माना जाता है। उदाहरण के लिए, लॉग 2 5 खोजने का प्रयास करें। संख्या 5 तालिका में नहीं है, लेकिन तर्क बताता है कि लॉगरिदम अंतराल पर कहीं स्थित होगा। क्योंकि 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

ऐसी संख्याओं को अपरिमेय कहा जाता है: दशमलव बिंदु के बाद की संख्याएँ अनिश्चित काल तक लिखी जा सकती हैं, और वे कभी भी दोहराई नहीं जाती हैं। यदि लघुगणक अपरिमेय हो जाता है, तो इसे इस तरह छोड़ना बेहतर है: लॉग 2 5, लॉग 3 8, लॉग 5 100।

यह समझना महत्वपूर्ण है कि लघुगणक दो चर (आधार और तर्क) के साथ एक व्यंजक है। सबसे पहले, बहुत से लोग भ्रमित करते हैं कि आधार कहाँ है और तर्क कहाँ है। कष्टप्रद गलतफहमी से बचने के लिए, बस तस्वीर पर एक नज़र डालें:

हमारे सामने लघुगणक की परिभाषा से ज्यादा कुछ नहीं है। याद है: लघुगणक शक्ति है, जिसके लिए आपको तर्क प्राप्त करने के लिए आधार बढ़ाने की आवश्यकता है। यह आधार है जिसे एक शक्ति तक बढ़ाया जाता है - चित्र में इसे लाल रंग में हाइलाइट किया गया है। यह पता चला है कि आधार हमेशा सबसे नीचे होता है! मैं यह अद्भुत नियम अपने छात्रों को पहले ही पाठ में बताता हूं - और कोई भ्रम नहीं है।

लघुगणक कैसे गिनें

हमने परिभाषा का पता लगाया - यह सीखना बाकी है कि लॉगरिदम कैसे गिनें, यानी। "लॉग" चिह्न से छुटकारा पाएं। आरंभ करने के लिए, हम ध्यान दें कि परिभाषा से दो महत्वपूर्ण तथ्य अनुसरण करते हैं:

  1. तर्क और आधार हमेशा शून्य से बड़ा होना चाहिए। यह एक तर्कसंगत घातांक द्वारा डिग्री की परिभाषा का अनुसरण करता है, जिससे लघुगणक की परिभाषा कम हो जाती है।
  2. आधार एकता से अलग होना चाहिए, क्योंकि एक इकाई से किसी भी शक्ति तक अभी भी एक इकाई है। इस वजह से, "दो प्राप्त करने के लिए किसी को किस शक्ति को उठाया जाना चाहिए" का प्रश्न व्यर्थ है। ऐसी कोई डिग्री नहीं है!

ऐसे प्रतिबंधों को कहा जाता है मान्य रेंज(ओडीजेड)। यह पता चला है कि लघुगणक का ODZ इस तरह दिखता है: लॉग a x = b ⇒ x> 0, a> 0, a 1।

ध्यान दें कि संख्या b (लघुगणक का मान) पर कोई प्रतिबंध नहीं लगाया गया है। उदाहरण के लिए, लघुगणक ऋणात्मक भी हो सकता है: log 2 0.5 = −1, क्योंकि 0.5 = 2 -1।

हालाँकि, अब हम केवल संख्यात्मक व्यंजकों पर विचार कर रहे हैं, जहाँ लघुगणक के ODZ को जानना आवश्यक नहीं है। समस्याओं के संकलनकर्ताओं द्वारा सभी प्रतिबंधों को पहले ही ध्यान में रखा जा चुका है। लेकिन जब लॉगरिदमिक समीकरण और असमानताएं चलन में आती हैं, तो डीएचएस आवश्यकताएं अनिवार्य हो जाएंगी। दरअसल, आधार और तर्क में बहुत मजबूत निर्माण हो सकते हैं जो जरूरी नहीं कि उपरोक्त प्रतिबंधों के अनुरूप हों।

अब लघुगणक की गणना के लिए सामान्य योजना पर विचार करें। इसमें तीन चरण होते हैं:

  1. आधार a और तर्क x को एक घात के रूप में व्यक्त करें जिसका आधार एक से अधिक हो। साथ ही, दशमलव अंशों से छुटकारा पाना बेहतर है;
  2. चर b: x = a b के लिए समीकरण हल करें;
  3. परिणामी संख्या b उत्तर होगी।

