Молекулярно генетический уровень организации жизни кратко. Молекулярный уровень организации жизни

В ХХ веке установили пять уровней организации жизни: молекулярно–генетический, онтогенетический, популярно–видовой, экосистемный и биосферный.Выяснения феномена жизни на каждом уровне является один из основных задач биологии.

Молекулярно–генетический уровень – это уровень организации живых систем, состоящий из белков и нуклеиновых кислот. На этом уровне элементарной единицей организма являются гены. Здесь биология изучает механизмы передачи генной информации, наследственности и изменчивости.

В живых организмах наиболее распространены шесть химических элементов-органогенов : углерод, азот, водород, кислород, фосфор и сера. С участием этих элементов, в ходе химической эволюции возникли гигантские биополимеры : углеводы, белки, липиды и нуклеиновые кислоты. Эти макромолекулы являются основой живых организмов. Мономерами этих макромолекул являются: моносахариды, аминокислоты, жирная кислота и нуклеотиды.

Белки и нуклеиновые кислоты являются «информационными » макромолекулами, т.к. их свойства зависят от последовательности соединения 20 аминокислот и 4 нуклеотидов. Углеводы и липиды играют роль резерва энергии и строительного материала. На долю белков приходится свыше 50% общей сухой массы клеток.

Генетическаяинформация организма хранится в ДНК. Она контролирует почти все биологические процессы, протекающие в организме. Белки и нуклеиновые кислоты обладают свойством молекулярной асимметрии (молекулярной хиральностью). Хиральность (греч. cheir – рука) проявляется в том, что белки вращают плоскость поляризации света влево , а нуклеиновые кислоты – вправо . Хиральность заключается в их асимметрии со своим зеркальным отражением, как у правой и левой руки, отсюда берется название.

Молекулы ДНК вместе с белками образуют вещество хромосом. Доказательство генетической роли ДНК было получено, в 1944 г., ученым О. Эйвери, в опыте на бактериях. В 1953 г., американский биохимик Джеймс Уотсон и английский биофизик Френсис Крик раскрыли структуру молекулы ДНК. Они показали, что ДНК состоит из двух нитей, закрученных в двойную спираль. ДНК содержит 10 ÷ 25 тысяч нуклеотидов, а РНК – от 4 до 6 тысяч.

В 1941 г., американские ученые Дж. Бидл и Э. Теймут установили, что синтез белков зависит от состояния генов ДНК. Ген – участок молекулыДНК, состоящий из сотни нуклеотидов. Тогда появились высказывания: один ген – один белок. Всю совокупность генов организма называют геномом . Число генов в организме человека составляет около 50 ÷ 100 тысяч , а весь геном человека содержит более 3 миллиардов нуклеотидных пар . Гены кодируют синтез белков.

В 1954г физик-теоретик Георгий Гамов расшифровал генетический код. Он установил, что для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Оно является элементарной единицей наследственности, кодирующей одну аминокислоту, и получило название кодон (триплет). В 1961 г. гипотеза Гамова была на опыте, подтверждена Криком.

Клеточный органоид рибосома «читает » информацию, содержащуюся в и-РНК, и в соответствии с ним синтезирует белок . Кодоны – триплеты состоят из трех нуклеотидов, например, АЦГ, АГЦ, ГГГ и другие. Полное число таких триплетов составляет 64. Из них три триплета являются стоп-сигналами, а 61 триплет кодирует 20 аминокислот. Белок, состоящий из 200 аминокислот, кодируется 200 кодонами, т.е. 600 нуклеотидами в и-РНК, и 600 парами нуклеотидов в ДНК. Это и есть размер одного гена. Информация в ДНК пишется, при помощи нуклеотидов, в виде: А-Ц-А-Т-Т-Г-А-Г-А-Т-∙∙∙∙∙∙. В таком тексте содержится информация, определяющая специфику каждого организма.

Генетический код универсален, т.к. одинаков для всех живых организмов. Это свидетельствует о биохимическом единстве жизни, т.е. происхождении жизни на Земле от единого предка. Генетический код уникален , т.к. он кодирует только одну аминокислоту.

Жизнь характеризуется диалектическим единством противоположностей: она одновременно целостна и дискретна. Органический мир представляет собой единое целое, так как составляет систему взаимосвязанных частей (существование одних организмов зависит от других), и в то же время дискретен, поскольку состоит из отдельных единиц - организмов, или особей. Каждый живой организм, в свою очередь, также дискретен, так как состоит из отдельных органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое целое. Наследственная информация осуществляется генами, но

ни один из генов вне всей совокупности не определяет развитие признака и т.д.

С дискретностью жизни связаны различные уровни организации органического мира, которые можно определить как дискретные состояния биологических систем, характеризуемых соподчи-ненностью, взаимосвязанностью и специфическими закономерностями. При этом каждый новый уровень обладает особыми свойствами и закономерностями прежнего, низшего уровня, поскольку любой организм, с одной стороны, состоит из подчиненных ему элементов, а с другой - сам является элементом, входящим в состав какой-то макробиологической системы.

На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация, обмен веществом, энергией и информацией. Существование жизни на более высоких уровнях организации подготавливается и определяется структурой низшего уровня; в частности, характер клеточного уровня определяется молекулярным и субклеточным, организменный - клеточным, тканевым уровнями и т.д.

Структурные уровни организации жизни чрезвычайно многообразны, но при этом основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, биоценотический, биогеоценотический и биосферный.

Молекулярно-генетический уровень

Молекулярно-генетический уровень жизни - это уровень функционирования биополимеров (белков, нуклеиновых кислот, полисахаридов) и других важных органических соединений, лежащих в основе процессов жизнедеятельности организмов. На этом уровне элементарной структурной единицей является ген, а носителем наследственной информации у всех живых организмов - молекула ДНК. Реализация наследственной информации осуществляется при участии молекул РНК. В связи с тем, что с молекулярными структурами связаны процессы хранения, изменения и реализации наследственной информации, данный уровень называют молекуляр-но-генетическим.

Важнейшими задачами биологии на этом уровне являются изучение механизмов передачи генной информации, наследственности и изменчивости, исследование эволюционных процессов, происхождения и сущности жизни.

Все живые организмы имеют в своем составе простые неорганические молекулы: азот, воду, двуокись углерода. Из них в ходе химической эволюции появились простые органические соединения, ставшие, в свою очередь, строительным материалом для более крупных молекул. Так появились макромолекулы - гигантские мо-

лекулы-полимеры, построенные из множества мономеров. Существуют три типа полимеров: полисахариды, белки и нуклеиновые кислоты. Мономерами для них соответственно служат моносахариды, аминокислоты и нуклеотиды.

Белки и нуклеиновые кислоты являются «информационными» молекулами, так как в их строении важную роль играет последовательность мономеров, которая может быть весьма разнообразной. Полисахариды (крахмал, гликоген, целлюлоза) играют роль источника энергии и строительного материала для синтеза более крупных молекул.

Белки - это макромолекулы, представляющие собой очень длинные цепи из аминокислот - органических (карбоновых) кислот, содержащих, как правило, одну или две аминогруппы (-NH 2).

В растворах аминокислоты способны проявлять свойства как кислот, так и оснований. Это делает их своеобразным буфером на пути опасных физико-химических изменений. В живых клетках и тканях встречается свыше 170 аминокислот, однако в состав белков их входит только 20. Именно последовательность аминокислот, соединенных друг с другом пептидными связями 1 , образует первичную структуру белков. На долю белков приходится свыше 50% общей сухой массы клеток.

