ផលបូកនៃលេខ 11 ដំបូងនៃដំណើរការនព្វន្ធមួយ។ វឌ្ឍនភាពត្រូវបានតំណាងដោយអក្សរឡាតាំងតូចមួយ

បញ្ហាវឌ្ឍនភាពនព្វន្ធមានតាំងពីបុរាណកាលមក។ ពួកគេបានបង្ហាញខ្លួន និងទាមទារដំណោះស្រាយមួយ ពីព្រោះពួកគេមានតម្រូវការជាក់ស្តែង។

ដូច្នេះនៅក្នុងក្រដាសមួយនៃ papyri នៃប្រទេសអេហ្ស៊ីបបុរាណដែលមានមាតិកាគណិតវិទ្យា - ក្រដាស Rhind (សតវត្សទី XIX មុនគ។ ទីប្រាំបីនៃរង្វាស់មួយ។

ហើយនៅក្នុងស្នាដៃគណិតវិទ្យារបស់ក្រិកបុរាណមានទ្រឹស្ដីឆើតឆាយទាក់ទងនឹងការវិវត្តនព្វន្ធ។ ដូច្នេះ Hypsicles of Alexandria (សតវត្សទី 2 ដែលបានចងក្រងបញ្ហាគួរឱ្យចាប់អារម្មណ៍ជាច្រើនហើយបានបន្ថែមសៀវភៅទីដប់បួនទៅ "ធាតុ" របស់ Euclid បានបង្កើតគំនិតនេះថា: "នៅក្នុងដំណើរការនព្វន្ធជាមួយនឹងចំនួនគូនៃសមាជិក ផលបូកនៃសមាជិកនៃពាក់កណ្តាលទីពីរ។ គឺធំជាងផលបូកនៃសមាជិកនៃទី 1 ដោយសមាជិកការ៉េ 1/2 ។

លំដាប់ a ត្រូវបានតំណាង។ លេខ​នៃ​លំដាប់​ត្រូវ​បាន​គេ​ហៅ​ថា​សមាជិក​របស់​វា ហើយ​ជា​ធម្មតា​ត្រូវ​បាន​បង្ហាញ​ដោយ​អក្សរ​ដែល​មាន​សន្ទស្សន៍​ដែល​បង្ហាញ​ពី​លេខ​សៀរៀល​នៃ​សមាជិក​នេះ (a1, a2, a3 ... អាន៖ “a 1st” “a 2nd” “a 3rd” និងផ្សេងៗទៀត)។

លំដាប់អាចគ្មានកំណត់ ឬគ្មានកំណត់។

តើការវិវត្តនព្វន្ធជាអ្វី? វាត្រូវបានយល់ដូចដែលទទួលបានដោយការបន្ថែមពាក្យមុន (n) ជាមួយនឹងលេខដូចគ្នា d ដែលជាភាពខុសគ្នានៃវឌ្ឍនភាព។

ប្រសិនបើ ឃ<0, то мы имеем убывающую прогрессию. Если d>0 បន្ទាប់មកការវិវត្តបែបនេះត្រូវបានចាត់ទុកថាកំពុងកើនឡើង។

ការវិវត្តនព្វន្ធត្រូវបានគេនិយាយថាមានកំណត់ ប្រសិនបើមានតែពាក្យដំបូងមួយចំនួនប៉ុណ្ណោះដែលត្រូវបានយកមកពិចារណា។ ជាមួយនឹងចំនួនសមាជិកដ៏ច្រើន នេះគឺជាការវិវឌ្ឍន៍គ្មានកំណត់រួចទៅហើយ។

ការវិវត្តនព្វន្ធណាមួយត្រូវបានផ្តល់ដោយរូបមន្តខាងក្រោម៖

a =kn+b ខណៈពេលដែល b និង k គឺជាលេខមួយចំនួន។

សេចក្តីថ្លែងការណ៍ដែលផ្ទុយពីនេះ គឺពិតជាពិត៖ ប្រសិនបើលំដាប់ត្រូវបានផ្តល់ដោយរូបមន្តស្រដៀងគ្នា នោះពិតជាការវិវត្តនព្វន្ធ ដែលមានលក្ខណៈសម្បត្តិ៖

  1. សមាជិកនីមួយៗនៃវឌ្ឍនភាពគឺជាមធ្យមនព្វន្ធរបស់សមាជិកមុន និងបន្ទាប់បន្សំ។
  2. ផ្ទុយ៖ ប្រសិនបើចាប់ផ្តើមពីលេខ 2 ពាក្យនីមួយៗគឺជាមធ្យមនព្វន្ធនៃពាក្យមុន និងបន្ទាប់ ពោលគឺឧ។ ប្រសិនបើលក្ខខណ្ឌត្រូវបានបំពេញ នោះលំដាប់ដែលបានផ្តល់ឱ្យគឺជាដំណើរការនព្វន្ធ។ សមភាពនេះគឺក្នុងពេលតែមួយជាសញ្ញានៃវឌ្ឍនភាព ដូច្នេះជាធម្មតាវាត្រូវបានគេហៅថាជាលក្ខណៈលក្ខណៈនៃវឌ្ឍនភាព។
    ដូចគ្នាដែរ ទ្រឹស្តីបទដែលឆ្លុះបញ្ចាំងពីទ្រព្យសម្បត្តិនេះគឺពិត៖ លំដាប់មួយគឺជាការវិវត្តនព្វន្ធ លុះត្រាតែសមភាពនេះជាការពិតសម្រាប់សមាជិកណាមួយនៃលំដាប់ដោយចាប់ផ្តើមពីលេខ 2 ។

លក្ខណៈលក្ខណៈសម្រាប់លេខទាំងបួននៃដំណើរការនព្វន្ធអាចត្រូវបានបង្ហាញដោយរូបមន្ត a + am = ak + al ប្រសិនបើ n + m = k + l (m, n, k គឺជាលេខនៃវឌ្ឍនភាព) ។

នៅក្នុងដំណើរការនព្វន្ធ ពាក្យណាមួយដែលចាំបាច់ (Nth) អាចត្រូវបានរកឃើញដោយអនុវត្តរូបមន្តខាងក្រោម៖

ឧទាហរណ៍៖ ពាក្យទីមួយ (a1) ក្នុងដំណើរការនព្វន្ធត្រូវបានផ្តល់ឱ្យ និងស្មើបី ហើយភាពខុសគ្នា (d) ស្មើនឹងបួន។ អ្នកត្រូវស្វែងរកពាក្យទីសែសិបប្រាំនៃវឌ្ឍនភាពនេះ។ a45=1+4(45-1)=177

រូបមន្ត a = ak + d (n - k) អនុញ្ញាតឱ្យអ្នកកំណត់សមាជិក n-th នៃដំណើរការនព្វន្ធតាមរយៈសមាជិក k-th ណាមួយរបស់វា ផ្តល់ថាវាត្រូវបានគេស្គាល់។

ផលបូកនៃសមាជិកនៃដំណើរការនព្វន្ធមួយ (សន្មត់ថាសមាជិកទី 1 n នៃវឌ្ឍនភាពចុងក្រោយ) ត្រូវបានគណនាដូចខាងក្រោម៖

Sn = (a1+an) n/2 ។

ប្រសិនបើពាក្យទី 1 ត្រូវបានគេស្គាល់ផងដែរនោះរូបមន្តមួយផ្សេងទៀតគឺងាយស្រួលសម្រាប់ការគណនា:

Sn = ((2a1+d(n-1))/2)*n.

ផលបូកនៃដំណើរការនព្វន្ធដែលមានពាក្យ n ត្រូវបានគណនាដូចខាងក្រោម៖

ជម្រើសនៃរូបមន្តសម្រាប់ការគណនាអាស្រ័យលើលក្ខខណ្ឌនៃភារកិច្ច និងទិន្នន័យដំបូង។

ស៊េរីធម្មជាតិនៃលេខណាមួយដូចជា 1,2,3,...,n,... គឺជាឧទាហរណ៍សាមញ្ញបំផុតនៃដំណើរការនព្វន្ធ។

បន្ថែមពីលើការវិវត្តនព្វន្ធ ក៏មានធរណីមាត្រមួយផងដែរ ដែលមានលក្ខណៈសម្បត្តិ និងលក្ខណៈរបស់វា។

ផលបូកនៃដំណើរការនព្វន្ធ។

ផលបូកនៃដំណើរការនព្វន្ធគឺជារឿងសាមញ្ញ។ ទាំងក្នុងន័យ និងរូបមន្ត។ ប៉ុន្តែមានកិច្ចការគ្រប់ប្រភេទលើប្រធានបទនេះ។ ពីបឋមទៅរឹង។

ជាដំបូង ចូរយើងដោះស្រាយជាមួយនឹងអត្ថន័យ និងរូបមន្តនៃផលបូក។ ហើយបន្ទាប់មកយើងនឹងសម្រេចចិត្ត។ សម្រាប់​ការ​រីករាយ​របស់​អ្នក​ផ្ទាល់​។​) អត្ថន័យ​នៃ​ការ​បូក​គឺ​សាមញ្ញ​ដូច​ជា​ទាប​។ ដើម្បីស្វែងរកផលបូកនៃដំណើរការនព្វន្ធ អ្នកគ្រាន់តែត្រូវបន្ថែមសមាជិកទាំងអស់របស់វាដោយប្រុងប្រយ័ត្ន។ ប្រសិនបើលក្ខខណ្ឌទាំងនេះមានតិចតួច អ្នកអាចបន្ថែមដោយគ្មានរូបមន្ត។ ប៉ុន្តែប្រសិនបើមានច្រើនឬច្រើន ... ការបន្ថែមគឺរំខាន។) ក្នុងករណីនេះរូបមន្តរក្សាទុក។

រូបមន្តបូកគឺសាមញ្ញ៖

ចូរយើងស្វែងយល់ថាតើអក្សរប្រភេទណាដែលត្រូវបានបញ្ចូលក្នុងរូបមន្ត។ នេះនឹងជម្រះបានច្រើន។

គឺជាផលបូកនៃដំណើរការនព្វន្ធ។ លទ្ធផលបន្ថែម ទាំងអស់។សមាជិក, ជាមួយ ដំបូងនៅលើ ចុងក្រោយ។វាមានសារៈសំខាន់ណាស់។ បន្ថែមយ៉ាងពិតប្រាកដ ទាំងអស់។សមាជិកជាប់ៗគ្នាដោយគ្មានចន្លោះ និងលោត។ ហើយពិតប្រាកដណាស់ ចាប់ផ្តើមពី ដំបូង។នៅក្នុងបញ្ហាដូចជាការស្វែងរកផលបូកនៃពាក្យទីបី និងទីប្រាំបី ឬផលបូកនៃពាក្យ 5 ដល់ 20 ការអនុវត្តន៍រូបមន្តដោយផ្ទាល់នឹងមានការខកចិត្ត។)

ក ១ - ដំបូងសមាជិកនៃវឌ្ឍនភាព។ អ្វីគ្រប់យ៉ាងគឺច្បាស់នៅទីនេះ វាសាមញ្ញ ដំបូងលេខជួរ។

មួយ n- ចុងក្រោយសមាជិកនៃវឌ្ឍនភាព។ លេខចុងក្រោយនៃជួរ។ មិន​មែន​ជា​ឈ្មោះ​ដែល​ធ្លាប់​ស្គាល់​នោះ​ទេ ប៉ុន្តែ​នៅ​ពេល​ដែល​បាន​អនុវត្ត​ទៅ​នឹង​ចំនួន​នេះ​គឺ​សមរម្យ​ណាស់។ បន្ទាប់មកអ្នកនឹងឃើញដោយខ្លួនឯង។

គឺជាចំនួនសមាជិកចុងក្រោយ។ វាជាការសំខាន់ក្នុងការយល់ថានៅក្នុងរូបមន្តលេខនេះ។ ស្របគ្នានឹងចំនួនពាក្យបន្ថែម។

ចូរយើងកំណត់គំនិត ចុងក្រោយសមាជិក មួយ n. សំណួរបំពេញ៖ តើសមាជិកប្រភេទណានឹង ចុងក្រោយ,ប្រសិនបើផ្តល់ឱ្យ គ្មានទីបញ្ចប់វឌ្ឍនភាពនព្វន្ធ?

សម្រាប់ចម្លើយដែលមានទំនុកចិត្ត អ្នកត្រូវយល់ពីអត្ថន័យបឋមនៃវឌ្ឍនភាពនព្វន្ធ ហើយ... អានកិច្ចការដោយប្រុងប្រយ័ត្ន!)

ក្នុងកិច្ចការស្វែងរកផលបូកនៃដំណើរការនព្វន្ធ ពាក្យចុងក្រោយតែងតែលេចឡើង (ដោយផ្ទាល់ ឬដោយប្រយោល)។ ដែលគួរតែត្រូវបានកំណត់។បើមិនដូច្នោះទេ ចំនួនកំណត់ជាក់លាក់ គ្រាន់តែមិនមាន។ចំពោះដំណោះស្រាយ វាមិនមានបញ្ហាអ្វីទេដែលការវិវឌ្ឍន៍ត្រូវបានផ្តល់ឱ្យ៖ កំណត់ ឬគ្មានកំណត់។ វាមិនមានបញ្ហាថាតើវាត្រូវបានផ្តល់ឱ្យដោយរបៀបណាទេ: ដោយស៊េរីនៃលេខឬដោយរូបមន្តនៃសមាជិកទី n ។

អ្វីដែលសំខាន់បំផុតគឺត្រូវយល់ថារូបមន្តដំណើរការពីពាក្យដំបូងនៃការវិវត្តទៅជាពាក្យដែលមានលេខ ន.តាមពិតឈ្មោះពេញនៃរូបមន្តមើលទៅដូចនេះ៖ ផលបូកនៃពាក្យ n ដំបូងនៃដំណើរការនព្វន្ធ។ចំនួននៃសមាជិកដំបូងបំផុតទាំងនេះ i.e. ត្រូវបានកំណត់ដោយភារកិច្ច។ នៅក្នុងភារកិច្ច ព័ត៌មានដ៏មានតម្លៃទាំងអស់នេះត្រូវបានអ៊ិនគ្រីបជាញឹកញាប់ បាទ... ប៉ុន្តែគ្មានអ្វីទេ នៅក្នុងឧទាហរណ៍ខាងក្រោម យើងនឹងបង្ហាញអាថ៌កំបាំងទាំងនេះ។ )

ឧទាហរណ៍នៃកិច្ចការសម្រាប់ផលបូកនៃដំណើរការនព្វន្ធ។

ជាដំបូងព័ត៌មានមានប្រយោជន៍៖

ការលំបាកចម្បងក្នុងកិច្ចការសម្រាប់ផលបូកនៃដំណើរការនព្វន្ធ គឺការកំណត់ត្រឹមត្រូវនៃធាតុនៃរូបមន្ត។

អ្នកនិពន្ធនៃកិច្ចការបានអ៊ិនគ្រីបធាតុទាំងនេះជាមួយនឹងការស្រមើលស្រមៃគ្មានព្រំដែន។) រឿងសំខាន់នៅទីនេះគឺមិនត្រូវភ័យខ្លាចទេ។ ការស្វែងយល់ពីខ្លឹមសារនៃធាតុ វាគ្រប់គ្រាន់ហើយក្នុងការបកស្រាយពួកវា សូមក្រឡេកមើលឧទាហរណ៍មួយចំនួនលម្អិត។ ចូរចាប់ផ្តើមជាមួយនឹងកិច្ចការដែលផ្អែកលើ GIA ពិតប្រាកដ។

1. ការវិវត្តនព្វន្ធត្រូវបានផ្តល់ឱ្យដោយលក្ខខណ្ឌ: a n = 2n-3.5 ។ ស្វែងរកផលបូកនៃ 10 ពាក្យដំបូង។

ការងារ​ល្អ។ ងាយស្រួល) ដើម្បីកំណត់បរិមាណតាមរូបមន្ត តើយើងត្រូវដឹងអ្វីខ្លះ? សមាជិកដំបូង ក ១, អាណត្តិចុងក្រោយ មួយ nបាទចំនួននៃពាក្យចុងក្រោយ ន.

កន្លែងដែលត្រូវទទួលបានលេខសមាជិកចុងក្រោយ ? បាទនៅកន្លែងដដែលក្នុងលក្ខខណ្ឌ! វានិយាយថារកផលបូក សមាជិក 10 នាក់ដំបូង។អញ្ចឹងតើវានឹងជាលេខអ្វី ចុងក្រោយ,សមាជិកទីដប់?) អ្នកនឹងមិនជឿទេ លេខរបស់គាត់គឺលេខដប់!) ដូច្នេះ ជំនួសឱ្យ មួយ nយើងនឹងជំនួសរូបមន្ត មួយ 10ប៉ុន្តែផ្ទុយទៅវិញ - ដប់។ ជាថ្មីម្តងទៀត ចំនួនសមាជិកចុងក្រោយគឺដូចគ្នានឹងចំនួនសមាជិកដែរ។

វានៅតែត្រូវកំណត់ ក ១និង មួយ 10. នេះត្រូវបានគណនាយ៉ាងងាយស្រួលដោយរូបមន្តនៃពាក្យទី 9 ដែលត្រូវបានផ្តល់ឱ្យនៅក្នុងសេចក្តីថ្លែងការណ៍បញ្ហា។ មិនដឹងធ្វើម៉េច? ទស្សនាមេរៀនមុនដោយគ្មាននេះ - គ្មានអ្វីសោះ។

ក ១= 2 1 − 3.5 = −1.5

មួយ 10\u003d 2 10 - 3.5 \u003d 16.5

= ស ១០.