बस इतना ही! यदि लघुगणक अपरिमेय निकलता है, तो यह पहले चरण में ही दिखाई देगा। आधार के एक से अधिक होने की आवश्यकता बहुत प्रासंगिक है: यह त्रुटि की संभावना को कम करता है और गणना को बहुत सरल करता है। इसी तरह दशमलव अंशों के साथ: यदि आप उन्हें तुरंत सामान्य अंशों में बदल देते हैं, तो कई गुना कम त्रुटियाँ होंगी।

आइए देखें कि यह योजना विशिष्ट उदाहरणों के साथ कैसे काम करती है:

काम। लघुगणक की गणना करें: लॉग 5 25

  1. आइए आधार और तर्क को पांच की शक्ति के रूप में प्रस्तुत करें: 5 = 5 1 ; 25 = 52;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 5 25 = बी ⇒ (5 1) बी = 5 2 ⇒5 बी = 5 2 ⇒ बी = 2;

  3. उत्तर प्राप्त हुआ: 2.

काम। लघुगणक की गणना करें:

काम। लघुगणक की गणना करें: लॉग 4 64

  1. आइए आधार और तर्क को दो की घात के रूप में निरूपित करें: 4 = 2 2 ; 64 = 26;
  2. आइए समीकरण बनाएं और हल करें:
    log 4 64 = b (2 2) b = 2 6 2 2b = 2 6 ⇒2b = 6 b = 3;
  3. उत्तर मिला: 3.

काम। लघुगणक की गणना करें: लॉग 16 1

  1. आइए आधार और तर्क को दो की घात के रूप में निरूपित करें: 16 = 2 4; 1 = 20;
  2. आइए समीकरण बनाएं और हल करें:
    लॉग 16 1 = बी ⇒ (2 4) बी = 2 0 ⇒2 4 बी = 2 0 ⇒4 बी = 0 ⇒ बी = 0;
  3. प्रतिक्रिया मिली: 0.

काम। लघुगणक की गणना करें: लॉग 7 14

  1. आइए आधार और तर्क को सात की घात के रूप में निरूपित करें: 7 = 7 1 ; 14 को सात की शक्ति के रूप में नहीं दर्शाया गया है, क्योंकि 7 1< 14 < 7 2 ;
  2. यह पिछले पैराग्राफ से इस प्रकार है कि लघुगणक पर विचार नहीं किया जाता है;
  3. उत्तर कोई परिवर्तन नहीं है: लॉग 7 14.

अंतिम उदाहरण पर एक छोटा सा नोट। कैसे सुनिश्चित करें कि एक संख्या दूसरी संख्या की सटीक शक्ति नहीं है? बहुत आसान - बस इसे प्रमुख कारकों में विघटित करें। यदि विस्तार में कम से कम दो अलग-अलग कारक हैं, तो संख्या एक सटीक शक्ति नहीं है।

काम। पता लगाएँ कि क्या संख्या की सटीक शक्तियाँ हैं: 8; 48; 81; 35; चौदह।

8 \u003d 2 2 2 \u003d 2 3 - सटीक डिग्री, क्योंकि केवल एक गुणक है;
48 = 6 8 = 3 2 2 2 2 = 3 2 4 एक सटीक शक्ति नहीं है क्योंकि दो कारक हैं: 3 और 2;
81 \u003d 9 9 \u003d 3 3 3 3 \u003d 3 4 - सटीक डिग्री;
35 = 7 5 - फिर से एक सटीक डिग्री नहीं;
14 \u003d 7 2 - फिर से सटीक डिग्री नहीं;

यह भी ध्यान दें कि अभाज्य संख्याएँ स्वयं हमेशा स्वयं की सटीक शक्तियाँ होती हैं।

दशमलव लघुगणक

कुछ लघुगणक इतने सामान्य होते हैं कि उनका एक विशेष नाम और पदनाम होता है।

x तर्क का आधार 10 लघुगणक है, अर्थात। वह शक्ति जिससे x प्राप्त करने के लिए 10 को ऊपर उठाना होगा। पदनाम: एलजीएक्स।

उदाहरण के लिए, लॉग 10 = 1; लॉग 100 = 2; एलजी 1000 = 3 - आदि।

अब से, जब पाठ्यपुस्तक में "फाइंड एलजी 0.01" जैसा वाक्यांश दिखाई दे, तो जान लें कि यह टाइपो नहीं है। यह दशमलव लघुगणक है। हालाँकि, यदि आप इस तरह के पदनाम के अभ्यस्त नहीं हैं, तो आप इसे हमेशा फिर से लिख सकते हैं:
लॉग एक्स = लॉग 10 एक्स