Большинство белков выполняет функцию катализаторов (ферментов). В их пространственной структуре есть активные центры в виде углублений определенной формы. В такие центры попадают молекулы, превращение которых катализируется данным белком. Кроме того, белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения - результат взаимодействия молекул белков, функция которых заключается в координации движения. Функцией белков-антител является защита организма от вирусов, бактерий и т.д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, называемые гормонами, управляют ростом клеток и их активностью.

Нуклеиновые кислоты. Процессы жизнедеятельности живых организмов определяет взаимодействие двух видов макромолекул - белков и ДНК. Генетическая информация организма хранится в молекулах ДНК, которая служит носителем наследственной информации для следующего поколения и определяет биосинтез белков, контролирующих почти все биологические процессы. Поэтому нук-

1 Пептидная связь - это химическая связь -CO-NH-.

леиновым кислотам принадлежит такое же важное место в организме, как и белкам.

Как белки, так и нуклеиновые кислоты обладают одним очень важным свойством - молекулярной дисимметрией (асимметрией), или молекулярной хиральностью. Это свойство жизни было открыто в 40-50-е гг. XIX в. Л. Пастером в ходе исследования строения кристаллов веществ биологического происхождения - солей виноградной кислоты. В своих опытах Пастер обнаружил, что не только кристаллы, но и их водные растворы способны отклонять поляризованный луч света, т.е. являются оптически активными. Позже они получили название оптических изомеров. У растворов веществ небиологического происхождения данное свойство отсутствует, строение их молекул симметрично.

Сегодня идеи Пастера подтверждены, и считается доказанным, что молекулярная хиральность (от греч. cheir - рука) присуща только живой материи и является ее неотъемлемым свойством. Вещество неживого происхождения симметрично в том смысле, что молекул, поляризующих свет влево и вправо, в нем всегда поровну. А в веществе биологического происхождения всегда присутствует отклонение от этого баланса. Белки построены из аминокислот, поляризующих свет только влево (L-конфигурация). Нуклеиновые кислоты состоят из Сахаров, поляризующих свет только вправо (D-конфигурация). Таким образом, хиральность заключается в асимметрии молекул, их несовместимости со своим зеркальным отражением, как у правой и левой руки, что и дало современное название этому свойству. Интересно отметить, что если бы человек вдруг превратился в свое зеркальное отражение, то с его организмом все было бы нормально до тех пор, пока он не стал бы есть пищу растительного или животного происхождения, которую он просто не смог бы переварить.

Нуклеиновые кислоты - это сложные органические соединения, представляющие собой фосфорсодержащие биополимеры (поли-нуклеотиды).

Существует два типа нуклеиновых кислот - дезоксирибонук-леиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Свое название нуклеиновые кислоты (от лат. nucleus - ядро) получили из-за того, что впервые были выделены из ядер лейкоцитов еще во второй половине XIX в. швейцарским биохимиком Ф. Мишером. Позже было обнаружено, что нуклеиновые кислоты могут находиться не только в ядре, но и в цитоплазме и ее органоидах. Молекулы ДНК вместе с белками-гистонами образуют вещество хромосом.

В середине XX в. американский биохимик Дж. Уотсон и английский биофизик Ф. Крик раскрыли структуру молекулы ДНК. Рентгеноструктурные исследования показали, что ДНК состоит из двух цепей, закрученных в двойную спираль. Роль остовов цепей играют сахарофосфатные группировки, а перемычками служат основания пуринов и пиримидинов. Каждая перемычка образована двумя основаниями, присоединенными к двум противоположным цепям, причем, если у одного основания одно кольцо, то у другого - два. Таким образом, образуются комплементарные пары: А-Т и Г-Ц. Это значит, что последовательность оснований одной цепи однозначно определяет последовательность оснований в другой, комплементарной ей цепи молекулы.

Ген - это участок молекулы ДНК или РНК (у некоторых вирусов). РНК содержит 4-6 тысяч отдельных нуклеотидов, ДНК - 10-25 тысяч. Если бы можно было вытянуть ДНК одной человеческой клетки в непрерывную нить, то ее длина составила бы 91 см.

И все же рождение молекулярной генетики произошло несколько раньше, когда американцы Дж. Бидл и Э. Тэйтум установили прямую связь между состоянием генов (ДНК) и синтезом ферментов (белков). Именно тогда появилось знаменитое высказывание: «один ген - один белок». Позже было выяснено, что основной функцией генов является кодирование синтеза белка. После этого ученые сконцентрировали свое внимание на вопросе, как записана генетическая программа и как она реализуется в клетке. Для этого нужно было выяснить, как всего четыре основания могут кодировать порядок расположения в молекулах белка целых двадцати аминокислот. Основной вклад в решение этой проблемы внес знаменитый физик-теоретик Г. Гамов в середине 1950-х гг.

По его предположению, для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Эта элементарная единица наследственности, кодирующая одну аминокислоту, получила название кодона. В 1961 г. гипотеза Гамова была подтверждена исследованиями Ф. Крика. Так был расшифрован молекулярный механизм считывания генетической информации с молекулы ДНК при синтезе белков.

В живой клетке имеются органеллы - рибосомы, которые «читают» первичную структуру ДНК и синтезируют белок в соответствии с записанной в ДНК информацией. Каждой тройке нуклеотидов ставится в соответствие одна из 20 возможных аминокислот. Именно так первичная структура ДНК определяет последовательность аминокислот синтезируемого белка, фиксирует генетический код организма (клетки).

Генетический код всего живого, будь то растение, животное или бактерия, одинаков. Такая особенность генетического кода вместе со сходством аминокислотного состава всех белков свидетельствует

о биохимическом единстве жизни, происхождении всех живых существ на Земле от единого предка.

Также был расшифрован механизм воспроизводства ДНК. Он состоит из трех частей: репликации, транскрипции и трансляции.

Репликация - это удвоение молекул ДНК. Основой репликации является уникальное свойство ДНК к самокопированию, что дает возможность деления клетки на две идентичные. При репликации ДНК, состоящая из двух скрученных молекулярных цепочек, раскручивается. Образуются две молекулярные нити, каждая из которых служит матрицей для синтеза новой нити, комплементарной к исходной. После этого клетка делится, и в каждой клетке одна нить ДНК будет старой, а вторая - новой. Нарушение последовательности нуклеотидов в цепи ДНК приводит к наследственным изменениям в организме - мутациям.

Транскрипция - это перенос кода ДНК путем образования од-ноцепочной молекулы информационной РНК (и-РНК) на одной из нитей ДНК. и-РНК - это копия части молекулы ДНК, состоящей из одного или группы расположенных рядом генов, несущих информацию о структуре белков.

Трансляция - это синтез белка на основе генетического кода и-РНК в особых органоидах клетки - рибосомах, куда транспортная РНК (т-РНК) доставляет аминокислоты.

В конце 1950-х гг. русскими и французскими учеными одновременно была выдвинута гипотеза о том, что различия в частоте встречаемости и порядке расположения нуклеотидов в ДНК у разных организмов имеют специфический для видов характер. Данная гипотеза позволила изучать на молекулярном уровне эволюцию живого и характер видообразования.

Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является уже упоминавшийся механизм мутации генов - непосредственное преобразование самих ге нов, находящихся в хромосоме, под воздействием внешних факторов. Факторами, вызывающими мутацию (мутагенами), являются радиация, токсичные химические соединения, а также вирусы. При этом механизме изменчивости порядок расположения генов в хромосоме не меняется.