យើងបានរកឃើញអត្ថន័យនៃធាតុទាំងអស់នៃរូបមន្តសម្រាប់ផលបូកនៃដំណើរការនព្វន្ធមួយ។ វានៅសល់ដើម្បីជំនួសពួកគេហើយរាប់:

នោះហើយជាអ្វីទាំងអស់ដែលមានចំពោះវា។ ចម្លើយ៖ ៧៥ ។

កិច្ចការមួយទៀតផ្អែកលើ GIA ។ ស្មុគស្មាញបន្តិច៖

2. ដែលបានផ្ដល់ឱ្យនូវវឌ្ឍនភាពនព្វន្ធ (a n) ភាពខុសគ្នាគឺ 3.7; a 1 \u003d 2.3 ។ ស្វែងរកផលបូកនៃ 15 លក្ខខណ្ឌដំបូង។

យើងសរសេររូបមន្តបូកភ្លាមៗ៖

រូបមន្តនេះអនុញ្ញាតឱ្យយើងស្វែងរកតម្លៃនៃសមាជិកណាមួយដោយលេខរបស់វា។ យើងកំពុងស្វែងរកការជំនួសដ៏សាមញ្ញមួយ៖

a 15 \u003d 2.3 + (15-1) 3.7 \u003d 54.1

វានៅសល់ដើម្បីជំនួសធាតុទាំងអស់នៅក្នុងរូបមន្តសម្រាប់ផលបូកនៃដំណើរការនព្វន្ធ ហើយគណនាចម្លើយ៖

ចម្លើយ៖ ៤២៣ ។

ដោយវិធីនេះប្រសិនបើនៅក្នុងរូបមន្តបូកជំនួសឱ្យ មួយ nគ្រាន់តែជំនួសរូបមន្តនៃពាក្យទី 9 យើងទទួលបាន:

យើងផ្តល់ឱ្យស្រដៀងគ្នា យើងទទួលបានរូបមន្តថ្មីសម្រាប់ផលបូកនៃសមាជិកនៃដំណើរការនព្វន្ធមួយ៖

ដូចដែលអ្នកអាចឃើញពាក្យទី 9 មិនត្រូវបានទាមទារនៅទីនេះទេ។ មួយ n. ក្នុង​កិច្ចការ​ខ្លះ រូបមន្ត​នេះ​ជួយ​ចេញ​បាន​ច្រើន បាទ... អ្នក​អាច​ចាំ​រូបមន្ត​នេះ​បាន។ ហើយ​អ្នក​អាច​ដក​វា​ចេញ​នៅ​ពេល​ត្រឹមត្រូវ ដូច​ជា​នៅ​ទីនេះ។ យ៉ាងណាមិញ រូបមន្ត​សម្រាប់​ផលបូក និង​រូបមន្ត​សម្រាប់​ពាក្យ​ទី​៩ ត្រូវតែ​ចងចាំ​តាម​គ្រប់​មធ្យោបាយ​ទាំងអស់​។​)

ឥឡូវនេះភារកិច្ចនៅក្នុងទម្រង់នៃការអ៊ិនគ្រីបខ្លី):

3. រកផលបូកនៃលេខពីរខ្ទង់វិជ្ជមានទាំងអស់ដែលជាគុណនឹងបី។

ម៉េច! គ្មាន​សមាជិក​ដំបូង គ្មាន​ចុង​ក្រោយ គ្មាន​ការ​រីក​ចម្រើន​ទាល់​តែ​សោះ... រស់​យ៉ាង​ណា!?

អ្នកនឹងត្រូវគិតដោយក្បាលរបស់អ្នក ហើយដកធាតុទាំងអស់ចេញពីលក្ខខណ្ឌនៃផលបូកនៃដំណើរការនព្វន្ធ។ តើអ្វីទៅជាលេខពីរខ្ទង់ - យើងដឹង។ ពួកវាមានពីរលេខ។) តើលេខពីរខ្ទង់ណានឹង ដំបូង? 10 សន្មត។ ) រឿងចុងក្រោយលេខពីរខ្ទង់? 99 ពិតណាស់! លេខបីខ្ទង់នឹងតាមគាត់...

គុណនៃបី... ហ៊ឹម... ទាំងនេះគឺជាលេខដែលចែកស្មើៗគ្នាដោយបី នៅទីនេះ! ដប់មិនបែងចែកដោយបី 11 មិនបែងចែក ... 12 ... បែងចែក! ដូច្នេះ មាន​អ្វី​មួយ​កំពុង​កើត​ឡើង។ អ្នកអាចសរសេរស៊េរីរួចហើយតាមលក្ខខណ្ឌនៃបញ្ហា៖

12, 15, 18, 21, ... 96, 99.

តើ​ស៊េរី​នេះ​នឹង​ជា​ដំណើរការ​នព្វន្ធ​ដែរ​ឬ​ទេ? ពិតប្រាកដ​ណាស់! ពាក្យនីមួយៗខុសគ្នាពីពាក្យមុនយ៉ាងតឹងរ៉ឹងដោយបី។ ប្រសិនបើ 2 ឬ 4 ត្រូវបានបន្ថែមទៅពាក្យ និយាយថា លទ្ធផល i.e. លេខថ្មីនឹងលែងត្រូវចែកដោយ 3 ទៀតហើយ។ អ្នកអាចកំណត់ពីភាពខុសគ្នានៃដំណើរការនព្វន្ធទៅ heap ភ្លាមៗ៖ d = ៣.មានប្រយោជន៍!)

ដូច្នេះ យើងអាចសរសេរដោយសុវត្ថិភាពនូវប៉ារ៉ាម៉ែត្រវឌ្ឍនភាពមួយចំនួន៖

តើលេខនឹងជាអ្វី សមាជិកចុងក្រោយ? នរណាម្នាក់ដែលគិតថាលេខ 99 គឺខុសធ្ងន់ធ្ងរ ... លេខ - ពួកគេតែងតែជាប់ៗគ្នា ហើយសមាជិករបស់យើងលោតពីលើកំពូលទាំងបី។ ពួកគេមិនត្រូវគ្នា។

មានដំណោះស្រាយពីរនៅទីនេះ។ មធ្យោបាយមួយគឺសម្រាប់ការឧស្សាហ៍ព្យាយាម។ អ្នកអាចលាបពណ៌វឌ្ឍនភាព ស៊េរីលេខទាំងមូល និងរាប់ចំនួនពាក្យដោយម្រាមដៃរបស់អ្នក។) វិធីទីពីរគឺសម្រាប់អ្នកគិត។ អ្នកត្រូវចាំរូបមន្តសម្រាប់ពាក្យទី 0 ។ ប្រសិនបើរូបមន្តត្រូវបានអនុវត្តចំពោះបញ្ហារបស់យើង យើងទទួលបានថា 99 គឺជាសមាជិកទី 30 នៃវឌ្ឍនភាព។ ទាំងនោះ។ n = 30 ។

យើងមើលរូបមន្តសម្រាប់ផលបូកនៃដំណើរការនព្វន្ធ៖

យើងមើលហើយរីករាយ។) យើងបានដកអ្វីៗគ្រប់យ៉ាងដែលចាំបាច់សម្រាប់ការគណនាចំនួនពីលក្ខខណ្ឌនៃបញ្ហា៖

ក ១= 12.

មួយ 30= 99.

= ស ៣០.

អ្វីដែលនៅសល់គឺលេខនព្វន្ធបឋម។ ជំនួសលេខក្នុងរូបមន្ត ហើយគណនា៖

ចម្លើយ៖ ១៦៦៥

ប្រភេទល្បែងផ្គុំរូបពេញនិយមមួយទៀត៖

4. ការវិវត្តនព្វន្ធត្រូវបានផ្តល់ឱ្យ៖

-21,5; -20; -18,5; -17; ...

រកផលបូកនៃពាក្យពីលេខម្ភៃដល់សាមសិបបួន។

យើងមើលរូបមន្តផលបូកហើយ...យើងអន់ចិត្ត។) រូបមន្តខ្ញុំសូមរំលឹកអ្នក គណនាផលបូក ពីដំបូងសមាជិក។ ហើយនៅក្នុងបញ្ហាអ្នកត្រូវគណនាផលបូក ចាប់តាំងពីទសវត្សរ៍ទី 20 ...រូបមន្តនឹងមិនដំណើរការទេ។

ជា​ការ​ពិត អ្នក​អាច​គូរ​ដំណើរ​ការ​ទាំង​មូល​ជាប់​គ្នា ហើយ​ដាក់​សមាជិក​ពី 20 ទៅ 34 នាក់​។ ប៉ុន្តែ… ដូចម្ដេច​ដែល​វា​ចេញ​ទៅ​ដោយ​ឆោត​ល្ងង់ និង​យូរ​ហើយ​មែន​ទេ?)

មានដំណោះស្រាយឆើតឆាយជាង។ ចូរបំបែកស៊េរីរបស់យើងជាពីរផ្នែក។ ផ្នែកទីមួយនឹង ចាប់ពីពាក្យទីមួយដល់ទីដប់ប្រាំបួន។ផ្នែកទីពីរ - ម្ភៃទៅសាមសិបបួន។វាច្បាស់ណាស់ថាប្រសិនបើយើងគណនាផលបូកនៃលក្ខខណ្ឌនៃផ្នែកទីមួយ ស ១-១៩ចូរយើងបន្ថែមវាទៅផលបូកនៃសមាជិកនៃផ្នែកទីពីរ ស ២០-៣៤យើងទទួលបានផលបូកនៃវឌ្ឍនភាពពីពាក្យទីមួយដល់សាមសិបបួន ស ១-៣៤. ដូចនេះ៖

ស ១-១៩ + ស ២០-៣៤ = ស ១-៣៤

នេះបង្ហាញថាដើម្បីរកផលបូក ស ២០-៣៤អាចត្រូវបានធ្វើដោយការដកសាមញ្ញ

ស ២០-៣៤ = ស ១-៣៤ - ស ១-១៩

ផលបូកទាំងពីរនៅខាងស្តាំត្រូវបានពិចារណា ពីដំបូងសមាជិក, i.e. រូបមន្តផលបូកស្តង់ដារគឺអាចអនុវត្តបានចំពោះពួកគេ។ តើយើងចាប់ផ្តើមទេ?

យើងទាញយកប៉ារ៉ាម៉ែត្រវឌ្ឍនភាពចេញពីលក្ខខណ្ឌការងារ៖

d = 1.5 ។

ក ១= -21,5.

ដើម្បីគណនាផលបូកនៃពាក្យ 19 និង 34 ដំបូង យើងនឹងត្រូវការពាក្យទី 19 និង 34 ។ យើង​រាប់​វា​តាម​រូបមន្ត​នៃ​ពាក្យ​ទី​៩ ដូច​ក្នុង​បញ្ហា​ទី​២៖

មួយ 19\u003d -21.5 + (19-1) 1.5 \u003d 5.5

មួយ 34\u003d -21.5 + (34-1) 1.5 \u003d 28

មិនមានអ្វីនៅសល់ទេ។ ដកផលបូកនៃ 19 ពីផលបូកនៃ 34 ឃ្លា៖

S 20-34 = S 1-34 - S 1-19 = 110.5 - (-152) = 262.5

ចម្លើយ៖ ២៦២.៥

ចំណាំសំខាន់មួយ! មានមុខងារមានប្រយោជន៍ខ្លាំងណាស់ក្នុងការដោះស្រាយបញ្ហានេះ។ ជំនួសឱ្យការគណនាដោយផ្ទាល់ អ្វីដែលអ្នកត្រូវការ (ស ២០-៣៤)យើងបានរាប់ អ្វីដែលវាហាក់ដូចជាមិនត្រូវការ - S 1-19 ។ហើយបន្ទាប់មកពួកគេបានកំណត់ ស ២០-៣៤បោះចោលអ្វីដែលមិនចាំបាច់ចេញពីលទ្ធផលពេញលេញ។ "ក្លែងបន្លំត្រចៀក" បែបនេះច្រើនតែរក្សាទុកក្នុងល្បែងផ្គុំរូបអាក្រក់។ )

នៅក្នុងមេរៀននេះ យើងបានពិនិត្យមើលបញ្ហាដែលវាគ្រប់គ្រាន់ដើម្បីយល់ពីអត្ថន័យនៃផលបូកនៃដំណើរការនព្វន្ធមួយ។ ជាការប្រសើរណាស់, អ្នកត្រូវដឹងពីរូបមន្តពីរបី។ )

ដំបូន្មានជាក់ស្តែង៖

នៅពេលដោះស្រាយបញ្ហាណាមួយសម្រាប់ផលបូកនៃដំណើរការនព្វន្ធ ខ្ញុំសូមណែនាំឱ្យសរសេរភ្លាមៗនូវរូបមន្តសំខាន់ៗពីរពីប្រធានបទនេះ។

រូបមន្តនៃពាក្យទី 1:

រូបមន្តទាំងនេះនឹងប្រាប់អ្នកភ្លាមៗពីអ្វីដែលត្រូវរកមើល តើត្រូវគិតក្នុងទិសដៅណា ដើម្បីដោះស្រាយបញ្ហា។ ជួយ

ហើយឥឡូវនេះភារកិច្ចសម្រាប់ដំណោះស្រាយឯករាជ្យ។

5. រកផលបូកនៃលេខពីរខ្ទង់ទាំងអស់ដែលមិនត្រូវបានបែងចែកដោយបី។

ឡូយ?) ព័ត៌មានជំនួយត្រូវបានលាក់នៅក្នុងកំណត់ចំណាំចំពោះបញ្ហា 4. ជាការប្រសើរណាស់ បញ្ហាទី 3 នឹងជួយ។

6. ការវិវត្តនព្វន្ធត្រូវបានផ្តល់ឱ្យដោយលក្ខខណ្ឌ: a 1 =-5.5; a n+1 = a n +0.5 ។ ស្វែងរកផលបូកនៃ 24 លក្ខខណ្ឌដំបូង។

មិនធម្មតា?) នេះគឺជារូបមន្តដែលកើតឡើងដដែលៗ។ អ្នកអាចអានអំពីវានៅក្នុងមេរៀនមុន។ កុំព្រងើយកន្តើយនឹងតំណភ្ជាប់នេះ ល្បែងផ្គុំរូបបែបនេះត្រូវបានរកឃើញជាញឹកញាប់នៅក្នុង GIA ។

7. Vasya សន្សំប្រាក់សម្រាប់ថ្ងៃឈប់សម្រាក។ ជាច្រើនដូចជា 4550 rubles! ហើយខ្ញុំបានសម្រេចចិត្តផ្តល់ឱ្យមនុស្សជាទីស្រឡាញ់បំផុត (ខ្លួនឯង) ពីរបីថ្ងៃនៃសុភមង្គល) ។ រស់នៅស្អាតដោយមិនបដិសេធខ្លួនឯងអ្វីទាំងអស់។ ចំណាយ 500 រូប្លិនៅថ្ងៃដំបូងហើយចំណាយ 50 រូប្លិ៍បន្ថែមទៀតនៅថ្ងៃបន្តបន្ទាប់ជាងនៅថ្ងៃមុន! រហូតដល់លុយអស់។ តើ Vasya មានសុភមង្គលប៉ុន្មានថ្ងៃ?

តើវាពិបាកទេ?) រូបមន្តបន្ថែមពីកិច្ចការទី 2 នឹងជួយ។

ចំលើយ (ក្នុងភាពច្របូកច្របល់): 7, 3240, 6 ។

ប្រសិនបើអ្នកចូលចិត្តគេហទំព័រនេះ...

និយាយអីញ្ចឹង ខ្ញុំមានគេហទំព័រគួរឱ្យចាប់អារម្មណ៍ពីរបីទៀតសម្រាប់អ្នក។ )

អ្នកអាចអនុវត្តការដោះស្រាយឧទាហរណ៍ និងស្វែងរកកម្រិតរបស់អ្នក។ ការធ្វើតេស្តជាមួយការផ្ទៀងផ្ទាត់ភ្លាមៗ។ ការរៀន - ដោយចំណាប់អារម្មណ៍!

អ្នកអាចស្គាល់មុខងារ និងនិស្សន្ទវត្ថុ។

កម្រិតដំបូង

វឌ្ឍនភាពនព្វន្ធ។ ទ្រឹស្តីលម្អិតជាមួយឧទាហរណ៍ (2019)

លំដាប់លេខ

ដូច្នេះ ចូរយើងអង្គុយចុះ ហើយចាប់ផ្តើមសរសេរលេខខ្លះ។ ឧទាហរណ៍:
អ្នកអាចសរសេរលេខណាមួយ ហើយអាចមានច្រើនតាមដែលអ្នកចូលចិត្ត (ក្នុងករណីរបស់យើង ពួកវា)។ មិនថាយើងសរសេរលេខប៉ុន្មានទេ យើងអាចនិយាយបានថាមួយណាជាលេខទីមួយ លេខទីពីរ ហើយបន្តទៅលេខចុងក្រោយ នោះគឺយើងអាចដាក់លេខបាន។ នេះជាឧទាហរណ៍នៃលំដាប់លេខ៖

លំដាប់លេខ
ឧទាហរណ៍សម្រាប់លំដាប់របស់យើង៖

លេខដែលបានកំណត់គឺជាក់លាក់សម្រាប់លេខលំដាប់តែមួយប៉ុណ្ណោះ។ នៅក្នុងពាក្យផ្សេងទៀត មិនមានលេខបីទីពីរនៅក្នុងលំដាប់នោះទេ។ លេខទីពីរ (ដូចជាលេខ -th) គឺតែងតែដូចគ្នា។
លេខដែលមានលេខត្រូវបានគេហៅថាសមាជិក -th នៃលំដាប់។

ជាធម្មតា យើងហៅលំដាប់ទាំងមូលថា អក្សរខ្លះ (ឧទាហរណ៍) ហើយសមាជិកនីមួយៗនៃលំដាប់នេះ - អក្សរដូចគ្នាដែលមានលិបិក្រមស្មើនឹងចំនួនសមាជិកនេះ៖ .