साधारण लघुगणक के लिए जो कुछ भी सत्य है वह दशमलव के लिए भी सत्य है।

प्राकृतिक

एक और लघुगणक है जिसका अपना अंकन है। एक मायने में यह दशमलव से भी ज्यादा महत्वपूर्ण है। यह प्राकृतिक लघुगणक है।

x तर्क का आधार e का लघुगणक है, अर्थात। संख्या x प्राप्त करने के लिए संख्या ई को जिस शक्ति तक बढ़ाया जाना चाहिए। पदनाम: एलएनएक्स।

बहुत से लोग पूछेंगे: ई नंबर क्या है? यह एक अपरिमेय संख्या है, इसका सटीक मान नहीं खोजा और लिखा जा सकता है। यहाँ केवल पहली संख्याएँ हैं:
ई = 2.718281828459…

हम यह नहीं समझेंगे कि यह संख्या क्या है और इसकी आवश्यकता क्यों है। बस याद रखें कि ई प्राकृतिक लघुगणक का आधार है:
एलएन एक्स = लॉग ई एक्स

इस प्रकार एलएन ई = 1; लॉग ई 2 = 2; एलएन ई 16 = 16 - आदि। दूसरी ओर, ln 2 एक अपरिमेय संख्या है। सामान्य तौर पर, किसी भी परिमेय संख्या का प्राकृतिक लघुगणक अपरिमेय होता है। बेशक, एकता को छोड़कर: एलएन 1 = 0।

प्राकृतिक लघुगणक के लिए, सामान्य लघुगणक के लिए सत्य सभी नियम मान्य हैं।

यह सभी देखें:

लघुगणक। लघुगणक के गुण (लघुगणक की शक्ति)।

किसी संख्या को लघुगणक के रूप में कैसे निरूपित करें?

हम लघुगणक की परिभाषा का उपयोग करते हैं।

लॉगरिदम उस शक्ति का एक संकेतक है जिसके लिए लॉगरिदम के संकेत के तहत संख्या प्राप्त करने के लिए आधार को ऊपर उठाया जाना चाहिए।

इस प्रकार, आधार a के लिए एक लघुगणक के रूप में एक निश्चित संख्या c का प्रतिनिधित्व करने के लिए, लघुगणक के आधार के समान आधार के साथ लघुगणक के संकेत के तहत एक डिग्री रखना आवश्यक है, और इस संख्या c को घातांक में लिखें। :

लघुगणक के रूप में, आप बिल्कुल किसी भी संख्या का प्रतिनिधित्व कर सकते हैं - धनात्मक, ऋणात्मक, पूर्णांक, भिन्नात्मक, परिमेय, अपरिमेय:

किसी परीक्षण या परीक्षा की तनावपूर्ण स्थितियों में a और c को भ्रमित न करने के लिए, आप निम्नलिखित नियम को याद रखने के लिए उपयोग कर सकते हैं:

जो नीचे है वह नीचे जाता है, जो ऊपर है वह ऊपर जाता है।

उदाहरण के लिए, आप संख्या 2 को आधार 3 के लघुगणक के रूप में प्रस्तुत करना चाहते हैं।

हमारे पास दो संख्याएँ हैं - 2 और 3। ये संख्याएँ आधार और घातांक हैं, जिन्हें हम लघुगणक के चिह्न के नीचे लिखेंगे। यह निर्धारित करना बाकी है कि इनमें से कौन सी संख्या नीचे लिखी जानी चाहिए, डिग्री के आधार पर, और कौन सी - ऊपर, घातांक में।

लॉगरिदम के रिकॉर्ड में बेस 3 सबसे नीचे होता है, जिसका मतलब है कि जब हम ड्यूस को 3 के बेस के लिए लॉगरिदम के रूप में निरूपित करते हैं, तो हम 3 डाउन टू बेस भी लिखेंगे।

2 3 से अधिक है। और डिग्री के अंकन में, हम तीन के ऊपर दो को लिखते हैं, अर्थात घातांक में:

लघुगणक। प्रथम स्तर।

लघुगणक

लोगारित्मसकारात्मक संख्या बीवजह से , कहाँ पे ए> 0, ए 1, वह घातांक है जिस पर संख्या बढ़ाई जानी चाहिए। , प्राप्त करना बी.

लघुगणक की परिभाषासंक्षेप में इस प्रकार लिखा जा सकता है:

यह समानता के लिए मान्य है बी> 0, ए> 0, ए 1।उसे आमतौर पर कहा जाता है लॉगरिदमिक पहचान।
किसी संख्या का लघुगणक ज्ञात करने की क्रिया कहलाती है लघुगणक

लघुगणक के गुण:

उत्पाद का लघुगणक:

भाग से भागफल का लघुगणक:

लघुगणक के आधार को बदलना:

डिग्री लघुगणक:

मूल लघुगणक:

शक्ति आधार के साथ लघुगणक:





दशमलव और प्राकृतिक लघुगणक।

दशमलव लघुगणकसंख्याएँ उस संख्या के आधार 10 लघुगणक को बुलाती हैं और   lg . लिखती हैं बी
प्राकृतिकसंख्याएँ इस संख्या के लघुगणक को आधार पर बुलाती हैं , कहाँ पे एक अपरिमेय संख्या है, लगभग 2.7 के बराबर। साथ ही, वे ln . लिखते हैं बी.