Еще один механизм изменчивости - рекомбинация генов. Это создание новых комбинаций генов, располагающихся в конкретной хромосоме. При этом сама молекулярная основа гена не меняется, а происходит его перемещение с одного участка хромосомы на другой или идет обмен генами между двумя хромосомами. Рекомбинация генов имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации, он остается неизменным. Этот механизм объясняет, почему дети лишь частично похожи на своих родителей -

они наследуют признаки от обоих родительских организмов, которые сочетаются случайным образом.

Другой механизм изменчивости - неклассическая рекомбинация ге нов - был открыт лишь в 1950-е гг. При неклассической рекомбинации генов происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего новые элементы привносятся в клетку вирусами. Сегодня обнаружено несколько типов трансмиссивных генов. Среди них - плазмиды, представляющие собой двухцепочную кольцевую ДНК. Из-за них после длительного использования каких-либо лекарств наступает привыкание, после чего они перестают оказывать медикаментозное воздействие. Патогенные бактерии, против которых действует наше лекарство, связываются с плазми-дами, что и придает бактериям устойчивость к лекарству, и они перестают его замечать.

Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов. Возможность использования таких элементов человеком привела к появлению новой науки - генной инженерии, целью которой является создание новых форм организмов с заданными свойствами. Таким образом, с помощью генетических и биохимических методов конструируются новые, не существующие в природе сочетания генов. Для этого видоизменяется ДНК, кодирующая производство белка с нужными свойствами. Данный механизм лежит в основе всех современных биотехнологий.

С помощью рекомбинантной ДНК можно синтезировать разнообразные гены и вводить их в клоны (колонии идентичных организмов) для направленного синтеза белка. Так, в 1978 г. был синтезирован инсулин - белок для лечения сахарного диабета. Нужный ген был введен в плазмиду и внедрен в обычную бактерию.

Генетики работают над созданием безопасных вакцин от вирусных инфекций, так как традиционные вакцины представляют собой ослабленный вирус, который должен вызывать выработку антител, поэтому их введение связано с определенным риском. Генная инженерия позволяет получить ДНК, кодирующую поверхностный слой вируса. В этом случае иммунитет вырабатывается, но заражение организма исключено.

Сегодня в генной инженерии рассматривается вопрос об увеличении продолжительности жизни и возможности бессмертия путем изменения генетической программы человека. Достичь этого можно, увеличив защитные ферментные функции клетки, оберегая молекулы ДНК от различных повреждений, связанных как с нарушением обмена веществ, так и с влиянием окружающей среды. Кроме того, ученым удалось открыть пигмент старения и создать специальный препарат, освобождающий клетки от него. В опытах с мы-

шами было получено увеличение продолжительности их жизни. Также ученым удалось установить, что в момент деления клетки уменьшаются теломеры - особые хромосомные структуры, расположенные на концах клеточных хромосом. Дело в том, что при репликации ДНК специальное вещество - полимераза - идет по спирали ДНК, снимая с нее копию. Но копировать ДНК полимераза начинает не с самого начала, а оставляет каждый раз недокопи-рованный кончик. Поэтому с каждым последующим копированием спираль ДНК укорачивается за счет концевых участков, не несущих никакой информации, или теломер. Как только теломеры исчерпываются, при последующих копированиях начинает сокращаться часть ДНК, несущая генетическую информацию. Это и есть процесс старения клеток. В 1997 г. в США и Канаде был проведен эксперимент по искусственному удлинению теломер. Для этого использовался вновь открытый клеточный фермент - теломераза, способствующий наращиванию теломер. Полученные таким образом клетки обрели способность многократно делиться, полностью сохранив свои нормальные функциональные свойства и не превращаясь в раковые клетки.

В последнее время стали широко известны успехи генных инженеров в области клонирования - точного воспроизведения того или иного живого объекта в определенном количестве копий из соматических клеток. При этом выращенная особь генетически неотличима от родительского организма.

Получение клонов у организмов, размножающихся посредством партеногенеза, без предшествующего оплодотворения, не является чем-то особенным и давно используется генетиками. У высших организмов также известны случаи естественного клонирования - рождение однояйцевых близнецов. Но искусственное получение клонов высших организмов связано с серьезными трудностями. Тем не менее, в феврале 1997 г. в лаборатории Яна Вильмута в Эдинбурге был разработан метод клонирования млекопитающих, и с его помощью была выращена овечка Долли. Для этого у овцы породы Шотландской черномордой извлекли яйцеклетки, поместили их в искусственную питательную среду и удалили из них ядра. Затем взяли клетки молочной железы взрослой беременной овцы породы Финский дорсет, несущие полный генетический набор. Эти клетки через некоторое время слили с безъядерными яйцеклетками и активировали их развитие посредством электрического разряда. Затем развивающийся зародыш в течение шести дней рос в искусственной среде, после чего эмбрионы были трансплантированы в матку приемной матери, где и развивались до рождения. Но из 236 опытов успешным оказался лишь один - выросла овечка Долли.

После этого Вильмут заявил о принципиальной возможности клонирования человека, вызвавшей самые оживленные дискуссии

не только в научной литературе, но и в парламентах многих стран, поскольку такая возможность связана с очень серьезными моральными, этическими и юридическими проблемами. Не случайно в некоторых странах уже приняты законы, запрещающие клонирование человека. Ведь большинство клонированных эмбрионов гибнет. Кроме того, велика вероятность рождения уродов. Так что опыты по клонированию не только аморальны, но и просто опасны с точки зрения сохранения чистоты вида Homo sapiens. To, что риск слишком велик, подтверждается информацией, пришедшей в начале 2002 г. и сообщающей о заболевании овечки Долли артритом - болезнью, не характерной для овец, после чего ее вскоре пришлось усыпить.

Поэтому намного более перспективным направлением исследований является изучение генома (совокупности генов) человека. В 1988 г. по инициативе Дж. Уотсона была создана международная организация «Геном человека», которая объединила множество ученых из разных стран мира и поставила задачу расшифровки всего генома человека. Это грандиозная задача, так как число генов в организме человека составляет от 50 до 100 тысяч, а весь геном - это более 3 млрд. нуклеотидных пар.

Считается, что первый этап данной программы, связанный с расшифровкой последовательности расположения нуклеотидных пар, будет завершен к концу 2005 г. Уже проведена работа по созданию «атласа» генов, набора их карт. Первая такая карта составлена в 1992 г. Д. Коэном и Ж. Доссе. В окончательном варианте она бьыа представлена в 1996 г. Ж. Вайсенбахом, который, изучая под микроскопом хромосому, с помощью специальных маркеров отмечал ДНК различных ее участков. Затем он клонировал эти участки, выращивая их на микроорганизмах, и получал фрагменты ДНК - последовательность нуклеотидов одной цепочки ДНК, из которой состояли хромосомы. Таким образом, Вайсенбах определил локализацию 223 генов и выявил около 30 мутаций, приводящих к 200 заболеваниям, среди которых гипертония, диабет, глухота, слепота, злокачественные опухоли.

Одним из результатов этой программы, пусть и не законченной, является возможность выявления генетических патологий на ранних стадиях беременности и создание генотерапии - метода лечения наследственных заболеваний с помощью генов. Перед проведением процедуры генотерапии выясняют, какой ген оказался дефектным, получают нормальный ген и вводят его во все больные клетки. При этом очень важно отследить, чтобы введенный ген работал под контролем механизмов клетки, иначе будет получена раковая клетка. Уже есть первые больные, вылеченные таким образом. Правда, пока не ясно, насколько радикально они излечены и

не вернется ли болезнь в будущем. Также пока не ясны и отдаленные последствия такого лечения.