ក្នុងករណីរបស់យើង៖

ឧបមាថាយើងមានលំដាប់លេខដែលភាពខុសគ្នារវាងលេខជាប់គ្នាគឺដូចគ្នា និងស្មើគ្នា។
ឧទាហរណ៍:

ល។
លំដាប់លេខបែបនេះត្រូវបានគេហៅថា ដំណើរការនព្វន្ធ។
ពាក្យ "វឌ្ឍនភាព" ត្រូវបានណែនាំដោយអ្នកនិពន្ធរ៉ូម៉ាំង Boethius នៅដើមសតវត្សទី 6 ហើយត្រូវបានគេយល់ក្នុងន័យទូលំទូលាយថាជាលំដាប់លេខគ្មានទីបញ្ចប់។ ឈ្មោះ "នព្វន្ធ" ត្រូវបានផ្ទេរពីទ្រឹស្តីនៃសមាមាត្របន្តដែលក្រិកបុរាណបានចូលរួម។

នេះគឺជាលំដាប់លេខ ដែលសមាជិកនីមួយៗស្មើនឹងលេខមុន ត្រូវបានបន្ថែមដោយលេខដូចគ្នា។ លេខនេះត្រូវបានគេហៅថាភាពខុសគ្នានៃដំណើរការនព្វន្ធ និងត្រូវបានតំណាង។

ព្យាយាមកំណត់ថាតើលំដាប់លេខមួយណាជាដំណើរការនព្វន្ធ ហើយមួយណាមិនមែនជា៖

ក)
ខ)
គ)
ឃ)

យល់ទេ? ប្រៀបធៀបចម្លើយរបស់យើង៖
គឺវឌ្ឍនភាពនព្វន្ធ - ខ, គ។
មិន​មែនវឌ្ឍនភាពនព្វន្ធ - a, d ។

ចូរយើងត្រលប់ទៅវឌ្ឍនភាពដែលបានផ្តល់ឱ្យ () ហើយព្យាយាមស្វែងរកតម្លៃនៃសមាជិកទី 1 របស់វា។ មាន ពីរវិធីស្វែងរកវា។

1. វិធីសាស្រ្ត

យើង​អាច​បន្ថែម​ទៅ​តម្លៃ​មុន​នៃ​លេខ​ដំណើរ​ការ​រហូត​ដល់​យើង​ឈាន​ដល់​វគ្គ​ទី​មួយ​នៃ​ការ​វិវត្ត។ ជាការល្អដែលយើងមិនមានអ្វីច្រើនដើម្បីសង្ខេប - មានតែតម្លៃបីប៉ុណ្ណោះ៖

ដូច្នេះ សមាជិក -th នៃដំណើរការនព្វន្ធដែលបានពិពណ៌នាគឺស្មើនឹង។

2. វិធីសាស្រ្ត

ចុះ​បើ​យើង​ត្រូវ​ការ​ស្វែង​រក​តម្លៃ​នៃ​ពាក្យ​ទី​មួយ​នៃ​ការ​រីក​ចម្រើន? ការបូកសរុបនឹងនាំយើងលើសពីមួយម៉ោង ហើយវាមិនមែនជាការពិតដែលថាយើងនឹងមិនមានកំហុសនៅពេលបន្ថែមលេខនោះទេ។
ជាការពិតណាស់ គណិតវិទូបានបង្កើតវិធីមួយដែលអ្នកមិនចាំបាច់បន្ថែមភាពខុសគ្នានៃដំណើរការនព្វន្ធទៅនឹងតម្លៃមុននោះទេ។ សូមក្រឡេកមើលរូបភាពដែលបានគូរឲ្យជិត… ប្រាកដណាស់អ្នកបានកត់សម្គាល់ឃើញគំរូជាក់លាក់មួយរួចហើយ ពោលគឺ៖

ជាឧទាហរណ៍ សូមមើលអ្វីដែលបង្កើតតម្លៃនៃសមាជិក -th នៃដំណើរការនព្វន្ធនេះ៖


ក្នុង​ន័យ​ផ្សេងទៀត:

ព្យាយាមស្វែងរកដោយឯករាជ្យតាមវិធីនេះតម្លៃនៃសមាជិកនៃដំណើរការនព្វន្ធនេះ។

គណនា? ប្រៀបធៀបធាតុរបស់អ្នកជាមួយចម្លើយ៖

សូមយកចិត្តទុកដាក់ថា អ្នកទទួលបានលេខដូចគ្នាទៅនឹងវិធីសាស្ត្រមុន នៅពេលដែលយើងបន្ថែមសមាជិកនៃដំណើរការនព្វន្ធជាបន្តបន្ទាប់ទៅតម្លៃមុន។
ចូរយើងព្យាយាម "ធ្វើឱ្យមានលក្ខណៈផ្ទាល់ខ្លួន" រូបមន្តនេះ - យើងនាំយកវាទៅជាទម្រង់ទូទៅហើយទទួលបាន:

សមីការវឌ្ឍនភាពនព្វន្ធ។

ការវិវត្តនព្វន្ធគឺកើនឡើង ឬថយចុះ។

ការកើនឡើង- វឌ្ឍនភាពដែលតម្លៃបន្តបន្ទាប់នីមួយៗនៃលក្ខខណ្ឌគឺធំជាងពាក្យមុន។
ឧទាហរណ៍:

ចុះ- វឌ្ឍនភាពដែលតម្លៃបន្តបន្ទាប់នីមួយៗនៃលក្ខខណ្ឌគឺតិចជាងតម្លៃមុន។
ឧទាហរណ៍:

រូបមន្តដែលបានទាញយកត្រូវបានប្រើក្នុងការគណនានៃពាក្យទាំងការកើនឡើង និងបន្ថយនៃដំណើរការនព្វន្ធ។
ចូរយើងពិនិត្យមើលវានៅក្នុងការអនុវត្ត។
យើង​ត្រូវ​បាន​ផ្តល់​ឱ្យ​នូវ​ការ​រីក​ចម្រើន​នព្វន្ធ​ដែល​មាន​ចំនួន​ដូច​ខាង​ក្រោម​:


ចាប់តាំងពីពេលនោះមក៖

ដូច្នេះហើយ យើង​ត្រូវ​បាន​គេ​ជឿជាក់​ថា​រូបមន្ត​ដំណើរការ​ទាំង​ក្នុង​ការ​បន្ថយ និង​ក្នុង​ការ​បង្កើន​ការ​រីក​ចម្រើន​នព្វន្ធ។
ព្យាយាមស្វែងរកសមាជិក -th និង -th នៃដំណើរការនព្វន្ធនេះដោយខ្លួនឯង

តោះប្រៀបធៀបលទ្ធផល៖

ទ្រព្យសម្បត្តិនៃដំណើរការនព្វន្ធ

ចូរធ្វើឱ្យកិច្ចការស្មុគស្មាញ - យើងទទួលបានទ្រព្យសម្បត្តិនៃដំណើរការនព្វន្ធ។
ឧបមាថាយើងត្រូវបានផ្តល់លក្ខខណ្ឌដូចខាងក្រោមៈ
- វឌ្ឍនភាពនព្វន្ធ, ស្វែងរកតម្លៃ។
វាងាយស្រួលណាស់អ្នកនិយាយ ហើយចាប់ផ្តើមរាប់តាមរូបមន្តដែលអ្នកដឹងរួចហើយ៖

អនុញ្ញាតឱ្យ a, បន្ទាប់មក:

ពិត​ជា​ត្រឹម​ត្រូវ។ វាប្រែថាយើងរកឃើញដំបូងបន្ទាប់មកបន្ថែមវាទៅលេខដំបូងហើយទទួលបានអ្វីដែលយើងកំពុងស្វែងរក។ ប្រសិនបើការវិវត្តត្រូវបានតំណាងដោយតម្លៃតូច នោះគ្មានអ្វីស្មុគស្មាញអំពីវាទេ ប៉ុន្តែចុះយ៉ាងណាបើយើងត្រូវបានគេផ្តល់លេខនៅក្នុងលក្ខខណ្ឌ? យល់ស្រប វាមានលទ្ធភាពធ្វើកំហុសក្នុងការគណនា។
ឥឡូវនេះគិតថាតើវាអាចទៅរួចទេក្នុងការដោះស្រាយបញ្ហានេះក្នុងមួយជំហានដោយប្រើរូបមន្តណាមួយ? ជាការពិតណាស់ បាទ ហើយយើងនឹងព្យាយាមយកវាចេញឥឡូវនេះ។

ចូរយើងសម្គាល់ពាក្យដែលចង់បាននៃវឌ្ឍនភាពនព្វន្ធ ដូចដែលយើងដឹងពីរូបមន្តសម្រាប់ស្វែងរកវា - នេះគឺជារូបមន្តដូចគ្នាដែលយើងបានមកពីដំបូង៖
បន្ទាប់មក៖

  • សមាជិកមុននៃវឌ្ឍនភាពគឺ៖
  • រយៈពេលបន្ទាប់នៃវឌ្ឍនភាពគឺ៖

ចូរសរុបសមាជិកមុន និងបន្ទាប់នៃវឌ្ឍនភាព៖

វាប្រែថាផលបូកនៃសមាជិកមុននិងបន្តបន្ទាប់នៃវឌ្ឍនភាពគឺពីរដងនៃតម្លៃនៃសមាជិកនៃវឌ្ឍនភាពដែលមានទីតាំងនៅចន្លោះពួកគេ។ ម្យ៉ាងវិញទៀត ដើម្បីស្វែងរកតម្លៃនៃសមាជិកវឌ្ឍនភាពជាមួយនឹងតម្លៃដែលបានស្គាល់ពីមុន និងបន្តបន្ទាប់ វាចាំបាច់ក្នុងការបន្ថែមពួកវា និងបែងចែកដោយ។

ត្រូវហើយ យើងទទួលបានលេខដូចគ្នា។ តោះជួសជុលសម្ភារៈ។ គណនាតម្លៃសម្រាប់វឌ្ឍនភាពដោយខ្លួនឯង ព្រោះវាមិនពិបាកទាល់តែសោះ។

ល្អ​ណាស់! អ្នកដឹងស្ទើរតែទាំងអស់អំពីវឌ្ឍនភាព! វានៅសល់ដើម្បីរកឱ្យឃើញនូវរូបមន្តតែមួយគត់ដែលយោងទៅតាមរឿងព្រេងអ្នកគណិតវិទូដ៏អស្ចារ្យបំផុតគ្រប់ពេលគឺ "ស្តេចនៃគណិតវិទូ" - Karl Gauss ងាយស្រួលកាត់ដោយខ្លួនគាត់ ...

នៅពេល Carl Gauss មានអាយុ 9 ឆ្នាំ គ្រូបង្រៀនដែលរវល់ពិនិត្យការងាររបស់សិស្សមកពីថ្នាក់ផ្សេងទៀតបានសួរកិច្ចការខាងក្រោមនៅក្នុងមេរៀន៖ "គណនាផលបូកនៃចំនួនធម្មជាតិទាំងអស់ចាប់ពី (យោងតាមប្រភពផ្សេងទៀតរហូតដល់) រួមបញ្ចូល។ " អ្វីដែលជាការភ្ញាក់ផ្អើលរបស់គ្រូនៅពេលដែលសិស្សរបស់គាត់ម្នាក់ (វាគឺជាលោក Karl Gauss) បន្ទាប់ពីមួយនាទីបានផ្តល់ចម្លើយត្រឹមត្រូវចំពោះភារកិច្ចខណៈពេលដែលមិត្តរួមថ្នាក់ភាគច្រើននៃអ្នកហ៊ានបន្ទាប់ពីការគណនាយូរបានទទួលលទ្ធផលខុស ...

Young Carl Gauss បានកត់សម្គាល់នូវគំរូមួយដែលអ្នកអាចកត់សម្គាល់បានយ៉ាងងាយស្រួល។
ចូរនិយាយថាយើងមានដំណើរការនព្វន្ធដែលមានសមាជិក -ti៖ យើងត្រូវស្វែងរកផលបូកនៃសមាជិកដែលបានផ្តល់ឱ្យនៃដំណើរការនព្វន្ធ។ ជាការពិតណាស់ យើងអាចបូកសរុបតម្លៃទាំងអស់ដោយដៃ ប៉ុន្តែចុះយ៉ាងណាបើយើងត្រូវស្វែងរកផលបូកនៃលក្ខខណ្ឌរបស់វានៅក្នុងកិច្ចការ ដូចដែល Gauss កំពុងស្វែងរក?

ចូរ​ពណ៌នា​អំពី​វឌ្ឍនភាព​ដែល​បាន​ផ្តល់​ឲ្យ​យើង។ មើលឱ្យជិតនូវលេខដែលបានបន្លិច ហើយព្យាយាមធ្វើប្រតិបត្តិការគណិតវិទ្យាផ្សេងៗជាមួយពួកគេ។


ព្យាយាម? តើអ្នកបានកត់សម្គាល់អ្វី? ត្រឹមត្រូវ! ផលបូករបស់ពួកគេគឺស្មើគ្នា


ឥឡូវ​ឆ្លើយ​ថា តើ​គូ​បែប​នេះ​នឹង​មាន​ប៉ុន្មាន​គូ​ក្នុង​ដំណើរ​ដែល​បាន​ផ្ដល់​ឲ្យ​យើង? ជាការពិតណាស់ ពាក់កណ្តាលនៃលេខទាំងអស់ នោះគឺ។
ដោយផ្អែកលើការពិតដែលថាផលបូកនៃពាក្យពីរនៃដំណើរការនព្វន្ធគឺស្មើគ្នា ហើយគូស្មើគ្នាដូចគ្នា យើងទទួលបានថាផលបូកសរុបគឺស្មើនឹង៖
.
ដូច្នេះ រូបមន្តសម្រាប់ផលបូកនៃលក្ខខណ្ឌដំបូងនៃដំណើរការនព្វន្ធណាមួយនឹងមានៈ

ក្នុង​បញ្ហា​ខ្លះ យើង​មិន​ដឹង​ពាក្យ​ទី​ទេ ប៉ុន្តែ​យើង​ដឹង​ពី​ភាព​ខុស​គ្នា​នៃ​ការ​វិវត្ត។ ព្យាយាមជំនួសក្នុងរូបមន្តបូកដែលជារូបមន្តនៃសមាជិកទី។
តើអ្នកទទួលបានអ្វីខ្លះ?

ល្អ​ណាស់! ឥឡូវសូមត្រលប់ទៅបញ្ហាដែលត្រូវបានផ្តល់ឱ្យលោក Carl Gauss៖ គណនាដោយខ្លួនឯងថាតើផលបូកនៃលេខដែលចាប់ផ្តើមពី -th គឺនិងផលបូកនៃលេខដែលចាប់ផ្តើមពី -th ។

តើអ្នកទទួលបានប៉ុន្មាន?
Gauss បានប្រែក្លាយថាផលបូកនៃលក្ខខណ្ឌគឺស្មើគ្នាហើយផលបូកនៃលក្ខខណ្ឌ។ នោះ​ជា​របៀប​ដែល​អ្នក​សម្រេច​ចិត្ត?

តាមពិត រូបមន្តសម្រាប់ផលបូកនៃសមាជិកនៃដំណើរការនព្វន្ធត្រូវបានបញ្ជាក់ដោយអ្នកវិទ្យាសាស្ត្រក្រិកបុរាណ Diophantus នៅសតវត្សរ៍ទី 3 ហើយពេញមួយរយៈពេលនេះ មនុស្សដែលមានប្រាជ្ញាបានប្រើលក្ខណៈសម្បត្តិនៃដំណើរការនព្វន្ធដោយកម្លាំង និងមេ។
ជាឧទាហរណ៍ សូមស្រមៃគិតអំពីអេហ្ស៊ីបបុរាណ និងកន្លែងសំណង់ដ៏ធំបំផុតនៅសម័យនោះ ពោលគឺការសាងសង់ពីរ៉ាមីត... រូបបង្ហាញពីផ្នែកម្ខាងរបស់វា។

តើ​ការ​រីក​ចម្រើន​នៅ​ទី​នេះ​អ្នក​និយាយ​នៅ​ត្រង់​ណា? សូមក្រឡេកមើលដោយប្រុងប្រយ័ត្ន ហើយស្វែងរកគំរូក្នុងចំនួនប្លុកខ្សាច់ក្នុងជួរនីមួយៗនៃជញ្ជាំងពីរ៉ាមីត។


ហេតុអ្វីមិនដំណើរការនព្វន្ធ? រាប់ចំនួនប្លុកដែលត្រូវការដើម្បីសាងសង់ជញ្ជាំងមួយ ប្រសិនបើឥដ្ឋប្លុកត្រូវបានដាក់ក្នុងមូលដ្ឋាន។ ខ្ញុំសង្ឃឹមថាអ្នកនឹងមិនរាប់ដោយការរំកិលម្រាមដៃរបស់អ្នកឆ្លងកាត់ម៉ូនីទ័រ តើអ្នកចាំរូបមន្តចុងក្រោយ និងអ្វីគ្រប់យ៉ាងដែលយើងបាននិយាយអំពីការវិវត្តនព្វន្ធទេ?