बीजगणित और ज्यामिति पर अन्य नोट्स

लघुगणक के मूल गुण

लघुगणक के मूल गुण

लॉगरिदम, किसी भी संख्या की तरह, हर संभव तरीके से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है बुनियादी गुण.

इन नियमों को अवश्य जानना चाहिए - इनके बिना कोई भी गंभीर लघुगणकीय समस्या हल नहीं हो सकती है। इसके अलावा, उनमें से बहुत कम हैं - एक दिन में सब कुछ सीखा जा सकता है। तो चलो शुरू करते है।

लघुगणक का जोड़ और घटाव

समान आधार वाले दो लघुगणक पर विचार करें: a x लॉग करें और y लॉग करें। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉग ए एक्स + लॉग ए वाई = लॉग ए (एक्स वाई);
  2. लॉग ए एक्स - लॉग ए वाई = लॉग ए (एक्स: वाई)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल का लघुगणक है। कृपया ध्यान दें: यहाँ मुख्य बिंदु है - एक ही आधार. यदि आधार भिन्न हैं, तो ये नियम काम नहीं करते हैं!

ये सूत्र लघुगणक व्यंजक की गणना करने में मदद करेंगे, भले ही इसके अलग-अलग हिस्सों पर विचार न किया गया हो (पाठ "एक लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

लॉग 6 4 + लॉग 6 9.

चूंकि लघुगणक के आधार समान हैं, इसलिए हम योग सूत्र का उपयोग करते हैं:
लॉग 6 4 + लॉग 6 9 = लॉग 6 (4 9) = लॉग 6 36 = 2।

काम। व्यंजक का मान ज्ञात कीजिए: लघुगणक 2 48 - लघुगणक 2 3।

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
लॉग 2 48 - लॉग 2 3 = लॉग 2 (48: 3) = लॉग 2 16 = 4।

काम। व्यंजक का मान ज्ञात कीजिए: लघुगणक 3 135 - लघुगणक 3 5.

फिर से, आधार समान हैं, इसलिए हमारे पास है:
लघुगणक 3 135 - लघुगणक 3 5 = लघुगणक 3 (135: 5) = लघुगणक 3 27 = 3.

जैसा कि आप देख सकते हैं, मूल भाव "खराब" लघुगणक से बने होते हैं, जिन्हें अलग से नहीं माना जाता है। लेकिन परिवर्तनों के बाद काफी सामान्य संख्याएँ निकलती हैं। कई परीक्षण इस तथ्य पर आधारित हैं। हां, नियंत्रण - पूरी गंभीरता से समान भाव (कभी-कभी - वस्तुतः कोई बदलाव नहीं) परीक्षा में पेश किए जाते हैं।

घातांक को लघुगणक से हटाना

अब कार्य को थोड़ा जटिल करते हैं। क्या होगा यदि लघुगणक के आधार या तर्क में कोई डिग्री हो? तब इस डिग्री के घातांक को निम्न नियमों के अनुसार लघुगणक के चिह्न से निकाला जा सकता है:

यह देखना आसान है कि अंतिम नियम उनके पहले दो का अनुसरण करता है। लेकिन इसे वैसे भी याद रखना बेहतर है - कुछ मामलों में यह गणना की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम समझ में आते हैं यदि ओडीजेड लॉगरिदम मनाया जाता है: ए> 0, ए ≠ 1, एक्स> 0. और एक और बात: न केवल बाएं से दाएं, बल्कि इसके विपरीत भी सभी सूत्रों को लागू करना सीखें, यानी। आप लघुगणक के चिह्न से पहले संख्याओं को लघुगणक में ही दर्ज कर सकते हैं।

लघुगणक कैसे हल करें

यह वही है जो सबसे अधिक बार आवश्यक होता है।

काम। व्यंजक का मान ज्ञात कीजिए: log 7 49 6 ।

आइए पहले सूत्र के अनुसार तर्क में डिग्री से छुटकारा पाएं:
लघुगणक 7 49 6 = 6 लघुगणक 7 49 = 6 2 = 12