Конечно, использование биотехнологии и генной инженерии имеет как положительные, так и отрицательные стороны. Об этом говорит опубликованный в 1996 г. Федерацией европейских микробиологических обществ меморандум. Связано это с тем, что широкая общественность с подозрением и враждебностью относится к генным технологиям. Страх вызывают возможность создания генетической бомбы, способной исказить геном человека и привести к рождению уродов; появление неизвестных заболеваний и производство биологического оружия.

И, наконец, в последнее время широко обсуждается проблема повсеместного распространения трасгенных продуктов питания, созданных путем внедрения генов, блокирующих развитие вирусных или грибковых заболеваний. Уже созданы и продаются трансгенные помидоры и кукуруза. На рынок поставляются хлеб, сыр и пиво, изготовленные с помощью трансгенных микробов. Такие продукты устойчивы по отношению к вредным бактериям, обладают улучшенными качествами - вкусом, питательной ценностью, крепостью и т.д. Так, в Китае выращивают устойчивые к вирусам табак, томаты и сладкий перец. Известны трансгенные томаты, устойчивые к бактериальной инфекции, картофель и кукуруза, устойчивые к грибкам. Но до сих пор неизвестны отдаленные последствия использования таких продуктов, прежде всего, механизм их воздействия на организм и геном человека.

Конечно, за двадцать лет использования биотехнологий не случилось ничего из того, чего опасаются люди. Все новые микроорганизмы, созданные учеными, менее болезнетворны, чем их исходные формы. Ни разу не произошло вредного или опасного распространения рекомбинантных организмов. Тем не менее, ученые тщательно следят за тем, чтобы трансгенные штаммы не содержали генов, которые после их переноса в другие бактерии могут дать опасный эффект. Существует теоретическая опасность создания новых видов бактериологического оружия на основе генных технологий. Поэтому ученые должны учитывать этот риск и содействовать развитию системы надежного международного контроля, способного зафиксировать и приостановить подобные работы.

С учетом возможной опасности использования генных технологий разработаны документы, регламентирующие их применение, правила безопасности проведения лабораторных исследований и промышленного освоения, а также правила внесения генетически модифицированных организмов в окружающую среду.

Таким образом, сегодня считается, что при соблюдении соответствующих предосторожностей польза, приносимая генными технологиями, перевешивает риск возможных отрицательных последствий.

Клеточный уровень

На клеточном уровне организации основной структурной и функциональной единицей всех живых организмов является клетка. На клеточном уровне так же, как и на молекулярно-генетическом, отмечается однотипность всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. История жизни на нашей планете начиналась с этого уровня организации.

Сегодня наукой точно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка.

Клетка представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию, т.е. наделена всеми признаками живого организма.

Клеточные структуры лежат в основе строения любого живого организма, каким бы многообразным и сложным ни представлялось его строение. Наука, изучающая живую клетку, называется цитологией. Она изучает строение клеток, их функционирование как элементарных живых систем, исследует функции отдельных клеточных компонентов, процесс воспроизводства клеток, приспособление их к условиям среды и др. Также цитология изучает особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология может быть названа физиологией клетки. Успехи современной цитологии неразрывно связаны с достижениями биохимии, биофизики, молекулярной биологии и генетики.

В основе цитологии лежит утверждение, что все живые организмы (животные, растения, бактерии) состоят из клеток и продуктов их жизнедеятельности. Новые клетки образуются путем деления существовавших ранее клеток. Все клетки сходны по химическому составу и обмену веществ. Активность организма как целого слагается из активности и взаимодействия отдельных клеток.

Открытие существования клеток произошло в конце XVII в., когда был изобретен микроскоп. Впервые клетка была описана английским ученым Р. Гуком в 1665 г., когда он рассматривал кусочек пробки. Поскольку его микроскоп был не очень совершенным, то, что он увидел, было на самом деле стенками отмерших клеток. Потребовалось почти двести лет, чтобы биологи поняли, что главную роль играют не стенки клетки, а ее внутреннее содержимое. Среди создателей клеточной теории следует также назвать А. Левенгука, показавшего, что ткани многих растительных

организмов построены из клеток. Он же описал эритроциты, одноклеточные организмы и бактерии. Правда, Левенгук, как и другие исследователи XVII в., видел в клетке лишь оболочку, заключавшую в себе полость.

Значительное продвижение в изучении клеток произошло в начале XIX в., когда на них стали смотреть как на индивидуумы, обладающие жизненными свойствами. В 1830-е гг. было открыто и описано клеточное ядро, что привлекло внимание ученых к содержимому клетки. Тогда же удалось увидеть деление растительных клеток. На основе этих исследований и была создана клеточная теория, ставшая величайшим событием в биологии XIX в. Именно клеточная теория дала решающие доказательства единства всей живой природы, послужила фундаментом для развития эмбриологии, гистологии, физиологии, теории эволюции, а также понимания индивидуального развития организмов.

Мощный толчок цитология получила с созданием генетики и молекулярной биологии. После этого были открыты новые компоненты, или органеллы, клетки - мембрана, рибосомы, лизосомы и др.

По современным представлениям, клетки могут существовать как самостоятельные организмы (например, простейшие), так и в составе многоклеточных организмов, где есть половые клетки, служащие для размножения, и соматические клетки (клетки тела). Соматические клетки различаются по строению и функциям - существуют нервные, костные, мышечные, секреторные клетки. Размеры клеток могут варьироваться от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе). Живой организм образован миллиардами разнообразных клеток (до 10 15), форма которых может быть самой причудливой (паук, звезда, снежинка и пр.).

Установлено, что несмотря на большое разнообразие клеток и выполняемых ими функций, клетки всех живых организмов сходны по химическому составу: особенно велико в них содержание водорода, кислорода, углерода и азота (эти химические элементы составляют более 98% всего содержимого клетки); 2% приходится на примерно 50 других химических элементов.

Клетки живых организмов содержат неорганические вещества - воду (в среднем до 80%) и минеральные соли, а также органические соединения: 90% сухой массы клетки приходится на биополимеры - белки, нуклеиновые кислоты, углеводы и липиды. И, наконец, научно доказано, что все клетки состоят из трех основных частей:

    плазматической мембраны, контролирующей переход веществ из окружающей среды в клетку и обратно;

    цитоплазмы с разнообразной структурой;

    клеточного ядра, в котором содержится генетическая информация.

Кроме того, все животные и некоторые растительные клетки содержат центриоли - цилиндрические структуры, образующие клеточные центры. У растительных клеток также есть клеточная стенка (оболочка) и пластиды - специализированные структуры клеток, часто содержащие пигмент, от которого зависит окраска клетки.

Клеточная мембрана состоит из двух слоев молекул жироподоб-ных веществ, между которыми находятся молекулы белков. Мембрана поддерживает нормальную концентрацию солей внутри клетки. При повреждении мембраны клетка погибает.

Цитоплазма представляет собой водно-солевой раствор с растворенными и взвешенными в нем ферментами и другими веществами. В цитоплазме располагаются органеллы - маленькие органы, отграниченные от содержимого цитоплазмы собственными мембранами. Среди них - митохондрии - мешковидные образования с дыхательными ферментами, в которых высвобождается энергия. Также в цитоплазме располагаются рибосомы, состоящие из белка и РНК, с помощью которых осуществляется биосинтез белка в клетке. Эн- доплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой осуществляется транспорт веществ, а на мембранах каналов находятся ферменты, обеспечивающие жизнедеятельность клетки. Важную роль в клетке играет кле точный центр, состоящий из двух центриолей. С него начинается процесс деления клетки.