ក្នុងករណីនេះការវិវត្តមើលទៅដូចនេះ:
ភាពខុសគ្នានៃដំណើរការនព្វន្ធ។
ចំនួនសមាជិកនៃដំណើរការនព្វន្ធមួយ។
ចូរជំនួសទិន្នន័យរបស់យើងទៅជារូបមន្តចុងក្រោយ (យើងរាប់ចំនួនប្លុកជា 2 វិធី)។

វិធីសាស្រ្ត 1 ។

វិធីសាស្រ្ត 2 ។

ហើយឥឡូវនេះអ្នកក៏អាចគណនានៅលើម៉ូនីទ័រផងដែរ: ប្រៀបធៀបតម្លៃដែលទទួលបានជាមួយនឹងចំនួនប្លុកដែលមាននៅក្នុងសាជីជ្រុងរបស់យើង។ តើវាយល់ព្រមទេ? ជាការប្រសើរណាស់, អ្នកបានស្ទាត់ជំនាញផលបូកនៃលក្ខខណ្ឌទីនៃដំណើរការនព្វន្ធមួយ។
ជាការពិតណាស់ អ្នកមិនអាចសង់ពីរ៉ាមីតពីប្លុកនៅមូលដ្ឋានបានទេ ប៉ុន្តែមកពី? ព្យាយាមគណនាចំនួនឥដ្ឋខ្សាច់ដែលត្រូវការដើម្បីសាងសង់ជញ្ជាំងដែលមានលក្ខខណ្ឌនេះ។
តើអ្នកបានគ្រប់គ្រងទេ?
ចម្លើយដែលត្រឹមត្រូវគឺប្លុក៖

ធ្វើការ

ភារកិច្ច:

  1. Masha ទទួលបានរូបរាងសម្រាប់រដូវក្តៅ។ ជារៀងរាល់ថ្ងៃនាងបង្កើនចំនួន squats ដោយ។ តើ Masha នឹង​អង្គុយ​ប៉ុន្មាន​ដង​ក្នុង​មួយ​សប្តាហ៍ ប្រសិនបើ​នាង​បាន​អង្គុយ​នៅ​ពេល​ហាត់​លើក​ដំបូង។
  2. តើអ្វីជាផលបូកនៃចំនួនសេសទាំងអស់ដែលមាននៅក្នុង។
  3. នៅពេលរក្សាទុកកំណត់ហេតុ ឈើច្រត់ជង់ពួកវាតាមរបៀបដែលស្រទាប់ខាងលើនីមួយៗមានកំណត់ហេតុតិចជាងសន្លឹកមុន។ តើ​ឈើ​មួយ​ដុំ​មាន​ប៉ុន្មាន​ដុំ បើ​គល់​ឈើ​ជា​ឈើ​។

ចម្លើយ៖

  1. ចូរយើងកំណត់ប៉ារ៉ាម៉ែត្រនៃដំណើរការនព្វន្ធ។ ក្នុងករណី​នេះ
    (សប្តាហ៍ = ថ្ងៃ) ។

    ចម្លើយ៖ក្នុងរយៈពេលពីរសប្តាហ៍ Masha គួរតែអង្គុយម្តងក្នុងមួយថ្ងៃ។

  2. លេខសេសទីមួយ លេខចុងក្រោយ។
    ភាពខុសគ្នានៃដំណើរការនព្វន្ធ។
    ចំនួននៃលេខសេសក្នុង - ពាក់កណ្តាល ពិនិត្យការពិតនេះដោយប្រើរូបមន្តសម្រាប់ស្វែងរកសមាជិក -th នៃដំណើរការនព្វន្ធមួយ៖

    លេខមានលេខសេស។
    យើងជំនួសទិន្នន័យដែលមានទៅក្នុងរូបមន្ត៖

    ចម្លើយ៖ផលបូកនៃចំនួនសេសទាំងអស់ដែលមាននៅក្នុងគឺស្មើនឹង។

  3. រំលឹកពីបញ្ហាអំពីប្រាសាទពីរ៉ាមីត។ សម្រាប់ករណីរបស់យើង a ចាប់តាំងពីស្រទាប់ខាងលើនីមួយៗត្រូវបានកាត់បន្ថយដោយកំណត់ហេតុមួយ មានតែស្រទាប់មួយចំនួនប៉ុណ្ណោះ។
    ជំនួសទិន្នន័យក្នុងរូបមន្ត៖

    ចម្លើយ៖មានឈើប្រណិតនៅក្នុងឡ។

សង្ខេប

  1. - លំដាប់លេខដែលភាពខុសគ្នារវាងលេខជាប់គ្នាគឺដូចគ្នា និងស្មើគ្នា។ វាកំពុងកើនឡើងនិងថយចុះ។
  2. ការស្វែងរករូបមន្តសមាជិកទី 1 នៃដំណើរការនព្វន្ធត្រូវបានសរសេរដោយរូបមន្ត - តើចំនួនលេខនៅក្នុងវឌ្ឍនភាពនៅឯណា។
  3. ទ្រព្យសម្បត្តិរបស់សមាជិកនៃដំណើរការនព្វន្ធ- - កន្លែងណា - ចំនួនលេខក្នុងដំណើរការ។
  4. ផលបូកនៃសមាជិកនៃដំណើរការនព្វន្ធមួយ។អាចរកបានតាមពីរវិធី៖

    តើចំនួនតម្លៃនៅឯណា។

វឌ្ឍនភាពនព្វន្ធ។ កម្រិតមធ្យម

លំដាប់លេខ

តោះអង្គុយចុះ ហើយចាប់ផ្តើមសរសេរលេខខ្លះ។ ឧទាហរណ៍:

អ្នកអាចសរសេរលេខណាមួយ ហើយអាចមានច្រើនតាមដែលអ្នកចូលចិត្ត។ ប៉ុន្តែអ្នកតែងតែអាចប្រាប់បានថា មួយណាជាលេខមួយ មួយណាជាលេខទីពីរ ហើយដូច្នេះនៅលើនោះ គឺយើងអាចដាក់លេខបាន។ នេះគឺជាឧទាហរណ៍នៃលំដាប់លេខ។

លំដាប់លេខគឺ​ជា​សំណុំ​នៃ​លេខ ដែល​នីមួយៗ​អាច​ត្រូវ​បាន​កំណត់​លេខ​តែ​មួយ​គត់។

ម្យ៉ាងវិញទៀត លេខនីមួយៗអាចភ្ជាប់ជាមួយនឹងលេខធម្មជាតិជាក់លាក់មួយ ហើយមានតែមួយប៉ុណ្ណោះ។ ហើយយើងនឹងមិនកំណត់លេខនេះទៅលេខផ្សេងទៀតពីសំណុំនេះទេ។

លេខដែលមានលេខត្រូវបានគេហៅថាសមាជិក -th នៃលំដាប់។

ជាធម្មតា យើងហៅលំដាប់ទាំងមូលថា អក្សរខ្លះ (ឧទាហរណ៍) ហើយសមាជិកនីមួយៗនៃលំដាប់នេះ - អក្សរដូចគ្នាដែលមានលិបិក្រមស្មើនឹងចំនួនសមាជិកនេះ៖ .

វាងាយស្រួលណាស់ប្រសិនបើសមាជិក -th នៃលំដាប់អាចត្រូវបានផ្តល់ឱ្យដោយរូបមន្តមួយចំនួន។ ឧទាហរណ៍រូបមន្ត

កំណត់លំដាប់៖

ហើយរូបមន្តមានលំដាប់ដូចខាងក្រោមៈ

ឧទាហរណ៍ ការវិវត្តនព្វន្ធគឺជាលំដាប់ (ពាក្យទីមួយនៅទីនេះគឺស្មើគ្នា និងភាពខុសគ្នា)។ ឬ (, ភាពខុសគ្នា) ។

រូបមន្តទី 3

យើង​ហៅ​រូបមន្ត​ដែល​កើតឡើង​ដដែលៗ ដែល​ដើម្បី​រក​ឱ្យ​ឃើញ​ពាក្យ -th នោះ អ្នក​ត្រូវ​ដឹង​ពាក្យ​មុន ឬ​ច្រើន​មុនៗ៖

ដើម្បីស្វែងរកឧទាហរណ៍ពាក្យទី 1 នៃវឌ្ឍនភាពដោយប្រើរូបមន្តបែបនេះ យើងត្រូវគណនាលេខប្រាំបួនមុន។ ឧទាហរណ៍អនុញ្ញាតឱ្យ។ បន្ទាប់មក៖

ឥឡូវនេះវាច្បាស់ណាស់ថាតើរូបមន្តគឺជាអ្វី?

នៅក្នុងបន្ទាត់នីមួយៗ យើងបន្ថែមទៅ គុណនឹងចំនួនមួយចំនួន។ ដើម្បីអ្វី? សាមញ្ញណាស់៖ នេះគឺជាចំនួនដកសមាជិកបច្ចុប្បន្ន៖

ស្រួល​ជាង​ឥឡូវ​មែន​ទេ? យើងពិនិត្យ៖

សម្រេចចិត្តដោយខ្លួនឯង៖

នៅក្នុងដំណើរការនព្វន្ធ សូមស្វែងរករូបមន្តសម្រាប់ពាក្យទី 9 ហើយស្វែងរកពាក្យទីរយ។

ដំណោះស្រាយ៖

សមាជិកទីមួយគឺស្មើគ្នា។ ហើយ​អ្វី​ជា​ភាព​ខុស​គ្នា? ហើយនេះជាអ្វី៖

(បន្ទាប់ពីទាំងអស់វាត្រូវបានគេហៅថាភាពខុសគ្នាព្រោះវាស្មើនឹងភាពខុសគ្នានៃសមាជិកបន្តបន្ទាប់នៃវឌ្ឍនភាព) ។

ដូច្នេះរូបមន្តគឺ៖

បន្ទាប់មកពាក្យមួយរយគឺ៖

តើផលបូកនៃលេខធម្មជាតិទាំងអស់ពីទៅអ្វី?

យោងតាមរឿងព្រេង គណិតវិទូដ៏អស្ចារ្យ Carl Gauss ដែលជាក្មេងប្រុសអាយុ 9 ឆ្នាំបានគណនាចំនួននេះក្នុងរយៈពេលពីរបីនាទី។ គាត់បានកត់សម្គាល់ឃើញថា ផលបូកនៃលេខទីមួយ និងលេខចុងក្រោយគឺស្មើគ្នា ផលបូកនៃលេខទីពីរ និងលេខចុងក្រោយគឺដូចគ្នា ផលបូកនៃលេខទីបី និងលេខ 3 ពីចុងគឺដូចគ្នា ហើយដូច្នេះនៅលើ។ តើមានគូបែបនេះប៉ុន្មាន? នោះ​ជា​ការ​ត្រឹមត្រូវ, ពិត​ជា​ពាក់​ក​ណ្តា​ល​នៃ​ចំនួន​ទាំង​អស់, នោះ​គឺ. ដូច្នេះ

រូបមន្តទូទៅសម្រាប់ផលបូកនៃលក្ខខណ្ឌដំបូងនៃដំណើរការនព្វន្ធណាមួយនឹងមានៈ

ឧទាហរណ៍៖
រកផលបូកនៃគុណពីរខ្ទង់ទាំងអស់។

ដំណោះស្រាយ៖

លេខបែបនេះដំបូងគឺនេះ។ បន្ទាប់នីមួយៗទទួលបានដោយការបន្ថែមលេខទៅលេខមុន។ ដូច្នេះចំនួននៃការចាប់អារម្មណ៍ចំពោះយើងបង្កើតជាដំណើរការនព្វន្ធជាមួយនឹងពាក្យទីមួយ និងភាពខុសគ្នា។

រូបមន្តសម្រាប់ពាក្យទី 1 សម្រាប់វឌ្ឍនភាពនេះគឺ៖

តើ​ពាក្យ​ទាំង​អស់​ត្រូវ​តែ​មាន​ពីរ​ខ្ទង់​ក្នុង​ដំណើរ​ការ​ប៉ុន្មាន​ពាក្យ?

ងាយស្រួលណាស់៖ ។

រយៈពេលចុងក្រោយនៃការវិវត្តនឹងស្មើគ្នា។ បន្ទាប់មកផលបូក៖

ចម្លើយ៖ ។

ឥឡូវសម្រេចចិត្តដោយខ្លួនឯង៖

  1. ជារៀងរាល់ថ្ងៃអត្តពលិករត់បាន 1 ម៉ែត្រច្រើនជាងថ្ងៃមុន។ តើ​គាត់​នឹង​រត់​ប៉ុន្មាន​គីឡូម៉ែត្រ​ក្នុង​មួយ​សប្ដាហ៍ បើ​គាត់​រត់​គីឡូម៉ែត្រ​ក្នុង​ថ្ងៃ​ដំបូង?
  2. អ្នកជិះកង់ម្នាក់ជិះបានច្រើនម៉ាយក្នុងមួយថ្ងៃជាងអ្នកជិះមុន។ នៅថ្ងៃដំបូងគាត់បានធ្វើដំណើរគីឡូម៉ែត្រ។ តើ​គាត់​ត្រូវ​បើក​ឡាន​ប៉ុន្មាន​ថ្ងៃ​ដើម្បី​គ្រប​មួយ​គីឡូម៉ែត្រ? តើគាត់នឹងធ្វើដំណើរប៉ុន្មានគីឡូម៉ែត្រនៅថ្ងៃចុងក្រោយនៃការធ្វើដំណើរ?
  3. តម្លៃទូទឹកកកនៅក្នុងហាងត្រូវបានកាត់បន្ថយដោយចំនួនដូចគ្នាជារៀងរាល់ឆ្នាំ។ កំណត់ថាតើតម្លៃទូរទឹកកកបានធ្លាក់ចុះប៉ុន្មានជារៀងរាល់ឆ្នាំ ប្រសិនបើដាក់លក់សម្រាប់ប្រាក់រូប្លែ ប្រាំមួយឆ្នាំក្រោយមកវាត្រូវបានលក់ក្នុងតម្លៃរូប្លិង។

ចម្លើយ៖

  1. អ្វីដែលសំខាន់បំផុតនៅទីនេះគឺត្រូវទទួលស្គាល់ការវិវត្តនព្វន្ធ និងកំណត់ប៉ារ៉ាម៉ែត្ររបស់វា។ ក្នុងករណីនេះ (សប្តាហ៍ = ថ្ងៃ) ។ អ្នកត្រូវកំណត់ផលបូកនៃលក្ខខណ្ឌដំបូងនៃដំណើរការនេះ៖
    .
    ចម្លើយ៖
  2. នៅទីនេះវាត្រូវបានផ្តល់ឱ្យ:, វាចាំបាច់ក្នុងការស្វែងរក។
    ជាក់ស្តែង អ្នកត្រូវប្រើរូបមន្តបូកដូចក្នុងបញ្ហាមុន៖
    .
    ជំនួសតម្លៃ៖

    ឫសច្បាស់មិនសមទេ ដូច្នេះចម្លើយ។
    ចូរយើងគណនាចម្ងាយដែលបានធ្វើដំណើរនៅថ្ងៃចុងក្រោយដោយប្រើរូបមន្តនៃពាក្យ -th៖
    (គ.ម)។
    ចម្លើយ៖

  3. បានផ្តល់ឱ្យ: . ស្វែងរក៖ ។
    វាមិនងាយស្រួលទេ៖
    (ជូត) ។
    ចម្លើយ៖

វឌ្ឍនភាពនព្វន្ធ។ សង្ខេបអំពីមេ

នេះគឺជាលំដាប់លេខដែលភាពខុសគ្នារវាងលេខជាប់គ្នាគឺដូចគ្នា និងស្មើគ្នា។

ដំណើរការនព្វន្ធកំពុងកើនឡើង () និងថយចុះ () ។

ឧទាហរណ៍:

រូបមន្តសម្រាប់ស្វែងរកសមាជិក n-th នៃដំណើរការនព្វន្ធ

ត្រូវបានសរសេរជារូបមន្ត ដែលចំនួនលេខនៅក្នុងដំណើរការ។

ទ្រព្យសម្បត្តិរបស់សមាជិកនៃដំណើរការនព្វន្ធ

វាធ្វើឱ្យមានភាពងាយស្រួលក្នុងការស្វែងរកសមាជិកនៃវឌ្ឍនភាព ប្រសិនបើសមាជិកជិតខាងរបស់វាត្រូវបានគេស្គាល់ - តើចំនួនលេខនៅក្នុងវឌ្ឍនភាពនៅឯណា។

ផលបូកនៃសមាជិកនៃដំណើរការនព្វន្ធមួយ។

មានវិធីពីរយ៉ាងក្នុងការស្វែងរកផលបូក៖

តើចំនួនតម្លៃនៅឯណា។

តើចំនួនតម្លៃនៅឯណា។

មែនហើយ ប្រធានបទគឺចប់ហើយ។ ប្រសិនបើអ្នកកំពុងអានបន្ទាត់ទាំងនេះ នោះអ្នកពិតជាឡូយណាស់។

ពីព្រោះមនុស្សតែ 5% ប៉ុណ្ណោះដែលអាចធ្វើជាម្ចាស់អ្វីមួយដោយខ្លួនឯងបាន។ ហើយប្រសិនបើអ្នកបានអានដល់ទីបញ្ចប់នោះអ្នកស្ថិតនៅក្នុង 5%!

ឥឡូវនេះអ្វីដែលសំខាន់បំផុត។

អ្នក​បាន​រក​ឃើញ​ទ្រឹស្ដី​លើ​ប្រធានបទ​នេះ។ ហើយ​ខ្ញុំ​និយាយ​ម្តង​ទៀត វា​គឺ​ជា... វា​គ្រាន់​តែ​អស្ចារ្យ! អ្នក​គឺ​ល្អ​ជាង​មិត្ត​ភក្តិ​របស់​អ្នក​ភាគ​ច្រើន​រួច​ទៅ​ហើយ។

បញ្ហាគឺថានេះប្រហែលជាមិនគ្រប់គ្រាន់ទេ ...

ដើម្បីអ្វី?

សម្រាប់ការប្រឡងជាប់ដោយជោគជ័យ សម្រាប់ការចូលរៀននៅវិទ្យាស្ថាន ថវិកា និងសំខាន់បំផុតសម្រាប់ជីវិត។

ខ្ញុំនឹងមិនបញ្ចុះបញ្ចូលអ្នកពីអ្វីទេខ្ញុំនឹងនិយាយតែមួយ ...

អ្នក​ដែល​ទទួល​បាន​ការ​អប់រំ​ល្អ​រក​បាន​ច្រើន​ជាង​អ្នក​ដែល​មិន​បាន​ទទួល។ នេះគឺជាស្ថិតិ។

ប៉ុន្តែនេះមិនមែនជារឿងសំខាន់ទេ។

រឿងចំបងគឺថាពួកគេកាន់តែសប្បាយរីករាយ (មានការសិក្សាបែបនេះ) ។ ប្រហែលជាដោយសារតែឱកាសកាន់តែច្រើនបើកមុនពេលពួកគេហើយជីវិតកាន់តែភ្លឺ? មិនដឹង...

តែគិតខ្លួនឯង...

តើ​ត្រូវ​ធ្វើ​ដូចម្តេច​ដើម្បី​ឱ្យ​ប្រាកដ​ថា​ល្អ​ជាង​អ្នក​ដទៃ​ពេល​ប្រឡង​ហើយ​នៅ​ទី​បំផុត​… សប្បាយ​ជាង​?

បំពេញដៃរបស់អ្នក ដោះស្រាយបញ្ហាលើប្រធានបទនេះ។

នៅពេលប្រឡង អ្នកនឹងមិនត្រូវបានគេសួរទ្រឹស្តីទេ។

អ្នក​នឹង​ត្រូវការ ដោះស្រាយបញ្ហាទាន់ពេលវេលា.

ហើយប្រសិនបើអ្នកមិនបានដោះស្រាយវាទេ (ច្រើន!) អ្នកច្បាស់ជាមានកំហុសឆ្គងនៅកន្លែងណាមួយ ឬគ្រាន់តែមិនធ្វើវាទាន់ពេល។

វាដូចជានៅក្នុងកីឡា - អ្នកត្រូវធ្វើម្តងទៀតច្រើនដងដើម្បីឈ្នះប្រាកដ។

ស្វែងរកបណ្តុំនៅគ្រប់ទីកន្លែងដែលអ្នកចង់បាន ចាំបាច់ជាមួយនឹងដំណោះស្រាយ ការវិភាគលម្អិតហើយសម្រេចចិត្ត សម្រេចចិត្ត!