काम। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि हर एक लघुगणक है जिसका आधार और तर्क सटीक शक्तियाँ हैं: 16 = 2 4; 49 = 72। हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण को स्पष्टीकरण की आवश्यकता है। लॉगरिदम कहाँ चले गए हैं? अंतिम क्षण तक, हम केवल हर के साथ काम करते हैं। उन्होंने वहां खड़े लघुगणक के आधार और तर्क को डिग्री के रूप में प्रस्तुत किया और संकेतक निकाले - उन्हें "तीन मंजिला" अंश मिला।

अब आइए मुख्य अंश को देखें। अंश और हर की संख्या समान है: लॉग 2 7. चूंकि लॉग 2 7 0, हम भिन्न को कम कर सकते हैं - 2/4 हर में रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो किया गया था। परिणाम उत्तर है: 2.

एक नई नींव में संक्रमण

लॉगरिदम जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल एक ही आधार के साथ काम करते हैं। क्या होगा यदि आधार अलग हैं? क्या होगा यदि वे एक ही संख्या की सटीक शक्तियां नहीं हैं?

एक नए आधार पर संक्रमण के लिए सूत्र बचाव के लिए आते हैं। हम उन्हें एक प्रमेय के रूप में तैयार करते हैं:

मान लीजिए कि लघुगणक लघुगणक a x दिया गया है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

विशेष रूप से, यदि हम c = x रखते हैं, तो हमें प्राप्त होता है:

यह दूसरे सूत्र से इस प्रकार है कि आधार और लघुगणक के तर्क को आपस में बदलना संभव है, लेकिन इस मामले में पूरी अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। यह मूल्यांकन करना संभव है कि लॉगरिदमिक समीकरणों और असमानताओं को हल करते समय ही वे कितने सुविधाजनक होते हैं।

हालाँकि, ऐसे कार्य हैं जिन्हें एक नई नींव में जाने के अलावा हल नहीं किया जा सकता है। आइए इनमें से कुछ पर विचार करें:

काम। व्यंजक का मान ज्ञात कीजिए: लघुगणक 5 16 लघुगणक 2 25.

ध्यान दें कि दोनों लघुगणक के तर्क सटीक घातांक हैं। आइए संकेतक निकालें: लॉग 5 16 = लॉग 5 2 4 = 4लॉग 5 2; लघुगणक 2 25 = लघुगणक 2 5 2 = 2 लघुगणक 2 5;

अब दूसरा लघुगणक पलटें:

चूंकि उत्पाद कारकों के क्रमपरिवर्तन से नहीं बदलता है, हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक का पता लगाया।

काम। व्यंजक का मान ज्ञात कीजिए: log 9 100 lg 3.

पहले लघुगणक का आधार और तर्क सटीक शक्तियाँ हैं। आइए इसे लिख लें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

मूल लघुगणकीय पहचान

अक्सर हल करने की प्रक्रिया में किसी दिए गए आधार के लिए एक संख्या को लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है।

इस मामले में, सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में घातांक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल लघुगणक का मान है।

दूसरा सूत्र वास्तव में एक व्याख्यात्मक परिभाषा है। इसे इस तरह कहा जाता है:

वास्तव में, क्या होगा यदि संख्या b को इस हद तक बढ़ा दिया जाए कि इस अंश की संख्या b संख्या a दे दे? यह सही है: यह वही संख्या है a. इस पैराग्राफ को फिर से ध्यान से पढ़ें - बहुत से लोग इसे "लटका" देते हैं।

नए आधार रूपांतरण फ़ार्मुलों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभव समाधान होता है।

काम। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि लॉग 25 64 = लॉग 5 8 - बस वर्ग को आधार और लॉगरिदम के तर्क से निकाल दिया। समान आधार से घातों को गुणा करने के नियमों को देखते हुए, हम प्राप्त करते हैं:

अगर किसी को पता नहीं है, तो यह एकीकृत राज्य परीक्षा से एक वास्तविक कार्य था

लघुगणक इकाई और लघुगणक शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें गुणों को कॉल करना मुश्किल है - बल्कि, ये लॉगरिदम की परिभाषा से परिणाम हैं। वे लगातार समस्याओं में पाए जाते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लॉग ए = 1 है। एक बार और सभी के लिए याद रखें: किसी भी आधार के लिए लघुगणक उस आधार से ही एक के बराबर होता है।
  2. लॉग ए 1 = 0 है। आधार a कुछ भी हो सकता है, लेकिन यदि तर्क एक है, तो लघुगणक शून्य है! क्योंकि 0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

वह सब गुण है। उन्हें अभ्यास में लाने का अभ्यास करना सुनिश्चित करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।