Важнейшей частью всех клеток (кроме бактерий) является ядро, в котором находятся хромосомы - длинные нитевидные тельца, состоящие из ДНК и присоединенного к ней белка. Ядро хранит и воспроизводит генетическую информацию, а также регулирует процессы обмена веществ в клетке.

Клетки размножаются путем деления исходной клетки на две дочерние. При этом дочерним клеткам передается полный набор хромосом, несущих генетическую информацию, поэтому перед делением число хромосом удваивается. Такое деление клеток, обеспечивающее одинаковое распределение генетического материала между дочерними клетками, называется митозом.

Многоклеточные организмы также развиваются из одной клетки - яйца. Однако в процессе эмбриогенеза клетки видоизменяются. Это приводит к появлению множества разных клеток - мышечных, нервных, кровяных и т.д. Разные клетки синтезируют разные белки. Тем не менее, каждая клетка многоклеточного организма несет в себе полный набор генетической информации для построения всех белков, необходимых для организма.

В зависимости от типа клеток все организмы делятся на д в е группы:

    прокариоты - клетки, лишенные ядра. В них молекулы ДНК не окружены ядерной мембраной и не организованы в хромосомы. К прокариотам относятся бактерии;

    эукариоты - клетки, содержащие ядра. Кроме того, в них есть митохондрии - органеллы, в которых идет процесс окисления. К эукариотам относятся простейшие, грибы, растения и животные, поэтому они могут быть одноклеточными и многоклеточными.

Таким образом, между прокариотами и эукариотами есть существенные отличия в структуре и функционировании генетического аппарата, клеточных стенок и мембранных систем, синтезе белка и т.д. Предполагается, что первыми организмами, появившимися на Земле, были прокариоты. Так считалось до 1960-х гг., когда углубленное изучение клетки привело к открытию архебактерий, строение которых сходно как с прокариотами, так и с эукариотами. Вопрос о том, какие одноклеточные организмы являются более древними, о возможности существования некой первоклетки, из которой потом появились все три эволюционные линии, до сих пор остается открытым.

Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы по способу питания разделить на д в а вида:

    автотрофные организмы - организмы, не нуждающиеся в органической пище и могущие осуществлять жизнедеятельность за счет ассимиляции углекислоты (бактерии) или фотосинтеза (растения), т.е. автотрофы сами производят необходимые им питательные вещества;

    гетеротрофные организмы - это все организмы, которые не могут обходиться без органической пищи.

Позднее были уточнены такие важные факторы, как способность организмов синтезировать необходимые вещества (витамины, гормоны и т.д.) и обеспечивать себя энергией, зависимость от экологической среды и др. Таким образом, сложный и дифференцированный характер трофических связей свидетельствует о необходимости системного подхода к изучению жизни и на онтогенетическом уровне. Так была сформулирована концепция функциональной системности П.К. Анохина, в соответствии с которой в одноклеточных и многоклеточных организмах согласованно функционируют различные компоненты систем. При этом отдельные компоненты содействуют и способствуют согласованному функционированию других, обеспечивая тем самым единство и целостность в осуществлении процессов жизнедеятельности всего организма. Функциональная системность также проявляется в том, что процессы на низших уровнях организуются функциональными связями на высших уровнях организации. Особенно заметно функциональная системность проявляется у многоклеточных организмов.

Онтогенетический уровень. Многоклеточные организмы

Основной единицей жизни на онтогенетическом уровне выступает отдельная особь, а элементарным явлением является онтогенез. Биологическая особь может быть как одноклеточным, так и многоклеточным организмом, однако в любом случае она представляет собой целостную, самовоспроизводящуюся систему.

Онтогенезом называется процесс индивидуального развития организма от рождения через последовательные морфологические, физиологические и биохимические изменения до смерти, процесс реализации наследственной информации.

Минимальной живой системой, кирпичиком жизни является клетка, изучением которой занимается цитология. Функционирование и развитие многоклеточных живых организмов составляет предмет физиологии. В настоящее время не создана единая теория онтогенеза, поскольку не установлены причины и факторы, определяющие индивидуальное развитие организма.

Все многоклеточные организмы делятся на три царства: грибы, растения и животные. Жизнедеятельность многоклеточных организмов, а также функционирование их отдельных частей изучается физиологией. Эта наука рассматривает механизмы осуществления различных функций живым организмом, их связь между собой, регуляцию и приспособление организма к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела, это и есть процесс онтогенеза - развитие организма от рождения до смерти. При этом происходит рост, перемещение отдельных структур, дифференциация и общее усложнение организма.

Процесс онтогенезиса описывается на основе знаменитого биогенетического закона, сформулированного Э. Геккелем, автором термина «онтогенез». Биогенетический закон утверждает, что онтогенез в краткой форме повторяет филогенез, т.е. отдельный организм в своем индивидуальном развитии в сокращенной форме проходит все стадии развития своего вида. Таким образом, онтогенез представляет собой реализацию наследственной информации, закодированной в зародышевой клетке, а также проверку согласованности всех систем организма во время его работы и приспособления к окружающей среде.

Все многоклеточные организмы состоят из органов и тканей. Ткани - это группа физически объединенных клеток и межклеточных веществ для выполнения определенных функций. Их изучение

является предметом гистологии. Ткани могут образовываться как из одинаковых, так и из разных клеток. Например, у животных из одинаковых клеток построен плоский эпителий, а из разных клеток - мышечная, нервная и соединительная ткани.

Органы - это относительно крупные функциональные единицы, которые объединяют различные ткани в те или иные физиологические комплексы. Внутренние органы есть только у животных, у растений они отсутствуют. В свою очередь, органы входят в состав более крупных единиц - систем организма. Среди них выделяют нервную, пищеварительную, сердечно-сосудистую, дыхательную и другие системы.

Собственно живой организм представляет собой особую внутреннюю среду, существующую во внешней среде. Он образуется в результате взаимодействия генотипа (совокупности генов одного организма) с фенотипом (комплексом внешних признаков организма, сформировавшихся в ходе его индивидуального развития). Таким образом, организм - это стабильная система внутренних органов и тканей, существующих во внешней среде. Однако, поскольку общая теория онтогенеза пока еще не создана, многие процессы, происходящие во время развития организма, не получили своего полного объяснения.

Популяционно-видовой уровень

Популяционно-видовой уровень - это надорганизменный уровень жизни, основной единицей которого является популяция.

Популяция - совокупность особей одного вида, относительно изолированных от других групп этого же вида, занимающих определенную территорию, воспроизводящую себя на протяжении длительного времени и обладающую общим генетическим фондом.

В отличие от популяции видом называется совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство. Вид существует только через популяции, представляющие собой генетически открытые системы. Изучением популяций занимается популяционная биология.

В условиях реальной природы особи не изолированы друг от друга, а объединены в живые системы более высокого ранга. Первой такой системой и является популяция.