អ្នកអាចប្រើភារកិច្ចរបស់យើង (មិនចាំបាច់) ហើយយើងពិតជាណែនាំពួកគេ។

ដើម្បីទទួលបានជំនួយពីកិច្ចការរបស់យើង អ្នកត្រូវជួយពន្យារអាយុជីវិតនៃសៀវភៅសិក្សា YouClever ដែលអ្នកកំពុងអានបច្ចុប្បន្ន។

យ៉ាងម៉េច? មានជម្រើសពីរ៖

  1. ដោះសោការចូលប្រើកិច្ចការដែលបានលាក់ទាំងអស់នៅក្នុងអត្ថបទនេះ - 299 ជូត។
  2. ដោះសោការចូលប្រើកិច្ចការដែលបានលាក់ទាំងអស់នៅក្នុងអត្ថបទទាំង 99 នៃការបង្រៀន - 999 ជូត។

បាទ/ចាស យើងមានអត្ថបទបែបនេះចំនួន 99 នៅក្នុងសៀវភៅសិក្សា ហើយការចូលប្រើកិច្ចការទាំងអស់ ហើយអត្ថបទដែលលាក់ទាំងអស់នៅក្នុងពួកវាអាចបើកបានភ្លាមៗ។

ក្នុងករណីទីពីរ យើងនឹងផ្តល់ឱ្យអ្នក។កម្មវិធីក្លែងធ្វើ "កិច្ចការចំនួន 6000 ជាមួយនឹងដំណោះស្រាយ និងចម្លើយ សម្រាប់ប្រធានបទនីមួយៗ សម្រាប់កម្រិតនៃភាពស្មុគស្មាញទាំងអស់។" វាពិតជាគ្រប់គ្រាន់ក្នុងការយកដៃអ្នកដោះស្រាយបញ្ហាលើប្រធានបទណាមួយ។

តាមពិតទៅ នេះគឺច្រើនជាងការក្លែងធ្វើ - កម្មវិធីបណ្តុះបណ្តាលទាំងមូល។ បើចាំបាច់ អ្នកក៏អាចប្រើវាដោយឥតគិតថ្លៃផងដែរ។

ការចូលប្រើអត្ថបទ និងកម្មវិធីទាំងអស់ត្រូវបានផ្តល់ជូនសម្រាប់ពេញមួយជីវិតនៃគេហទំព័រ។

សរុបសេចក្តី...

ប្រសិនបើអ្នកមិនចូលចិត្តកិច្ចការរបស់យើង ស្វែងរកអ្នកដទៃ។ កុំឈប់ជាមួយទ្រឹស្តី។

"យល់" និង "ខ្ញុំដឹងពីរបៀបដោះស្រាយ" គឺជាជំនាញខុសគ្នាទាំងស្រុង។ អ្នកត្រូវការទាំងពីរ។

ស្វែងរកបញ្ហា និងដោះស្រាយ!


បាទ/ចាស៎៖ វឌ្ឍនភាពនព្វន្ធមិនមែនជារបស់លេងសម្រាប់អ្នកទេ :)

ជាការប្រសើរណាស់, មិត្តភក្តិ, ប្រសិនបើអ្នកកំពុងអានអត្ថបទនេះ, បន្ទាប់មកភស្តុតាង cap ខាងក្នុងប្រាប់ខ្ញុំថាអ្នកនៅតែមិនដឹងថាតើការវិវត្តនព្វន្ធគឺជាអ្វី, ប៉ុន្តែអ្នកពិតជា (មិនដូចនេះ: SOOOOO!) ចង់ដឹង។ ដូច្នេះហើយ ខ្ញុំនឹងមិនធ្វើទារុណកម្មអ្នកដោយការណែនាំដ៏វែង ហើយនឹងចុះទៅអាជីវកម្មភ្លាមៗ។

ដើម្បីចាប់ផ្តើមឧទាហរណ៍ពីរបី។ ពិចារណាសំណុំលេខជាច្រើន៖

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\2\sqrt(2);\3\sqrt(2);...$

តើឈុតទាំងអស់នេះមានអ្វីដូចគ្នា? នៅ glance ដំបូង, គ្មានអ្វី។ ប៉ុន្តែតាមពិតមានអ្វីមួយ។ ពោលគឺ៖ ធាតុបន្ទាប់នីមួយៗខុសពីធាតុមុនដោយលេខដូចគ្នា។.

វិនិច្ឆ័យសម្រាប់ខ្លួនអ្នក។ ឈុតទីមួយគ្រាន់តែជាលេខជាប់គ្នា លេខនីមួយៗច្រើនជាងលេខមុន។ ក្នុងករណីទី 2 ភាពខុសគ្នារវាងលេខដែលនៅជាប់គ្នាគឺស្មើនឹងប្រាំរួចទៅហើយ ប៉ុន្តែភាពខុសគ្នានេះនៅតែថេរ។ ក្នុងករណីទីបីមានឫសជាទូទៅ។ ទោះយ៉ាងណាក៏ដោយ $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ ខណៈពេលដែល $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, i.e. ក្នុងករណីដែលធាតុបន្ទាប់នីមួយៗគ្រាន់តែកើនឡើង $\sqrt(2)$ (ហើយកុំខ្លាចថាចំនួននេះគឺមិនសមហេតុផល)។

ដូច្នេះ៖ លំដាប់​ទាំង​អស់​នេះ​គ្រាន់​តែ​ហៅ​ថា​វឌ្ឍនភាព​នព្វន្ធ។ ចូរយើងផ្តល់និយមន័យដ៏តឹងរឹងមួយ៖

និយមន័យ។ លំដាប់នៃលេខដែលនីមួយៗបន្ទាប់ខុសគ្នាពីលេខមុនដោយចំនួនដូចគ្នាយ៉ាងពិតប្រាកដត្រូវបានគេហៅថា វឌ្ឍនភាពនព្វន្ធ។ ចំនួន​ដែល​លេខ​ខុស​គ្នា​ត្រូវ​បាន​គេ​ហៅ​ថា ភាព​ខុស​គ្នា​នៃ​ការ​រីក​ចម្រើន ហើយ​ច្រើន​តែ​បង្ហាញ​ដោយ​អក្សរ $d$។

កំណត់សម្គាល់៖ $\left(((a)_(n)) \right)$ គឺជាការវិវត្តខ្លួនវា $d$ គឺជាភាពខុសគ្នារបស់វា។

ហើយគ្រាន់តែជាការកត់សម្គាល់សំខាន់ពីរបីប៉ុណ្ណោះ។ ទីមួយការវិវត្តត្រូវបានពិចារណាតែប៉ុណ្ណោះ សណ្តាប់ធ្នាប់លំដាប់លេខ៖ ពួកគេត្រូវបានអនុញ្ញាតឱ្យអានយ៉ាងតឹងរ៉ឹងតាមលំដាប់ដែលពួកគេត្រូវបានសរសេរ - ហើយគ្មានអ្វីផ្សេងទៀតទេ។ អ្នកមិនអាចរៀបចំឡើងវិញ ឬប្តូរលេខបានទេ។

ទីពីរ លំដាប់​ខ្លួន​វា​អាច​មាន​កំណត់ ឬ​គ្មាន​កំណត់។ ឧទាហរណ៍ សំណុំ (1; 2; 3) គឺច្បាស់ជាដំណើរការនព្វន្ធកំណត់។ ប៉ុន្តែប្រសិនបើអ្នកសរសេរអ្វីមួយដូចជា (1; 2; 3; 4; ... ) - នេះគឺជាវឌ្ឍនភាពគ្មានទីបញ្ចប់រួចទៅហើយ។ រាងពងក្រពើបន្ទាប់ពីទាំងបួនដូចដែលវាត្រូវបានគេណែនាំថាចំនួនច្រើនទៅមុខទៀត។ ជាឧទាហរណ៍ ច្រើនឥតកំណត់។ :)

ខ្ញុំ​ក៏​ចង់​កត់​សម្គាល់​ដែរ​ថា វឌ្ឍនភាព​កំពុង​កើនឡើង និង​ថយ​ចុះ។ យើងបានឃើញការកើនឡើងរួចទៅហើយ - សំណុំដូចគ្នា (1; 2; 3; 4; ... ) ។ នេះគឺជាឧទាហរណ៍នៃការថយចុះវឌ្ឍនភាព៖

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\sqrt(5)-1;\sqrt(5)-2;\sqrt(5)-3;...$

មិនអីទេ មិនអីទេ៖ ឧទាហរណ៍ចុងក្រោយអាចហាក់ដូចជាស្មុគស្មាញពេក។ ប៉ុន្តែនៅសល់ ខ្ញុំគិតថាអ្នកយល់។ ដូច្នេះ យើងណែនាំនិយមន័យថ្មី៖

និយមន័យ។ ការវិវត្តនព្វន្ធត្រូវបានគេហៅថា៖

  1. ការកើនឡើងប្រសិនបើធាតុបន្ទាប់នីមួយៗធំជាងធាតុមុន;
  2. ថយចុះ ប្រសិនបើផ្ទុយទៅវិញ ធាតុបន្តបន្ទាប់នីមួយៗគឺតិចជាងធាតុមុន។

លើសពីនេះទៀតមានអ្វីដែលគេហៅថា "ស្ថានី" លំដាប់ - ពួកគេមានលេខដដែលៗ។ ឧទាហរណ៍ (៣; ៣; ៣; ...)។

មានតែសំណួរមួយប៉ុណ្ណោះដែលនៅសេសសល់៖ តើធ្វើដូចម្តេចដើម្បីសម្គាល់វឌ្ឍនភាពដែលកំពុងកើនឡើងពីការថយចុះមួយ? ជាសំណាងល្អ អ្វីគ្រប់យ៉ាងនៅទីនេះអាស្រ័យតែលើសញ្ញានៃលេខ $d$, i.e. ភាពខុសគ្នានៃដំណើរការ៖

  1. ប្រសិនបើ $d \gt 0$ នោះការវិវត្តកំពុងកើនឡើង។
  2. ប្រសិនបើ $d \lt 0$ នោះការវិវឌ្ឍន៍ជាក់ស្តែងនឹងថយចុះ។
  3. ជាចុងក្រោយ មានករណី $d=0$ — ក្នុងករណីនេះ ដំណើរការទាំងមូលត្រូវបានកាត់បន្ថយទៅជាលំដាប់លំដោយនៃលេខដូចគ្នា៖ (1; 1; 1; 1; ...) ។ល។

ចូរយើងព្យាយាមគណនាភាពខុសគ្នា $d$ សម្រាប់ការថយចុះចំនួនបីខាងលើ។ ដើម្បីធ្វើដូចនេះវាគ្រប់គ្រាន់ហើយក្នុងការយកធាតុពីរដែលនៅជាប់គ្នា (ឧទាហរណ៍ទីមួយនិងទីពីរ) ហើយដកពីលេខនៅខាងស្តាំលេខនៅខាងឆ្វេង។ វានឹងមើលទៅដូចនេះ៖

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$ ។

ដូចដែលអ្នកអាចឃើញនៅក្នុងករណីទាំងបីភាពខុសគ្នាពិតជាប្រែទៅជាអវិជ្ជមាន។ ហើយឥឡូវនេះ យើងបានរកឃើញនិយមន័យច្រើន ឬតិច វាជាពេលវេលាដើម្បីរកឱ្យឃើញពីរបៀបដែលវឌ្ឍនភាពត្រូវបានពិពណ៌នា និងលក្ខណៈសម្បត្តិអ្វីដែលពួកគេមាន។

សមាជិក​នៃ​ការ​រីក​ចម្រើន និង​រូបមន្ត​ដែល​កើតឡើង​ដដែលៗ

ដោយសារ​ធាតុ​នៃ​លំដាប់​របស់​យើង​មិន​អាច​ផ្លាស់ប្តូរ​គ្នា​បាន ពួកវា​អាច​ត្រូវ​បាន​លេខ​រៀង៖

\[\left(((a)_(n)) \\right)=\left\(((a)_(1)),\((a)_(2)),((a)_(3) )) ... \ ស្តាំ\)\]

ធាតុបុគ្គលនៃសំណុំនេះត្រូវបានគេហៅថាសមាជិកនៃវឌ្ឍនភាព។ ពួកវាត្រូវបានចង្អុលបង្ហាញតាមរបៀបនេះដោយមានជំនួយពីលេខមួយ: សមាជិកទីមួយ សមាជិកទីពីរ ជាដើម។

លើសពីនេះទៀត ដូចដែលយើងដឹងរួចមកហើយ សមាជិកជិតខាងនៃវឌ្ឍនភាពត្រូវបានទាក់ទងគ្នាដោយរូបមន្ត៖

\[(((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

សរុបមក ដើម្បីស្វែងរកពាក្យ $n$th នៃវឌ្ឍនភាព អ្នកត្រូវដឹងពីពាក្យ $n-1$th និងភាពខុសគ្នា $d$។ រូបមន្តបែបនេះត្រូវបានគេហៅថាកើតឡើងដដែលៗ ពីព្រោះដោយមានជំនួយរបស់វា អ្នកអាចស្វែងរកលេខណាមួយ ដោយគ្រាន់តែដឹងពីលេខមុន (ហើយតាមពិត លេខមុនទាំងអស់)។ នេះគឺជាការរអាក់រអួលខ្លាំងណាស់ ដូច្នេះមានរូបមន្តដ៏ពិបាកជាងនេះ ដែលកាត់បន្ថយការគណនាណាមួយទៅពាក្យទីមួយ និងភាពខុសគ្នា៖

\[(((a)_(n))=((a)_(1))+\left(n-1\right)d\]

អ្នកប្រហែលជាធ្លាប់ឆ្លងកាត់រូបមន្តនេះពីមុនមក។ ពួកគេចូលចិត្តផ្តល់ឱ្យវានៅក្នុងគ្រប់ប្រភេទនៃសៀវភៅយោងនិង reshebniks ។ ហើយ​ក្នុង​សៀវភៅ​សិក្សា​គណិតវិទ្យា​ដែល​សមហេតុផល​ណាមួយ វា​គឺ​ជា​សៀវភៅ​ដំបូង​គេ​មួយ​។

ទោះយ៉ាងណាក៏ដោយ ខ្ញុំស្នើឱ្យអ្នកអនុវត្តបន្តិច។

លេខកិច្ចការ 1 ។ សរសេរពាក្យបីដំបូងនៃដំណើរការនព្វន្ធ $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$ ។

ដំណោះស្រាយ។ ដូច្នេះ យើងដឹងពីពាក្យដំបូង $((a)_(1))=8$ និងភាពខុសគ្នានៃវឌ្ឍនភាព $d=-5$។ ចូរប្រើរូបមន្តដែលទើបតែផ្តល់ឲ្យ ហើយជំនួស $n=1$, $n=2$ និង $n=3$៖

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1\right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1\right)d=((a)_(1))+d=8-5= ៣; \\ & ((a)_(3))=((a)_(1))+\left(3-1\right)d=((a)_(1))+2d=8-10= -២. \\ \end(តម្រឹម)\]

ចម្លើយ៖ (៨; ៣; -២)

អស់ហើយ! ចំណាំថាការវិវត្តរបស់យើងកំពុងថយចុះ។

ជា​ការ​ពិត​ណាស់ $n=1$ មិន​អាច​ត្រូវ​បាន​ជំនួស​បាន​ទេ - យើង​បាន​ដឹង​ហើយ​ពាក្យ​ដំបូង​។ ទោះយ៉ាងណាក៏ដោយ តាមរយៈការជំនួសឯកតា យើងបានធ្វើឱ្យប្រាកដថា សូម្បីតែសម្រាប់ពាក្យទីមួយ រូបមន្តរបស់យើងដំណើរការ។ ក្នុងករណីផ្សេងទៀត អ្វីគ្រប់យ៉ាងបានធ្លាក់មកលេខនព្វន្ធ banal ។

លេខកិច្ចការ 2 ។ សរសេរពាក្យបីដំបូងនៃដំណើរការនព្វន្ធ ប្រសិនបើពាក្យទីប្រាំពីររបស់វាគឺ −40 ហើយពាក្យទីដប់ប្រាំពីររបស់វាគឺ −50។

ដំណោះស្រាយ។ យើងសរសេរលក្ខខណ្ឌនៃបញ្ហាក្នុងលក្ខខណ្ឌធម្មតា៖

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(តម្រឹម) \\ ស្តាំ។

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \ ត្រូវ។\]

ខ្ញុំដាក់សញ្ញានៃប្រព័ន្ធព្រោះតម្រូវការទាំងនេះត្រូវតែបំពេញក្នុងពេលដំណាលគ្នា។ ហើយឥឡូវនេះយើងកត់សំគាល់ថាប្រសិនបើយើងដកសមីការទីមួយចេញពីសមីការទីពីរ (យើងមានសិទ្ធិធ្វើដូច្នេះព្រោះយើងមានប្រព័ន្ធ) យើងទទួលបាននេះ:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \\right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(តម្រឹម)\]

ដូច​នេះ យើង​បាន​រក​ឃើញ​ភាព​ខុស​គ្នា​នៃ​ការ​រីក​ចម្រើន! វានៅសល់ដើម្បីជំនួសលេខដែលបានរកឃើញនៅក្នុងសមីការណាមួយនៃប្រព័ន្ធ។ ឧទាហរណ៍នៅក្នុងទីមួយ៖

\\[\begin(ម៉ាទ្រីស) ((a)_(1))+6d=-40;\quad d=-1 \\ \\ ចុះក្រោម \\ ((a)_(1))-6=-40; \\ ((ក)_(១))=-៤០+៦=-៣៤។ \\ \ បញ្ចប់ (ម៉ាទ្រីស) \\]

ឥឡូវនេះ ដោយដឹងពីពាក្យទីមួយ និងភាពខុសគ្នា វានៅតែត្រូវស្វែងរកពាក្យទីពីរ និងទីបី៖

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((ក)_(៣))=((ក)_(១))+២d=-៣៤-២=-៣៦។ \\ \end(តម្រឹម)\]

រួចរាល់ហើយ! បញ្ហាត្រូវបានដោះស្រាយ។

ចម្លើយ៖ (-៣៤; -៣៥; -៣៦)