Термин «популяция» был введен одним из основоположников генетики В. Иогансеном, который назвал так генетически неоднородную совокупность организмов, отличную от однородной совокупности - чистой линии. Позднее этот термин приобрел более

Целостность популяций, проявляющаяся в возникновении новых свойств по сравнению с онтогенетическим уровнем жизни, обеспечивается взаимодействием особей в популяциях и воссоздается через обмен генетической информацией в процессе полового размножения. У каждой популяции есть количественные границы. С одной стороны, это минимальная численность, обеспечивающая самовоспроизводство популяции, а другой - максимум особей, которые могут прокормиться в ареале (месте обитания) данной популяции. Популяция как целое характеризуется такими параметрами, как волны жизни - периодические колебания численности, плотность населения, соотношение возрастных групп и полов, смертность и т.д.

Популяции - генетически открытые системы, так как изоляция популяций не абсолютна и периодически бывает возможным обмен генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции, изменения их генофонда ведут к появлению новых видов.

Для популяционного уровня организации жизни характерна активная или пассивная подвижность всех компонентов популяции. Это влечет постоянное перемещение особей - членов популяции. Необходимо отметить, что никакая популяция не бывает абсолютно однородной, она всегда состоит из внутрипопуляционных группировок. Также следует помнить о существовании популяций разных рангов - есть постоянные, относительно независимые географические популяции, и временные (сезонные) местные популяции. При этом высокая численность и устойчивость достигаются только в тех популяциях, которые имеют сложную иерархическую и пространственную структуру, т.е. являются неоднородными, гетерогенными, имеют сложные и длинные пищевые цепи. Поэтому выпадение хотя бы одного звена из этой структуры ведет к разрушению популяции или потере ею устойчивости.

Биоценотический уровень

Популяции, представляющие первый надорганизменный уровень живого, являющиеся элементарными единицами эволюции, способными к самостоятельному существованию и трансформации, объединяются в совокупности следующего надорганизменного уровня - биоценозы.

Биоценоз - совокупность всех организмов, населяющих участок среды с однородными условиями жизни, например лес, луг, болото и т.д. Иными словами, биоценоз - это совокупность популяций, проживающих на определенной территории.

Обычно биоценозы состоят из нескольких популяций и являются составным компонентом более сложной системы - биогеоценоза.

Биогеоценотический уровень

Биогеоценоз - сложная динамическая система, представляющая собой совокупность биотических и абиотических элементов, связанных между собой обменом вещества, энергии и информации, в рамках которой может осуществляться круговорот веществ в природе.

Это означает, что биогеоценоз - устойчивая система, которая может существовать на протяжении длительного времени. Равновесие в живой системе динамично, т.е. представляет собой постоянное движение вокруг определенной точки устойчивости. Для стабильного функционирования живой системы необходимо наличие обратных связей между ее управляющей и управляемой подсистемами. Такой способ поддержания динамического равновесия называется гомеостазом. Нарушение динамического равновесия между различными элементами биогеоценоза, вызванное массовым размножением одних видов и сокращением или исчезновением других, приводящее к изменению качества окружающей среды, называют экологической катастрофой.

Термин «биогеоценоз» был предложен в 1940 г. русским ботаником В.Н. Сукачевым, который обозначил этим термином сово-

купность однородных природных явлений (атмосферы, горных пород, водных ресурсов, растительности, животного мира, почвы), распространенных на некотором протяжении земной поверхности, имеющих определенный тип обмена веществом и энергией между ними и окружающими элементами, представляющих противоречивое единство. Представляя собой единство живого и неживого, биогеоценоз находится в постоянном движении и развитии, поэтому меняется с течением времени.

Биогеоценоз - это целостная саморегулирующаяся система, в которой выделяют несколько типов подсистем:

    первичные системы - продуценты (производящие), непосредственно перерабатывающие неживую материю (водоросли, растения, микроорганизмы);

    консументы первого порядка - вторичный уровень, на котором вещество и энергия получаются за счет использования продуцентов (травоядные животные);

    консументы второго порядка (хищники и т.д.);

    падальщики (сапрофиты и сапрофаги), питающиеся мертвыми животными;

    редуценты - это группа бактерий и грибов, разлагающие остатки органической материи.

В результате жизнедеятельности сапрофитов, сапрофагов и редуцентов в почву возвращаются минеральные вещества, что увеличивает ее плодородие и обеспечивает питание растений. Поэтому падальщики и редуценты - очень важная часть пищевых цепей.

Через эти уровни в биогеоценозе проходит круговорот веществ - жизнь участвует в использовании, переработке и восстановлении различных структур. Но круговорота энергии при этом не происходит: с одного уровня на другой, более высокий, переходит около 10% энергии, поступившей на предыдущий уровень. Обратный поток не превышает 0,5%. Иными словами, в биогеоценозе существует однонаправленный энергетический поток. Это делает его незамкнутой системой, неразрывно связанной с соседними биогеоценозами. Данная связь проявляется в разных формах: газообразной, жидкой, твердой, а также в форме миграции животных.

Саморегуляция биогеоценозов протекает тем успешнее, чем разнообразнее количество составляющих его элементов. От многообразия компонентов зависит устойчивость биогеоценозов. Выпадение одного или нескольких компонентов может привести к необратимому нарушению равновесия биогеоценоза и гибели его как целостной системы. Так, тропические биогеоценозы в силу огромного количества растений и животных, входящих в них, намного устойчивее умеренных или арктических биогеоценозов, более бедных в плане видового разнообразия. По той же причине озеро, являющее-

ся природным биогеоценозом с достаточным разнообразием живых организмов, намного устойчивее пруда, созданного человеком и не могущего существовать без постоянного ухода за ним. Это вызвано тем, что высокоорганизованные организмы для своего существования нуждаются в более простых организмах, с которыми они связаны трофическими цепями. Поэтому фундаментом любого биогеоценоза являются простейшие и низшие организмы, большей частью автотрофные микроорганизмы и растения. Они напрямую связаны с абиотическими компонентами биогеоценоза - атмосферой, водой, почвой, солнечной энергией, с использованием которой создают органическое вещество. Они же составляют жизненную среду для гетеротрофных организмов - животных, грибов, вирусов, человека. Эти организмы, в свою очередь, участвуют в жизненных циклах растений - опыляют, распространяют плоды и семена. Так происходит круговорот веществ в биогеоценозе, фундаментальную роль в котором играют растения. Поэтому границы биогеоценозов чаще всего совпадают с границами растительных сообществ.

Биогеоценозы - структурные элементы следующего надорганизменного уровня жизни. Они составляют биосферу и обусловливают все процессы, протекающие в ней.

Биосферный уровень

Биосферный уровень - наивысший уровень организации жизни, охватывающий все явления жизни на нашей планете.

Биосфера - это живое вещество планеты (совокупность всех живых организмов планеты, включая человека) и преобразованная им окружающая среда.

Биотический обмен веществ - это фактор, который объединяет все другие уровни организации жизни в одну биосферу.

На биосферном уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций - важнейшая задача биологии. Занимаются изучением этих проблем экология, биоценология и биогеохимия.

В системе современного научного мировоззрения понятие биосферы занимает ключевое место. Сам термин «биосфера» появился в 1875 г. Он был введен австрийским геологом и палеонтологом Э. Зюссом для обозначения самостоятельной сферы нашей плане-

ты, в которой существует жизнь. Зюсс дал определение биосферы как совокупности организмов, ограниченной в пространстве и времени и обитающей на поверхности Земли. Но он не придавал значения среде обитания этих организмов.