សូមកត់សម្គាល់នូវទ្រព្យសម្បត្តិគួរឱ្យចង់ដឹងអំពីវឌ្ឍនភាពដែលយើងបានរកឃើញ៖ ប្រសិនបើយើងយកពាក្យ $n$th និង $m$th ហើយដកវាចេញពីគ្នាទៅវិញទៅមក យើងទទួលបានភាពខុសគ្នានៃវឌ្ឍនភាពគុណនឹងចំនួន $n-m$៖

\[(((a)_(n))-((a)_(m))=d\cdot \left(n-m\right)\]

ទ្រព្យសម្បត្តិដ៏សាមញ្ញ ប៉ុន្តែមានប្រយោជន៍បំផុតដែលអ្នកគួរដឹង - ដោយមានជំនួយរបស់វា អ្នកអាចបង្កើនល្បឿនដំណោះស្រាយនៃបញ្ហាវិវត្តជាច្រើន។ នេះគឺជាឧទាហរណ៍សំខាន់នៃរឿងនេះ៖

លេខកិច្ចការ 3 ។ ពាក្យទីប្រាំនៃដំណើរការនព្វន្ធគឺ 8.4 ហើយពាក្យទីដប់របស់វាគឺ 14.4 ។ ស្វែងរកពាក្យទីដប់ប្រាំនៃវឌ្ឍនភាពនេះ។

ដំណោះស្រាយ។ ចាប់តាំងពី $((a)_(5))=8.4$, $((a)_(10))=14.4$ ហើយយើងត្រូវស្វែងរក $((a)_(15))$ យើងកត់សំគាល់ដូចខាងក្រោម៖

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((ក)_(១០))-((ក)_(៥))=៥ឃ។ \\ \end(តម្រឹម)\]

ប៉ុន្តែតាមលក្ខខណ្ឌ $((a)_(10))-((a)_(5))=14.4-8.4=6$ ដូច្នេះ $5d=6$ យើងមាន៖

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4។ \\ \end(តម្រឹម)\]

ចម្លើយ៖ ២០.៤

អស់ហើយ! យើងមិនចាំបាច់បង្កើតប្រព័ន្ធសមីការណាមួយ ហើយគណនាពាក្យទីមួយ និងភាពខុសគ្នានោះទេ - អ្វីគ្រប់យ៉ាងត្រូវបានសម្រេចត្រឹមតែពីរបីបន្ទាត់ប៉ុណ្ណោះ។

ឥឡូវនេះ ចូរយើងពិចារណាអំពីបញ្ហាមួយប្រភេទទៀត - ការស្វែងរកសមាជិកអវិជ្ជមាន និងវិជ្ជមាននៃវឌ្ឍនភាព។ វាមិនមែនជារឿងសម្ងាត់ទេដែលថា ប្រសិនបើការវិវឌ្ឍន៍កើនឡើង ខណៈពេលដែលពាក្យទីមួយរបស់វាគឺអវិជ្ជមាន នោះមិនយូរមិនឆាប់ពាក្យវិជ្ជមាននឹងលេចឡើងនៅក្នុងវា។ ហើយផ្ទុយមកវិញ៖ លក្ខខណ្ឌនៃការថយចុះនៃដំណើរការនឹងឆាប់ឬក្រោយមកក្លាយជាអវិជ្ជមាន។

ក្នុងពេលជាមួយគ្នានេះវានៅឆ្ងាយពីតែងតែអាចរកឃើញពេលនេះ "នៅលើថ្ងាស" ដោយតម្រៀបតាមលំដាប់នៃធាតុ។ ជារឿយៗ បញ្ហាត្រូវបានរៀបចំឡើងតាមរបៀបដែលដោយមិនដឹងពីរូបមន្ត ការគណនានឹងយកសន្លឹកជាច្រើនសន្លឹក - យើងគ្រាន់តែងងុយគេងរហូតដល់យើងរកឃើញចម្លើយ។ ដូច្នេះ​ហើយ យើង​នឹង​ព្យាយាម​ដោះស្រាយ​បញ្ហា​ទាំងនេះ​ឱ្យ​បាន​លឿន​ជាង​មុន ។

លេខកិច្ចការ 4 ។ តើមានពាក្យអវិជ្ជមានប៉ុន្មានក្នុងដំណើរការនព្វន្ធ -38.5; -៣៥.៨; …?

ដំណោះស្រាយ។ ដូច្នេះ $((a)_(1))=-38.5$, $((a)_(2))=-35.8$ ដែលយើងរកឃើញភាពខុសគ្នាភ្លាមៗ៖

ចំណាំថាភាពខុសគ្នាគឺវិជ្ជមាន ដូច្នេះការវិវត្តកំពុងកើនឡើង។ ពាក្យ​ទីមួយ​គឺ​អវិជ្ជមាន ដូច្នេះ​នៅ​ពេល​ណាមួយ​យើង​នឹង​ជំពប់​ដួល​លើ​លេខ​វិជ្ជមាន។ សំណួរតែមួយគត់គឺនៅពេលណាដែលរឿងនេះនឹងកើតឡើង។

ចូរយើងព្យាយាមស្វែងយល់៖ តើរយៈពេលប៉ុន្មាន (ឧ. រហូតដល់ចំនួនធម្មជាតិ $n$) ភាពអវិជ្ជមាននៃលក្ខខណ្ឌត្រូវបានរក្សាទុក៖

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \ ត្រឹមត្រូវ។ \\ & -385+27\cdot \left(n-1\right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max))=15. \\ \end(តម្រឹម)\]

បន្ទាត់ចុងក្រោយត្រូវការការបំភ្លឺ។ ដូច្នេះយើងដឹងថា $n \lt 15\frac(7)(27)$ ។ ម៉្យាងវិញទៀត មានតែតម្លៃចំនួនគត់នៃចំនួនគត់ដែលសាកសមនឹងយើង (លើសពីនេះទៅទៀត៖ $n\in \mathbb(N)$) ដូច្នេះចំនួនដែលអាចអនុញ្ញាតបានធំបំផុតគឺ $n=15$ ហើយគ្មានករណី 16 ទេ។

កិច្ចការទី 5 ។ នៅក្នុងដំណើរការនព្វន្ធ $(()_(5))=-150,(()_(6))=-147$ ។ ស្វែងរកចំនួននៃពាក្យវិជ្ជមានដំបូងនៃដំណើរការនេះ។

នេះពិតជាបញ្ហាដូចគ្នានឹងបញ្ហាមុនដែរ ប៉ុន្តែយើងមិនដឹង $((a)_(1))$ ទេ។ ប៉ុន្តែពាក្យដែលនៅជិតខាងត្រូវបានគេស្គាល់ថា $((a)_(5))$ និង $((a)_(6))$ ដូច្នេះយើងអាចរកឃើញភាពខុសគ្នានៃវឌ្ឍនភាពយ៉ាងងាយស្រួល៖

បន្ថែមពីលើនេះ ចូរយើងព្យាយាមបង្ហាញពាក្យទីប្រាំនៅក្នុងលក្ខខណ្ឌនៃទីមួយ និងភាពខុសគ្នាដោយប្រើរូបមន្តស្តង់ដារ៖

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162 ។ \\ \end(តម្រឹម)\]

ឥឡូវនេះយើងបន្តដោយការប្រៀបធៀបជាមួយបញ្ហាមុន។ យើងស្វែងយល់ថាតើចំណុចអ្វីខ្លះនៅក្នុងលេខវិជ្ជមានលំដាប់របស់យើងនឹងបង្ហាញឡើង៖

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \\ gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(តម្រឹម)\]

ដំណោះស្រាយចំនួនគត់អប្បបរមានៃវិសមភាពនេះគឺលេខ 56 ។

សូមចំណាំថានៅក្នុងកិច្ចការចុងក្រោយ អ្វីគ្រប់យ៉ាងត្រូវបានកាត់បន្ថយទៅជាវិសមភាពដ៏តឹងរឹង ដូច្នេះជម្រើស $n=55$ នឹងមិនសមនឹងយើងទេ។

ឥឡូវ​នេះ​យើង​បាន​រៀន​ពី​របៀប​ដោះ​ស្រាយ​បញ្ហា​សាមញ្ញ​ហើយ សូម​បន្ត​ទៅ​កាន់​បញ្ហា​ស្មុគស្មាញ​បន្ថែម​ទៀត។ ប៉ុន្តែជាដំបូង ចូរយើងស្វែងយល់អំពីទ្រព្យសម្បត្តិដ៏មានប្រយោជន៍មួយទៀតនៃដំណើរការនព្វន្ធ ដែលនឹងជួយសន្សំសំចៃពេលវេលាច្រើន និងកោសិកាមិនស្មើគ្នានាពេលអនាគត។ :)

មធ្យមនព្វន្ធ និងការចូលបន្ទាត់ស្មើគ្នា

ពិចារណាលក្ខខណ្ឌជាប់ៗគ្នាជាច្រើននៃការកើនឡើងនព្វន្ធ $\left(((a)_(n)) \right)$ ។ តោះព្យាយាមសម្គាល់ពួកវានៅលើបន្ទាត់លេខ៖

សមាជិកវឌ្ឍនភាពនព្វន្ធនៅលើបន្ទាត់លេខ

ខ្ញុំបានកត់សម្គាល់ជាពិសេសអំពីសមាជិកបំពាន $((a)_(n-3)),...,((a)_(n+3))$, និងមិនមែន $((a)_(1)) , \((a)_(2)),\((a)_(3))$ ។ល។ ដោយសារតែច្បាប់ដែលខ្ញុំនឹងប្រាប់អ្នកឥឡូវនេះ ដំណើរការដូចគ្នាសម្រាប់ "ផ្នែក" ណាមួយ។

ហើយច្បាប់គឺសាមញ្ញណាស់។ ចូរយើងចងចាំរូបមន្តដដែលៗ ហើយសរសេរវាចុះសម្រាប់សមាជិកដែលបានសម្គាល់ទាំងអស់៖

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(តម្រឹម)\]

ទោះយ៉ាងណាក៏ដោយ សមភាពទាំងនេះអាចត្រូវបានសរសេរឡើងវិញខុសគ្នា៖

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(តម្រឹម)\]

អញ្ចឹងតើអ្វីទៅ? ប៉ុន្តែការពិតដែលពាក្យ $((a)_(n-1))$ និង $((a)_(n+1))$ ស្ថិតនៅចម្ងាយដូចគ្នាពី $((a)_(n))$ . ហើយចម្ងាយនេះគឺស្មើនឹង $d$ ។ ដូចគ្នានេះដែរអាចត្រូវបាននិយាយអំពីពាក្យ $((a)_(n-2))$ និង $((a)_(n+2))$ - ពួកគេក៏ត្រូវបានដកចេញពី $((a)_(n) ផងដែរ។ )$ ដោយចម្ងាយដូចគ្នាស្មើនឹង $2d$។ អ្នកអាចបន្តដោយគ្មានកំណត់ ប៉ុន្តែរូបភាពបង្ហាញអត្ថន័យបានយ៉ាងល្អ


សមាជិកនៃវឌ្ឍនភាពស្ថិតនៅចម្ងាយដូចគ្នាពីមជ្ឈមណ្ឌល

តើនេះមានន័យយ៉ាងណាចំពោះយើង? នេះមានន័យថាអ្នកអាចស្វែងរក $((a)_(n))$ ប្រសិនបើលេខដែលនៅជិតខាងត្រូវបានគេស្គាល់៖

\[(((a)_(n))=\frac((((a)_(n-1))+((a)_(n+1)))(2)\]

យើងបានកាត់ចេញនូវសេចក្តីថ្លែងការណ៍ដ៏អស្ចារ្យមួយ៖ សមាជិកនីមួយៗនៃដំណើរការនព្វន្ធគឺស្មើនឹងមធ្យមនព្វន្ធរបស់សមាជិកជិតខាង! លើសពីនេះទៅទៀត យើងអាចបង្វែរពី $((a)_(n))$ របស់យើងទៅខាងឆ្វេង និងទៅខាងស្តាំ មិនមែនមួយជំហានទេ ប៉ុន្តែដោយជំហាន $k$ — ហើយនៅតែរូបមន្តនឹងត្រឹមត្រូវ៖

\[(((a)_(n))=\frac((((a)_(n-k))+((a)_(n+k)))(2)\]

ទាំងនោះ។ យើងអាចស្វែងរកបានយ៉ាងងាយស្រួល $((a)_(150))$ ប្រសិនបើយើងដឹង $((a)_(100))$ និង $((a)_(200))$ ព្រោះ $((a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$ ។ នៅ glance ដំបូង, វាអាចហាក់ដូចជាថាការពិតនេះមិនបានផ្តល់ឱ្យយើងនូវអ្វីដែលមានប្រយោជន៍។ ទោះយ៉ាងណាក៏ដោយ នៅក្នុងការអនុវត្ត កិច្ចការជាច្រើនត្រូវបាន "ធ្វើឱ្យច្បាស់" ពិសេសសម្រាប់ការប្រើប្រាស់មធ្យមនព្វន្ធ។ សូមក្រឡេកមើល៖

លេខកិច្ចការ 6 ។ ស្វែងរកតម្លៃទាំងអស់នៃ $x$ ដូចជាលេខ $-6((x)^(2))$, $x+1$ និង $14+4((x)^(2))$ គឺជាសមាជិកជាប់គ្នានៃ វឌ្ឍនភាពនព្វន្ធ (តាមលំដាប់ជាក់លាក់) ។

ដំណោះស្រាយ។ ដោយសារលេខទាំងនេះគឺជាសមាជិកនៃវឌ្ឍនភាពមួយ លក្ខខណ្ឌមធ្យមនព្វន្ធគឺពេញចិត្តសម្រាប់ពួកគេ៖ ធាតុកណ្តាល $x+1$ អាចត្រូវបានបង្ហាញនៅក្នុងលក្ខខណ្ឌនៃធាតុជិតខាង៖

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(២))+x-៦=០។ \\ \end(តម្រឹម)\]

លទ្ធផល​គឺ​សមីការ​ការ៉េ​បុរាណ។ ឫសរបស់វា៖ $x=2$ និង $x=-3$ គឺជាចម្លើយ។

ចម្លើយ៖ -៣; ២.

លេខកិច្ចការ 7 ។ ស្វែងរកតម្លៃនៃ $$ ដែលលេខ $-1;4-3;(()^(2))+1$ បង្កើតជាដំណើរការនព្វន្ធ (តាមលំដាប់នោះ)។

ដំណោះស្រាយ។ ជាថ្មីម្តងទៀត យើងបង្ហាញពាក្យកណ្តាលក្នុងន័យនព្វន្ធនៃន័យជិតខាង៖

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \\ cdot 2 \\ ស្តាំ។ \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(២))-៧x+៦=០។ \\ \end(តម្រឹម)\]

សមីការ​ការ៉េ​មួយ​ទៀត។ ហើយម្តងទៀតឫសពីរ៖ $x=6$ និង $x=1$ ។

ចម្លើយ៖ ១; ៦.

ប្រសិនបើនៅក្នុងដំណើរការនៃការដោះស្រាយបញ្ហា អ្នកទទួលបានលេខដ៏ឃោរឃៅមួយចំនួន ឬអ្នកមិនប្រាកដទាំងស្រុងអំពីភាពត្រឹមត្រូវនៃចម្លើយដែលបានរកឃើញនោះ មានល្បិចដ៏អស្ចារ្យមួយដែលអនុញ្ញាតឱ្យអ្នកពិនិត្យមើល៖ តើយើងបានដោះស្រាយបញ្ហាត្រឹមត្រូវទេ?

ចូរនិយាយថានៅក្នុងបញ្ហាទី 6 យើងទទួលបានចម្លើយ -3 និង 2 ។ តើយើងអាចពិនិត្យមើលដោយរបៀបណាថាចម្លើយទាំងនេះត្រឹមត្រូវ? ចូរយើងគ្រាន់តែដោតពួកវាទៅក្នុងស្ថានភាពដើម ហើយមើលថាមានអ្វីកើតឡើង។ ខ្ញុំសូមរំលឹកអ្នកថា យើងមានលេខបី ($-6()^(2))$, $+1$ និង $14+4(()^(2))$) ដែលគួរតែបង្កើតជាដំណើរការនព្វន្ធ។ ជំនួស $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & ១៤+៤((x)^(២))=៥០។ \end(តម្រឹម)\]

យើងទទួលបានលេខ -54; −២; 50 ដែលខុសគ្នាដោយ 52 គឺពិតជាការវិវត្តនព្វន្ធ។ រឿងដដែលនេះកើតឡើងសម្រាប់ $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & ១៤+៤((x)^(២))=៣០។ \end(តម្រឹម)\]

ការវិវត្តម្តងទៀត ប៉ុន្តែជាមួយនឹងភាពខុសគ្នានៃ 27 ។ ដូច្នេះបញ្ហាត្រូវបានដោះស្រាយយ៉ាងត្រឹមត្រូវ។ អ្នក​ដែល​ប្រាថ្នា​អាច​ពិនិត្យ​កិច្ចការ​ទី​ពីរ​បាន​ដោយ​ខ្លួន​ឯង ប៉ុន្តែ​ខ្ញុំ​នឹង​និយាយ​ភ្លាម​ថា​៖ អ្វីៗ​ក៏​ត្រឹមត្រូវ​ដែរ​។

ជាទូទៅ ពេលដោះស្រាយបញ្ហាចុងក្រោយ យើងបានជំពប់ដួលលើការពិតគួរឱ្យចាប់អារម្មណ៍មួយទៀត ដែលចាំបាច់ត្រូវចងចាំផងដែរ៖

ប្រសិនបើលេខបីគឺដូចជាលេខ ទីពីរគឺជាមធ្យមនៃទីមួយ និងចុងក្រោយ នោះលេខទាំងនេះបង្កើតជាដំណើរការនព្វន្ធ។

នៅពេលអនាគត ការយល់ដឹងអំពីសេចក្តីថ្លែងការណ៍នេះនឹងអនុញ្ញាតឱ្យយើង "សាងសង់" តាមព្យញ្ជនៈនូវការវិវត្តចាំបាច់ដោយផ្អែកលើស្ថានភាពនៃបញ្ហា។ ប៉ុន្តែមុនពេលយើងចូលរួមក្នុង "ការសាងសង់" បែបនេះយើងគួរតែយកចិត្តទុកដាក់លើការពិតមួយទៀតដែលធ្វើតាមដោយផ្ទាល់ពីអ្វីដែលបានពិចារណារួចហើយ។

ការដាក់ជាក្រុម និងផលបូកនៃធាតុ

ចូរយើងត្រលប់ទៅបន្ទាត់លេខម្តងទៀត។ យើងកត់សំគាល់ថាមានសមាជិកមួយចំនួននៃវឌ្ឍនភាព រវាងនោះ ប្រហែលជា។ មានតម្លៃសមាជិកផ្សេងទៀតជាច្រើន៖

ធាតុ 6 ត្រូវបានសម្គាល់នៅលើបន្ទាត់លេខ

តោះព្យាយាមបង្ហាញ "កន្ទុយឆ្វេង" ក្នុងន័យ $((a)_(n))$ និង $d$ និង "កន្ទុយស្តាំ" ក្នុងន័យ $((a)_(k))$ និង $ d$។ វាសាមញ្ញណាស់៖

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(តម្រឹម)\]

ឥឡូវចំណាំថាផលបូកខាងក្រោមគឺស្មើគ្នា៖

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= ស; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= ស. \end(តម្រឹម)\]

និយាយឱ្យសាមញ្ញប្រសិនបើយើងពិចារណាថាជាធាតុចាប់ផ្តើមពីរនៃវឌ្ឍនភាពដែលសរុបស្មើនឹងចំនួនមួយចំនួន $S$ ហើយបន្ទាប់មកយើងចាប់ផ្តើមបោះជំហានពីធាតុទាំងនេះក្នុងទិសដៅផ្ទុយ (ឆ្ពោះទៅរកគ្នាទៅវិញទៅមកឬផ្ទុយមកវិញដើម្បីផ្លាស់ទីទៅឆ្ងាយ) ។ បន្ទាប់មក ផលបូកនៃធាតុដែលយើងនឹងជំពប់ដួលក៏នឹងស្មើគ្នាដែរ។$S$។ នេះអាចត្រូវបានតំណាងយ៉ាងល្អបំផុតតាមក្រាហ្វិក៖


ការចូលបន្ទាត់ដូចគ្នាផ្តល់ផលបូកស្មើគ្នា

ការយល់ដឹងអំពីការពិតនេះនឹងអនុញ្ញាតឱ្យយើងដោះស្រាយបញ្ហានៃកម្រិតខ្ពស់ជាមូលដ្ឋាននៃភាពស្មុគស្មាញជាងអ្វីដែលយើងបានពិចារណាខាងលើ។ ឧទាហរណ៍ទាំងនេះ៖

លេខកិច្ចការ 8 ។ កំណត់ភាពខុសគ្នានៃដំណើរការនព្វន្ធដែលពាក្យទីមួយគឺ 66 ហើយផលគុណនៃពាក្យទីពីរ និងដប់ពីរគឺតូចបំផុតដែលអាចធ្វើទៅបាន។

ដំណោះស្រាយ។ តោះសរសេរអ្វីទាំងអស់ដែលយើងដឹង៖

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min ។ \end(តម្រឹម)\]

ដូច្នេះ យើងមិនដឹងពីភាពខុសគ្នានៃវឌ្ឍនភាព $d$ ទេ។ តាមពិតដំណោះស្រាយទាំងមូលនឹងត្រូវបានបង្កើតឡើងជុំវិញភាពខុសគ្នា ចាប់តាំងពីផលិតផល $((a)_(2))\cdot ((a)_(12))$ អាចសរសេរឡើងវិញដូចខាងក្រោម៖

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2)) \\cdot ((a)_(12))=\left(66+d\right)\cdot \left(66+11d \right)= \\ &=11 \\ cdot ឆ្វេង (d + ៦៦ \\ ស្តាំ) \\ cdot \\ ឆ្វេង (d + ៦ \\ ស្តាំ) ។ \end(តម្រឹម)\]

សម្រាប់អ្នកនៅក្នុងធុង: ខ្ញុំបានយកកត្តាទូទៅ 11 ចេញពីតង្កៀបទីពីរ។ ដូច្នេះផលិតផលដែលចង់បានគឺជាមុខងារបួនជ្រុងដែលទាក់ទងនឹងអថេរ $d$ ។ ដូច្នេះ សូមពិចារណាមុខងារ $f\left(d\right)=11\left(d+66\right)\left(d+6\right)$ - ក្រាហ្វរបស់វានឹងក្លាយជាប៉ារ៉ាបូឡាដែលមានមែកធាងឡើង ពីព្រោះ ប្រសិនបើយើងបើកតង្កៀបយើងទទួលបាន៖

\[\begin(align) & f\left(d\right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(តម្រឹម)\]

ដូចដែលអ្នកអាចឃើញ មេគុណដែលមានពាក្យខ្ពស់បំផុតគឺ 11 - នេះគឺជាចំនួនវិជ្ជមាន ដូច្នេះយើងពិតជាកំពុងដោះស្រាយជាមួយប៉ារ៉ាបូឡាដែលមានសាខាឡើងលើ៖


ក្រាហ្វនៃអនុគមន៍បួនជ្រុង - ប៉ារ៉ាបូឡា

សូមចំណាំ៖ ប៉ារ៉ាបូឡានេះយកតម្លៃអប្បបរមារបស់វានៅចំនុចកំពូលរបស់វាជាមួយនឹង abscissa $((d)_(0))$ ។ ជាការពិតណាស់ យើងអាចគណនា abscissa នេះតាមគ្រោងការណ៍ស្តង់ដារ (មានរូបមន្ត $((d)_(0))=(-b)/(2a)\;$) ប៉ុន្តែវានឹងសមហេតុផលជាងនេះទៅទៀត។ ចំណាំថាចំនុចកំពូលដែលចង់បានស្ថិតនៅលើអ័ក្សស៊ីមេទ្រីនៃប៉ារ៉ាបូឡា ដូច្នេះចំនុច $((d)_(0))$ គឺស្មើគ្នាពីឫសនៃសមីការ $f\left(d\right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11 \\ cdot \\ ឆ្វេង (d + ៦៦ \\ ស្តាំ) \\ cdot \\ ឆ្វេង (d + ៦ \\ ស្តាំ) = ០; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(តម្រឹម)\]

នោះហើយជាមូលហេតុដែលខ្ញុំមិនប្រញាប់ដើម្បីបើកតង្កៀប: នៅក្នុងទម្រង់ដើមឫសគឺងាយស្រួលរកណាស់។ ដូច្នេះ abscissa គឺស្មើនឹងមធ្យមនព្វន្ធនៃលេខ −66 និង −6:

\[(((d)_(0))=\frac(-66-6)(2)=-36\]

តើអ្វីផ្តល់ឱ្យយើងនូវលេខដែលបានរកឃើញ? ជាមួយវា ផលិតផលដែលត្រូវការយកតម្លៃតូចបំផុត (ដោយវិធីនេះ យើងមិនបានគណនា $((y)_(\min ))$ - វាមិនត្រូវបានទាមទារពីយើងទេ)។ ក្នុងពេលជាមួយគ្នានេះចំនួននេះគឺជាភាពខុសគ្នានៃការវិវត្តដំបូង, i.e. យើងបានរកឃើញចម្លើយ។ :)

ចម្លើយ៖ -៣៦

លេខកិច្ចការ 9 ។ បញ្ចូលលេខបីរវាងលេខ $-\frac(1)(2)$ និង $-\frac(1)(6)$ ដូច្នេះ រួមជាមួយនឹងលេខដែលបានផ្តល់ឱ្យពួកគេបង្កើតជាដំណើរការនព្វន្ធ។

ដំណោះស្រាយ។ តាមពិតយើងត្រូវធ្វើលំដាប់លេខប្រាំ ដោយលេខទីមួយ និងលេខចុងក្រោយគេដឹងរួចហើយ។ សម្គាល់លេខដែលបាត់ដោយអថេរ $x$, $y$ និង $z$៖

\[\left(((a)_(n)) \right)=\left\(-\frac(1)(2);x;y;z;-\frac(1)(6)\right\ )\]

ចំណាំថាលេខ $y$ គឺជា "កណ្តាល" នៃលំដាប់របស់យើង - វាស្មើគ្នាពីលេខ $x$ និង $z$ និងពីលេខ $-\frac(1)(2)$ និង $-\frac (1)(6)$។ ហើយប្រសិនបើនៅពេលនេះយើងមិនអាចទទួលបាន $y$ ពីលេខ $x$ និង $z$ ទេនោះ ស្ថានភាពគឺខុសគ្នាជាមួយនឹងការបញ្ចប់នៃដំណើរការ។ ចងចាំអត្ថន័យនព្វន្ធ៖

ឥឡូវនេះ ដោយដឹងថា $y$ យើងនឹងរកឃើញលេខដែលនៅសល់។ ចំណាំថា $x$ ស្ថិតនៅចន្លោះ $-\frac(1)(2)$ និង $y=-\frac(1)(3)$ ទើបរកឃើញ។ នោះ​ហើយ​ជា​មូល​ហេតុ​ដែល

ប្រកែកស្រដៀងគ្នានេះ យើងរកឃើញចំនួនដែលនៅសល់៖

រួចរាល់ហើយ! យើងបានរកឃើញលេខទាំងបី។ ចូរសរសេរពួកវាចុះក្នុងចំលើយតាមលំដាប់លំដោយ ដែលគួរបញ្ចូលរវាងលេខដើម។

ចម្លើយ៖ $-\frac(5)(12);\-\frac(1)(3);\-\frac(1)(4)$

លេខកិច្ចការ 10 ។ នៅចន្លោះលេខ 2 និង 42 បញ្ចូលលេខជាច្រើនដែលរួមជាមួយនឹងលេខដែលបានផ្តល់ឱ្យបង្កើតជាដំណើរការនព្វន្ធ ប្រសិនបើគេដឹងថាផលបូកនៃលេខទីមួយ ទីពីរ និងចុងក្រោយនៃលេខដែលបានបញ្ចូលគឺ 56។

ដំណោះស្រាយ។ កិច្ចការដែលពិបាកជាងនេះទៅទៀត ដែលទោះជាយ៉ាងណា វាត្រូវបានដោះស្រាយតាមរបៀបដូចគ្នានឹងកិច្ចការមុនៗដែរ - តាមរយៈមធ្យមនព្វន្ធ។ បញ្ហាគឺយើងមិនដឹងថាត្រូវបញ្ចូលលេខប៉ុន្មានទេ។ ដូច្នេះសម្រាប់ភាពច្បាស់លាស់ យើងសន្មត់ថាបន្ទាប់ពីការបញ្ចូលវានឹងមានចំនួន $n$ យ៉ាងពិតប្រាកដ ហើយលេខទីមួយគឺ 2 ហើយចុងក្រោយគឺ 42។ ក្នុងករណីនេះ ការវិវត្តនព្វន្ធដែលចង់បានអាចត្រូវបានតំណាងជា៖

\\[\left(((a)_(n)) \right)=\left\(2;((a)_(2));((a)_(3));...;((( a)_(n-1));42 \right\)\]

\[(((a)_(2))+((a)_(3))+(a)_(n-1))=56\]

ទោះជាយ៉ាងណាក៏ដោយ ចូរចំណាំថាលេខ $((a)_(2))$ និង $((a)_(n-1))$ ត្រូវបានទទួលពីលេខ 2 និង 42 ដែលឈរនៅគែមដោយមួយជំហានឆ្ពោះទៅរកគ្នាទៅវិញទៅមក។ , ឧ.. ទៅកណ្តាលនៃលំដាប់។ ហើយនេះមានន័យថា

\[(((a)_(2))+((a)_(n-1))=2+42=44\]

ប៉ុន្តែបន្ទាប់មកកន្សោមខាងលើអាចត្រូវបានសរសេរឡើងវិញដូចនេះ:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \\right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((ក)_(៣))=៥៦-៤៤=១២។ \\ \end(តម្រឹម)\]

ដោយដឹងថា $((a)_(3))$ និង $((a)_(1))$ យើងអាចស្វែងរកភាពខុសគ្នានៃដំណើរការបានយ៉ាងងាយស្រួល៖

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1\right)\cdot d=2d; \\ & 2d=10 ព្រួញស្ដាំ d=5 ។ \\ \end(តម្រឹម)\]

វានៅសល់តែដើម្បីស្វែងរកសមាជិកដែលនៅសល់៖

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(តម្រឹម)\]

ដូច្នេះហើយនៅជំហានទី 9 យើងនឹងមកដល់ចុងខាងឆ្វេងនៃលំដាប់ - លេខ 42 ។ សរុបមកមានតែ 7 លេខប៉ុណ្ណោះដែលត្រូវបញ្ចូល: 7; ១២; ១៧; ២២; ២៧; ៣២; ៣៧.

ចម្លើយ៖ ៧; ១២; ១៧; ២២; ២៧; ៣២; ៣៧

អត្ថបទកិច្ចការជាមួយវឌ្ឍនភាព

សរុបសេចក្តីមក ខ្ញុំចង់ពិចារណាពីបញ្ហាសាមញ្ញមួយចំនួន។ ជាការប្រសើរណាស់ ដូចជារឿងសាមញ្ញៗ៖ សម្រាប់សិស្សភាគច្រើនដែលសិក្សាគណិតវិទ្យានៅសាលា ហើយមិនបានអានអ្វីដែលបានសរសេរខាងលើ កិច្ចការទាំងនេះអាចហាក់ដូចជាកាយវិការមួយ។ យ៉ាង​ណា​ក៏​ដោយ វា​គឺ​ជា​កិច្ចការ​ដែល​កើត​ឡើង​ក្នុង​ OGE និង USE ក្នុង​គណិតវិទ្យា ដូច្នេះ​ខ្ញុំ​សូម​ណែនាំ​ឱ្យ​អ្នក​ស្គាល់​ខ្លួន​អ្នក​ជាមួយ​ពួកគេ។

លេខកិច្ចការ 11 ។ ក្រុមនេះផលិតបាន 62 ផ្នែកក្នុងខែមករា ហើយក្នុងខែបន្តបន្ទាប់គ្នា ពួកគេផលិតបាន 14 ផ្នែកច្រើនជាងកាលពីមុន ។ តើកងពលតូចផលិតបានប៉ុន្មានផ្នែកក្នុងខែវិច្ឆិកា?

ដំណោះស្រាយ។ ជាក់ស្តែង ចំនួននៃផ្នែកដែលត្រូវបានលាបពណ៌តាមខែ នឹងក្លាយជាការរីកចំរើនផ្នែកនព្វន្ធ។ និង៖

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1\right)\cdot 14. \\ \end(align)\]

ខែវិច្ឆិកា គឺជាខែទី 11 នៃឆ្នាំ ដូច្នេះយើងត្រូវស្វែងរក $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

ដូច្នេះ 202 ផ្នែកនឹងត្រូវបានផលិតនៅក្នុងខែវិច្ឆិកា។

លេខកិច្ចការ 12 ។ សិក្ខាសាលាចងសៀវភៅបានចងសៀវភៅចំនួន 216 ក្បាលក្នុងខែមករា ហើយជារៀងរាល់ខែវាបានចងសៀវភៅ 4 ក្បាលច្រើនជាងខែមុន។ តើសិក្ខាសាលាបានចងសៀវភៅប៉ុន្មានក្បាលក្នុងខែធ្នូ?

ដំណោះស្រាយ។ ដូចគ្នា​ទាំងអស់:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1\right)\cdot 4. \\ \end(align)$

ខែធ្នូគឺជាខែចុងក្រោយនៃឆ្នាំទី 12 ដូច្នេះយើងកំពុងស្វែងរក $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

នេះគឺជាចម្លើយ - សៀវភៅចំនួន 260 ក្បាលនឹងត្រូវបានចងនៅខែធ្នូ។

ជាការប្រសើរណាស់, ប្រសិនបើអ្នកបានអានឆ្ងាយនេះ, ខ្ញុំប្រញាប់ដើម្បីអបអរសាទរអ្នក: អ្នកបានបញ្ចប់ដោយជោគជ័យ "វគ្គសិក្សាអ្នកប្រយុទ្ធវ័យក្មេង" នៅក្នុងការរីកចម្រើននព្វន្ធ។ យើងអាចបន្តទៅមេរៀនបន្ទាប់ដោយសុវត្ថិភាព ដែលយើងនឹងសិក្សារូបមន្តផលបូកនៃវឌ្ឍនភាព ក៏ដូចជាផលវិបាកសំខាន់ៗ និងមានប្រយោជន៍បំផុតពីវា។


ឧទាហរណ៍ លំដាប់ \(2\); \(5\); \(ប្រាំបី\); \(ដប់មួយ\); \(14\)… គឺជាការវិវឌ្ឍន៍នព្វន្ធ ពីព្រោះធាតុបន្ទាប់នីមួយៗខុសពីធាតុមុនដោយបី (អាចទទួលបានពីធាតុមុនដោយបន្ថែមបី)៖

នៅក្នុងវឌ្ឍនភាពនេះ ភាពខុសគ្នា \(d\) គឺវិជ្ជមាន (ស្មើនឹង \(3\)) ហើយដូច្នេះពាក្យបន្ទាប់នីមួយៗគឺធំជាងពាក្យមុន។ ការវិវត្តបែបនេះត្រូវបានគេហៅថា កើនឡើង.

ទោះយ៉ាងណាក៏ដោយ \(d\) ក៏អាចជាលេខអវិជ្ជមានផងដែរ។ ឧទាហរណ៍នៅក្នុងដំណើរការនព្វន្ធ \(16\); \\ (ដប់\); \\ (បួន\); \\(-២\); \(-8\)… ភាពខុសគ្នានៃដំណើរការ \(d\) គឺស្មើនឹងដកប្រាំមួយ។

ហើយក្នុងករណីនេះធាតុបន្ទាប់នីមួយៗនឹងមានតិចជាងធាតុមុន។ វឌ្ឍនភាពទាំងនេះត្រូវបានគេហៅថា ថយចុះ.