Тем не менее, Зюсс не был первооткрывателем, так как разработка учения о биосфере имеет довольно длинную предысторию. Одним из первых вопрос о влиянии живых организмов на геологические процессы рассмотрел Ж. Б. Ламарк в книге «Гидрогеология» (1802). В частности, Ламарк говорил о том, что все вещества, находящиеся на поверхности Земли и образующие ее кору, сформировались благодаря деятельности живых организмов. Затем был грандиозный многотомный труд А. Гумбольдта «Космос» (первая книга вышла в 1845 г.), в котором множество фактов доказывало взаимодействие живых организмов с теми земными оболочками, в которые они проникают. Поэтому Гумбольдт рассматривал в качестве единой оболочки Земли, целостной системы атмосферу, гидросферу и сушу с обитающими в них живыми организмами.

Но о геологической роли биосферы, ее зависимости от планетарных факторов Земли, ее строении и функциях еще не было сказано ничего. Разработка учения о биосфере неразрывно связана с именем выдающегося российского ученого В.И. Вернадского. Его концепция складывалась постепенно, от первой студенческой работы «Об изменении почвы степей грызунами» к «Живому веществу», «Биосфере» и «Биогеохимическим очеркам». Итоги его размышлений были подведены в работах «Химическое строение биосферы Земли» и «Философские мысли натуралиста», над которыми он работал в последние десятилетия своей жизни. Именно Вернадскому удалось доказать связь органического мира нашей планеты, выступающего в виде единого нераздельного целого, с геологическими процессами на Земле, именно он открыл и изучил биогеохимические функции живого вещества.

Ключевым понятием в концепции Вернадского стало понятие живого вещества, под которым ученый понимал совокупность всех живых организмов нашей планеты, включая человека. В состав живого вещества он включал также часть окружающей его внешней среды, необходимой для поддержания нормальной жизнедеятельности организмов; выделения и части, теряемые организмами; умершие организмы, а также органические смеси, находящиеся вне организмов. Важнейшим отличием живого вещества от косной материи Вернадский считал молекулярную дисимметрию живого, открытую в свое время Пастером (молекулярную хиральность согласно современной терминологии). Используя это понятие, Вернадскому удалось доказать, что не только окружающая среда влияет на живые организмы, но и жизнь способна действенно формировать

среду своего обитания. Действительно, на уровне отдельного организма или биоценоза влияние жизни на окружающую среду проследить очень сложно. Но, введя новое понятие, Вернадский вышел на качественно новый уровень анализа жизни и живого - биосферный уровень.

Биосфера, согласно Вернадскому, - это живое вещество планеты (совокупность всех живых организмов Земли) и преобразованная им среда обитания (косное вещество, абиотические элементы), в которую входят гидросфера, нижняя часть атмосферы и верхняя часть земной коры. Таким образом, это не биологическое, геологическое или географическое понятие, а фундаментальное понятие биогеохимии - новой науки, созданной Вернадским для изучения геохимических процессов, проходящих в биосфере при участии живых организмов. В новой науке биосферой стали называть один из основных структурных компонентов организованности нашей планеты и околоземного космического пространства. Это сфера, в которой осуществляются биоэнергетические процессы и обмен веществ вследствие деятельности жизни.

Благодаря новому подходу Вернадский исследовал жизнь как могучую геологическую силу, действенно формирующую облик Земли. Живое вещество стало тем звеном, которое соединило историю химических элементов с эволюцией биосферы. Введение нового понятия также позволяло поставить и решить вопрос о механизмах геологической активности живого вещества, источниках энергии для этого.

Живое вещество и косное вещество постоянно взаимодействуют в биосфере Земли - в непрерывном круговороте химических элементов и энергии. Вернадский писал о биогенном токе атомов, который вызывается живым веществом и выражается в постоянных процессах дыхания, питания и размножения. Например, круговорот азота связан с превращением в нитраты молекулярного азота атмосферы. Нитраты усваиваются растениями и в составе их белков попадают к животным. После смерти растений и животных их тела оказываются в почве, где гнилостные бактерии разлагают органические останки до аммиака, который затем окисляется в азотную кислоту.

На Земле идет непрерывное обновление биомассы (за 7-8 лет), при этом в круговорот вовлекаются абиотические элементы биосферы. Например, воды Мирового океана прошли через биогенный цикл, связанный с фотосинтезом, не менее 300 раз, свободный кислород атмосферы обновлялся не менее 1 млн. раз.

Также Вернадский отмечал, что биогенная миграция химических элементов в биосфере стремится к своему максимальному проявлению, а эволюция видов ведет к появлению новых видов, увеличивающих биогенную миграцию атомов.

Вернадский также впервые отметил, что живое вещество стремится к максимальному заселению среды обитания, причем количество живого вещества в биосфере остается стабильным на протяжении целых геологических эпох. Эта величина не менялась, по крайней мере, последние 60 млн. лет. Количество видов при этом также оставалось неизменным. Если в каком-то месте Земли количество видов убавляется, то в другом месте - прибавляется. В наши дни исчезновение огромного числа видов растений и животных связано поэтому с распространением человека и его неразумной деятельностью по преобразованию природы. Население Земли растет за счет гибели других видов.

Благодаря биогенной миграции атомов живое вещество выполняет свои геохимические функции. Современная наука классифицирует их по пяти категориям:

    концентрационная функция - выражается в накоплении определенных химических элементов как внутри, так и вне живых организмов благодаря их деятельности. Результатом стало появление запасов полезных ископаемых (известняки, нефть, газ, уголь и т.д.);

    транспортная функция - тесно связана с концентрационной функцией, так как живые организмы переносят нужные им химические элементы, которые затем накапливаются в местах их обитания;

    энергетическая функция - обеспечивает потоки энергии, пронизывающие биосферу, что дает возможность осуществлять все биогеохимические функции живого вещества. Важнейшую роль в этом процессе играют фотосинтезирующие растения, преобразующие солнечную энергию в биогеохимическую энергию живого вещества биосферы. Эта энергия тратится на все грандиозные преобразования облика нашей планеты;

    деструктивная функция - связана с разрушением и переработкой органических останков, в ходе которых накопленные организмами вещества возвращаются в природные циклы, идет круговорот веществ в природе;

    средообразующая функция - проявляется в преобразовании окружающей среды под действием живого вещества. Мы можем смело утверждать, что весь современный облик Земли - состав атмосферы, гидросферы, верхнего слоя литосферы, большая часть полезных ископаемых, климат - являются результатом действия Жизни. Так, зеленые растения обеспечивают Землю кислородом и накапливают энергию, микроорганизмы участвуют в минерализации органических веществ, образовании ряда горных пород и почвообразовании.

При всей грандиозности задач, которые решают живое вещество и биосфера Земли, сама биосфера (по сравнению с другими геосферами) представляет собой очень тонкую пленку. Сегодня принято считать, что в атмосфере микробная жизнь имеет место примерно до высоты 20-22 км над земной поверхностью, а наличие жизни в глубоких океанических впадинах опускает эту границу до 8-11 км ниже уровня моря. Углубление жизни в земную кору много меньше, и микроорганизмы обнаружены при глубинном бурении и в пластовых водах не глубже 2-3 км. В состав биосферы Вернадский включал:

    живое вещество;

    биогенное вещество - вещество, создаваемое и перерабатываемое живыми организмами (каменный уголь, нефть, газ и т.д.);

    косное вещество, образованное в процессах без участия живого вещества;

    вещества, создаваемые живыми организмами и косными процессами, и их динамическое равновесие;

    вещества, находящиеся в процессе радиоактивного распада;

    рассеянные атомы, выделяющиеся из земного вещества под влиянием космических излучений;

    вещество космического происхождения, включающее отдельные атомы и молекулы, проникающие на Землю из космоса.