សញ្ញាណនៃវឌ្ឍនភាពនព្វន្ធ

វឌ្ឍនភាពត្រូវបានតំណាងដោយអក្សរឡាតាំងតូចមួយ។

លេខដែលបង្កើតបានជាវឌ្ឍនភាពត្រូវបានគេហៅថា សមាជិក(ឬធាតុ) ។

ពួកវាត្រូវបានតំណាងដោយអក្សរដូចគ្នាទៅនឹងការវិវត្តនព្វន្ធ ប៉ុន្តែមានលិបិក្រមលេខស្មើនឹងលេខធាតុតាមលំដាប់លំដោយ។

ឧទាហរណ៍ ដំណើរការនព្វន្ធ \(a_n = \left\(2; 5; 8; 11; 14...\right\)\) មានធាតុ \(a_1=2\); \(a_2=5\); \(a_3=8\) និងបន្តបន្ទាប់ទៀត។

នៅក្នុងពាក្យផ្សេងទៀតសម្រាប់ការវិវត្ត \(a_n = \left\(2; 5; 8; 11; 14...\right\)\)

ការដោះស្រាយបញ្ហាលើដំណើរការនព្វន្ធ

ជាគោលការណ៍ ព័ត៌មានខាងលើគឺគ្រប់គ្រាន់ហើយក្នុងការដោះស្រាយបញ្ហាស្ទើរតែទាំងអស់លើដំណើរការនព្វន្ធ (រួមទាំងអ្វីដែលផ្តល់ជូននៅ OGE)។

ឧទាហរណ៍ (OGE) ។ វឌ្ឍនភាពនព្វន្ធត្រូវបានផ្តល់ដោយលក្ខខណ្ឌ \(b_1=7; d=4\) ។ ស្វែងរក \(b_5\) ។
ដំណោះស្រាយ៖

ចម្លើយ៖ \\(b_5=23\)

ឧទាហរណ៍ (OGE) ។ ពាក្យបីដំបូងនៃវឌ្ឍនភាពនព្វន្ធត្រូវបានផ្តល់ឱ្យ៖ \(62; 49; 36...\) ស្វែងរកតម្លៃនៃពាក្យអវិជ្ជមានដំបូងនៃវឌ្ឍនភាពនេះ។.
ដំណោះស្រាយ៖

យើង​ត្រូវ​បាន​ផ្តល់​ឱ្យ​នូវ​ធាតុ​ដំបូង​នៃ​លំដាប់ ហើយ​ដឹង​ថា​វា​ជា​ការ​រីក​ចម្រើន​នព្វន្ធ។ នោះគឺធាតុនីមួយៗខុសគ្នាពីអ្នកជិតខាងដោយលេខដូចគ្នា។ ស្វែងយល់ថាតើមួយណាដោយដកលេខមុនចេញពីធាតុបន្ទាប់៖ \(d=49-62=-13\)។

ឥឡូវនេះយើងអាចស្តារការវិវត្តរបស់យើងទៅធាតុដែលចង់បាន (អវិជ្ជមានដំបូង) ។

រួចរាល់។ អ្នកអាចសរសេរចម្លើយ។

ចម្លើយ៖ \(-3\)

ឧទាហរណ៍ (OGE) ។ ធាតុបន្តបន្ទាប់គ្នាជាច្រើននៃដំណើរការនព្វន្ធត្រូវបានផ្តល់ឱ្យ៖ \(...5; x; 10; 12.5...\) ស្វែងរកតម្លៃនៃធាតុដែលតំណាងដោយអក្សរ \(x\) ។
ដំណោះស្រាយ៖


ដើម្បីស្វែងរក \(x\) យើងត្រូវដឹងថាតើធាតុបន្ទាប់ខុសគ្នាប៉ុន្មានពីធាតុមុន ឬនិយាយម្យ៉ាងទៀត ភាពខុសគ្នានៃដំណើរការ។ ចូរយើងស្វែងរកវាពីធាតុជិតខាងដែលគេស្គាល់ពីរ៖ \(d=12.5-10=2.5\) ។

ហើយឥឡូវនេះយើងរកឃើញអ្វីដែលយើងកំពុងស្វែងរកដោយគ្មានបញ្ហា៖ \(x=5+2.5=7.5\)។


រួចរាល់។ អ្នកអាចសរសេរចម្លើយ។

ចម្លើយ៖ \(7,5\).

ឧទាហរណ៍ (OGE) ។ វឌ្ឍនភាពនព្វន្ធត្រូវបានផ្តល់ដោយលក្ខខណ្ឌដូចខាងក្រោម៖ \(a_1=-11\); \(a_(n+1)=a_n+5\) ស្វែងរកផលបូកនៃលក្ខខណ្ឌប្រាំមួយដំបូងនៃដំណើរការនេះ។
ដំណោះស្រាយ៖

យើងត្រូវស្វែងរកផលបូកនៃលក្ខខណ្ឌប្រាំមួយដំបូងនៃវឌ្ឍនភាព។ ប៉ុន្តែយើងមិនស្គាល់អត្ថន័យរបស់ពួកគេទេយើងត្រូវបានផ្តល់ឱ្យតែធាតុទីមួយប៉ុណ្ណោះ។ ដូច្នេះ​ដំបូង​យើង​គណនា​តម្លៃ​ជា​វេន​ដោយ​ប្រើ​តម្លៃ​ដែល​បាន​ផ្ដល់​ឱ្យ​យើង ៖

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
ហើយដោយបានគណនាធាតុទាំងប្រាំមួយដែលយើងត្រូវការ យើងរកឃើញផលបូករបស់វា។

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

បានរកឃើញចំនួនទឹកប្រាក់ដែលបានស្នើសុំ។

ចម្លើយ៖ \\(S_6=9\) ។

ឧទាហរណ៍ (OGE) ។ នៅក្នុងដំណើរការនព្វន្ធ \(a_(12)=23\); \(a_(16)=51\) ។ ស្វែងរកភាពខុសគ្នានៃដំណើរការនេះ។
ដំណោះស្រាយ៖

ចម្លើយ៖ \\ (d=7\) ។

រូបមន្តវឌ្ឍនភាពនព្វន្ធសំខាន់

ដូចដែលអ្នកអាចឃើញបញ្ហានៃការវិវត្តនព្វន្ធជាច្រើនអាចត្រូវបានដោះស្រាយដោយសាមញ្ញដោយការយល់ដឹងអំពីរឿងសំខាន់ - ថាការវិវត្តនព្វន្ធគឺជាខ្សែសង្វាក់នៃលេខហើយធាតុបន្ទាប់នីមួយៗនៅក្នុងខ្សែសង្វាក់នេះត្រូវបានទទួលដោយការបន្ថែមលេខដូចគ្នាទៅនឹងលេខមុន (ភាពខុសគ្នា នៃវឌ្ឍនភាព) ។

ទោះជាយ៉ាងណាក៏ដោយជួនកាលមានស្ថានភាពនៅពេលដែលវារអាក់រអួលខ្លាំងក្នុងការដោះស្រាយ "នៅលើថ្ងាស" ។ ជាឧទាហរណ៍ សូមស្រមៃថាក្នុងឧទាហរណ៍ដំបូង យើងត្រូវរកមិនឃើញធាតុទីប្រាំ \(b_5\) ប៉ុន្តែបីរយប៉ែតសិបប្រាំមួយ \(b_(386)\) ។ តើវាជាអ្វី យើង \ (385 \) ដងដើម្បីបន្ថែមបួន? ឬស្រមៃថានៅក្នុងឧទាហរណ៍ចុងក្រោយ អ្នកត្រូវស្វែងរកផលបូកនៃធាតុចិតសិបបីដំបូង។ ការ​រាប់​គឺ​មាន​ការ​យល់​ច្រឡំ ...

ដូច្នេះក្នុងករណីបែបនេះ ពួកគេមិនដោះស្រាយ "នៅលើថ្ងាស" ទេ ប៉ុន្តែត្រូវប្រើរូបមន្តពិសេសដែលបានមកពីការវិវត្តនព្វន្ធ។ ហើយរូបមន្តសំខាន់ៗគឺរូបមន្តសម្រាប់ពាក្យទី n នៃវឌ្ឍនភាព និងរូបមន្តសម្រាប់ផលបូក \(n\) នៃពាក្យទីមួយ។

រូបមន្តសម្រាប់ \(n\) សមាជិកទី៖ \(a_n=a_1+(n-1)d\) ដែល \(a_1\) គឺជាសមាជិកទីមួយនៃដំណើរការ។
\(n\) - ចំនួននៃធាតុដែលត្រូវការ;
\(a_n\) គឺជាសមាជិកនៃដំណើរការដែលមានលេខ \(n\) ។


រូបមន្តនេះអនុញ្ញាតឱ្យយើងរកឃើញយ៉ាងរហ័សនូវធាតុទី 3 រយ សូម្បីតែធាតុមួយលានដោយដឹងតែធាតុទីមួយ និងភាពខុសគ្នានៃវឌ្ឍនភាព។

ឧទាហរណ៍។ វឌ្ឍនភាពនព្វន្ធត្រូវបានផ្តល់ដោយលក្ខខណ្ឌ៖ \(b_1=-159\); \\ (d=8,2\) ។ ស្វែងរក \(b_(246)\) ។
ដំណោះស្រាយ៖

ចម្លើយ៖ \(b_(246)=1850\) ។

រូបមន្តសម្រាប់ផលបូកនៃពាក្យ n ទីមួយគឺ៖ \(S_n=\frac(a_1+a_n)(2) \cdot n\) ដែល



\(a_n\) គឺជាពាក្យសង្ខេបចុងក្រោយ។


ឧទាហរណ៍ (OGE) ។ ការវិវត្តនព្វន្ធត្រូវបានផ្តល់ដោយលក្ខខណ្ឌ \(a_n=3.4n-0.6\) ។ ស្វែងរកផលបូកនៃលក្ខខណ្ឌ \(25\) ដំបូងនៃដំណើរការនេះ។
ដំណោះស្រាយ៖

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\)

ដើម្បីគណនាផលបូកនៃធាតុម្ភៃប្រាំដំបូង យើងត្រូវដឹងពីតម្លៃនៃពាក្យទី 2 និងទី 25 ។
ការវិវត្តរបស់យើងត្រូវបានផ្តល់ឱ្យដោយរូបមន្តនៃពាក្យទី 9 អាស្រ័យលើចំនួនរបស់វា (សូមមើលព័ត៌មានលម្អិត) ។ តោះគណនាធាតុទីមួយដោយជំនួស \(n\) ជាមួយមួយ។

\(n=1;\) \(a_1=3.4 1-0.6=2.8\)

ឥឡូវ​យើង​រក​ពាក្យ​ទី​ម្ភៃ​ប្រាំ​ដោយ​ជំនួស​ម្ភៃ​ប្រាំ​ជំនួស​ឱ្យ \(n\) ។

\(n=25;\) \(a_(25)=3.4 25-0.6=84.4\)

មែនហើយឥឡូវនេះយើងគណនាចំនួនដែលត្រូវការដោយគ្មានបញ្ហា។

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

ចម្លើយគឺរួចរាល់។

ចម្លើយ៖ \(S_(25)=1090\) ។

សម្រាប់ផលបូក \(n\) នៃពាក្យទីមួយ អ្នកអាចទទួលបានរូបមន្តមួយទៀត៖ អ្នកគ្រាន់តែត្រូវការ \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\) ជំនួសឱ្យ \(a_n\) ជំនួសរូបមន្តសម្រាប់វា \(a_n=a_1+(n-1)d\)។ យើង​ទទួល​បាន:

រូបមន្តសម្រាប់ផលបូកនៃពាក្យ n ទីមួយគឺ៖ \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\) ដែល

\(S_n\) – ផលបូកដែលត្រូវការ \(n\) នៃធាតុទីមួយ;
\(a_1\) គឺជាពាក្យដំបូងដែលត្រូវបូកសរុប។
\\ (d\) - ភាពខុសគ្នានៃដំណើរការ;
\(n\) - ចំនួនធាតុនៅក្នុងផលបូក។

ឧទាហរណ៍។ ស្វែងរកផលបូកនៃពាក្យដំបូង \(33\)-ex នៃដំណើរការនព្វន្ធ៖ \(17\); \(15,5\); \(ដប់បួន\)...
ដំណោះស្រាយ៖

ចម្លើយ៖ \\(S_(33)=-231\) ។

បញ្ហាដំណើរការនព្វន្ធស្មុគស្មាញជាង

ឥឡូវនេះអ្នកមានព័ត៌មានទាំងអស់ដែលអ្នកត្រូវការដើម្បីដោះស្រាយបញ្ហាការវិវត្តនព្វន្ធស្ទើរតែទាំងអស់។ សូមបញ្ចប់ប្រធានបទដោយពិចារណាលើបញ្ហាដែលអ្នកត្រូវមិនត្រឹមតែអនុវត្តរូបមន្តប៉ុណ្ណោះទេ ប៉ុន្តែថែមទាំងគិតបន្តិចទៀត (ក្នុងគណិតវិទ្យាវាអាចមានប្រយោជន៍ ☺)

ឧទាហរណ៍ (OGE) ។ ស្វែងរកផលបូកនៃលក្ខខណ្ឌអវិជ្ជមានទាំងអស់នៃដំណើរការ៖ \(-19.3\); \\(-១៩\); \(-១៨.៧\)…
ដំណោះស្រាយ៖

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

ភារកិច្ចគឺស្រដៀងនឹងការងារមុន។ យើងចាប់ផ្តើមដោះស្រាយតាមរបៀបដូចគ្នា៖ ដំបូងយើងរកឃើញ \(d\) ។

\(d=a_2-a_1=-19-(-19.3)=0.3\)

ឥឡូវនេះ យើងនឹងជំនួស \(d\) ទៅក្នុងរូបមន្តសម្រាប់ផលបូក ... ហើយនៅទីនេះ ចំនុចតូចមួយលេចឡើង - យើងមិនដឹង \(n\) ។ ម្យ៉ាង​ទៀត យើង​មិន​ដឹង​ថា​ត្រូវ​បន្ថែម​លក្ខខណ្ឌ​ប៉ុន្មាន​ទេ។ តើធ្វើដូចម្តេចដើម្បីស្វែងយល់? ចូរយើងគិត។ យើងនឹងបញ្ឈប់ការបន្ថែមធាតុនៅពេលដែលយើងទៅដល់ធាតុវិជ្ជមានដំបូង។ នោះគឺអ្នកត្រូវស្វែងរកចំនួននៃធាតុនេះ។ យ៉ាងម៉េច? ចូរសរសេររូបមន្តសម្រាប់គណនាធាតុណាមួយនៃដំណើរការនព្វន្ធ៖ \(a_n=a_1+(n-1)d\) សម្រាប់ករណីរបស់យើង។

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

យើងត្រូវការ \(a_n\) ធំជាងសូន្យ។ តោះស្វែងយល់ថាតើវានឹងមានអ្វីកើតឡើង។

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|:0.3\)

យើងបែងចែកផ្នែកទាំងពីរនៃវិសមភាពដោយ \(0,3\) ។

\(n-1>\)\(\frac(19,3)(0,3)\)

យើងផ្ទេរដកមួយដោយមិនភ្លេចប្តូរសញ្ញា

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

កុំព្យូទ័រ...

\(n>65,333…\)

…ហើយវាប្រែថាធាតុវិជ្ជមានដំបូងនឹងមានលេខ \(66\)។ ដូច្នោះហើយ អវិជ្ជមានចុងក្រោយមាន \(n=65\)។ គ្រាន់តែក្នុងករណី សូមពិនិត្យមើលវាចេញ។

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

ដូច្នេះ យើងត្រូវបន្ថែមធាតុ \(65\) ដំបូង។

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

ចម្លើយគឺរួចរាល់។

ចម្លើយ៖ \(S_(65)=-630.5\) ។

ឧទាហរណ៍ (OGE) ។ វឌ្ឍនភាពនព្វន្ធត្រូវបានផ្តល់ដោយលក្ខខណ្ឌ៖ \(a_1=-33\); \(a_(n+1)=a_n+4\)។ ស្វែងរកផលបូកពី \(26\)th ដល់ \(42\) ធាតុរួមបញ្ចូល។
ដំណោះស្រាយ៖

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

ក្នុង​បញ្ហា​នេះ អ្នក​ក៏​ត្រូវ​រក​ផល​បូក​នៃ​ធាតុ​ដែរ ប៉ុន្តែ​ចាប់​ផ្ដើម​មិន​មែន​ពី​ដំបូង​ទេ ប៉ុន្តែ​ចាប់​ពី \(26\)th ។ យើងមិនមានរូបមន្តសម្រាប់រឿងនេះទេ។ តើត្រូវសម្រេចចិត្តបែបណា?
ងាយស្រួល - ដើម្បីទទួលបានផលបូកពី \(26\)th ដល់ \(42\)th ដំបូងអ្នកត្រូវរកផលបូកពី \(1\)th ដល់ \(42\)th ហើយបន្ទាប់មកដកពីវា ផលបូកពី the first to \ (25 \) th (មើលរូបភាព) ។


សម្រាប់ដំណើរការរបស់យើង \(a_1=-33\) និងភាពខុសគ្នា \(d=4\) (បន្ទាប់ពីទាំងអស់ យើងបន្ថែមបួនទៅធាតុមុនដើម្បីស្វែងរកធាតុបន្ទាប់)។ ដោយដឹងរឿងនេះ យើងរកឃើញផលបូកនៃធាតុ \(42\)-uh ដំបូង។

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\\(\cdot 42=\)
\\(=\)\(\frac(-66+164)(2)\) \\(\cdot 42=2058\)

ឥឡូវនេះផលបូកនៃធាតុទីមួយ \(25\)-th ។

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\\(\cdot 25=\)
\\(=\)\(\frac(-66+96)(2)\) \\(\cdot 25=375\)

ហើយចុងក្រោយយើងគណនាចម្លើយ។

\(S=S_(42)-S_(25)=2058-375=1683\)

ចម្លើយ៖ \\ (S=1683\) ។

សម្រាប់ដំណើរការនព្វន្ធ មានរូបមន្តជាច្រើនទៀតដែលយើងមិនបានពិចារណានៅក្នុងអត្ថបទនេះ ដោយសារអត្ថប្រយោជន៍ជាក់ស្តែងទាបរបស់វា។ ទោះយ៉ាងណាក៏ដោយអ្នកអាចស្វែងរកពួកគេយ៉ាងងាយស្រួល។