Разумеется, жизнь в биосфере распространена неравномерно, существуют так называемые сгущения и разрежения жизни. Наиболее густо населены нижние слои атмосферы (50 м от земной поверхности), освещенные слои гидросферы и верхние слои литосферы (почва). Также следует отметить, что тропические области заселены намного плотнее, чем пустыни или ледяные поля Арктики и Антарктики. Глубже в земную кору, в океан, а также выше в атмосферу количество живого вещества уменьшается. Таким образом, эта тончайшая пленка жизни покрывает абсолютно всю Землю, не оставляя ни одного места на нашей планете, где бы не было жизни. При этом нет резкой границы между биосферой и окружающими ее земными оболочками.

Долгое время идеи Вернадского замалчивались, и вновь к ним вернулись лишь в середине 1970-х гг. Во многом это произошло благодаря трудам российского биолога Г.А. Заварзина, который доказал, что основным фактором становления и функционирования биосферы были и остаются многосторонние трофические связи. Они установились не менее чем 3,4-3,5 млрд. лет назад и с тех пор определяют характер и масштабы круговорота элементов в оболочках Земли.

В начале 1980-х гг. английским химиком Дж. Лавлоком и американским микробиологом Л. Маргулис была предложена очень интересная концепция Геи-Земли. Согласно ей биосфера представ-

ляет собой единый суперорганизм с развитым гомеостазом, делающим его относительно независимым от флуктуации внешних факторов. Но если саморегулирующаяся система Геи-Земли попадает в состояние стресса, близкое к границам саморегуляции, даже маленькое потрясение может толкнуть ее к переходу в новое состояние или даже к полному уничтожению системы. В истории нашей планеты уже не раз случались такие глобальные катастрофы. Самой известной из них является исчезновение динозавров около 60 млн. лет назад. Сейчас Земля вновь переживает глубокий кризис, поэтому так важно продумать стратегию дальнейшего развития человеческой цивилизации.

Литература для самостоятельного изучения

    Афанасьев В.Г. Мир живого: системность, эволюция и управление. М., 1986.

    Барг О.А. Живое в едином мировом процессе. Пермь, 1993.

    Борзенко В.Г., Северцов А.В. Теоретическая биология: размышление о предмете. М., 1980.

    Вернадский В. И. Биосфера и ноосфера // Живое вещество и биосфера. М., 1994.

    Вернадский В.И. Химическое строение биосферы Земли и ее окружение. М., 1987.

    Дубинин Н.П. Очерки о генетике. М., 1985.

    Кемп П., Армс К. Введение в биологию. М., 1988.

    Кристин де Дюв. Путешествие в мир живой клетки. М., 1987.

    Югай Г.А. Общая теория жизни. М., 1985.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Уровни организации жизни

Уровни организации жизни:

молекулярно-генетический,

клеточный,

тканевой,

органный,

организменный,

популяционно-видовой,

биогеоценотический

биосферный.

Клетка - структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят, как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению (животные, растения и грибы), либо является одноклеточным организмом (многие простейшие и бактерии).

3. Молекулярно-генетический уровень организации жизни. Характеристика

Компоненты: - Молекулы неорганических и органических соединений

Молекулярные комплексы

Основные процессы:

Объединение молекул в особые комплексы

Кодирование и передача генетической информации

4. Строение клеточной мембраны

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды -- фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные -- наружу. Мембраны -- структуры инвариабельные, весьма сходные у разных организмов.

Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7--8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

5. Характеристика клеточного уровня организации жизни. Теория Шлейдена-Шванна

Клеточный уровень представлен разнообразными органическими клетками: растительные и животные клетки общие по происхождению, клетки являются структурной и функциональной основой всех живых существ. Теория Шлейдена-Шванна:

Все животные и растения состоят из клеток.

Растут и развиваются растения и животные путём возникновения новых клеток.

Клетка является самой маленькой единицей живого, а целый организм -- это совокупность клеток.

6. Характеристика тканевого уровня организации жизни

Тканевый уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

7. Функции клеточной мембраны

· барьерная -- обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

· транспортная -- через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

· Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

· При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

· Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТ Фаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

· матричная -- обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

· механическая -- обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных -- межклеточное вещество.

· энергетическая -- при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

· рецепторная -- некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

· Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

· ферментативная -- мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

· осуществление генерации и проведения биопотенциалов.

· С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

· маркировка клетки -- на мембране есть антигены, действующие как маркеры -- «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

8. Характеристика органного уровня организации жизни

У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень. В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

9. Характеристика организменного уровня организации жизни

Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм. А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, -- питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

10. Характеристика популяционно-видового уровня жизни

Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.

11. Характеристика биогеоценотического уровня жизни

Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы.

12. Характеристика биосферного уровня организации жизни

Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют " живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение " биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и " косных" веществ, т. е. условий окружающей среды. На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

13. Клеточные органоиды и их функции

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности. Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности. Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы -- тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков. Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист АТФ -- богатое энергией органическое вещество. Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты. Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке. Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы -- носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро -- место синтеза ДНК, и-РНК, р-РНК.

14. Лизосомы. Характеристика

Имеют вид мешочка. Характерной чертой лизосом является то, что они содержат около 40 гидролитических ферментов: протеиназы, нуклеазы, гликозидазы, фосфорилазы, фосфатазы, сульфитазы, оптимум действия которых осуществляется при рН 5. В лизосомах кислое значение среды сохраняется из-за наличия в их мембранах H+ помпы, зависимой от АТФ. Одновременно с этим, в мембране лизосом имеются белки-переносчики для транспорта из лизосом в гиалоплазму мономеров расщепленных молекул: аминокислот, сахара, нуклеотидов, липидов. Самопереваривание лизосом не происходит из-за того, что мембранные элементы лизосом защищены от действия кислых гидролаз олигосахаридными участками, которые или не узнаются лизосомными ферментами, либо просто мешают гидролазам взаимодействовать с ними. При рассмотрении в электронном микроскопе видно, что фракция лизосом состоит из очень пестрого класса пузырьков размером 0,2-0,4 мкм (для клеток печени), ограниченных одиночной мембраной (толщина ее около 7 нм), с очень разнородным содержанием внутри. Во фракции лизосом встречаются пузырьки с гомогенным, бесструктурным содержимым, встречаются пузырьки, заполненные плотным веществом, содержащим в свою очередь вакуоли, скопления мембран и плотных однородных частиц; часто можно видеть внутри лизосом не только участки мембран, но и фрагменты митохондрий и ЭР. Иными словами, эта фракция по морфологии оказалась крайне неоднородной, несмотря на постоянство присутствия гидролаз.

15. Митохондрии. Характеристика

Впервые митохондрии обнаружены в виде гранул в мышечных клетках в 1850 году. Число митохондрий в клетке непостоянно. Их особенно много в клетках, в которых потребность в кислороде велика. По своему строению они представляют собой цилиндрические органеллы, встречающиеся в эукариотической клетке в количестве от нескольких сот до 1--2 тысяч и занимающие 10--20 % её внутреннего объёма. Сильно варьируют так же размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих органелл относительно постоянна (0,5--1 мкм). Способны изменять форму. В зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры цитоскелета эукариотической клетки. Альтернативой множеству разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы, является существование длинных и разветвлённых митохондрий, каждая из которых может энергетически обеспечивать отдалённые друг от друга участки клетки (например, у одноклеточных зелёных водорослей Chlorella). Вариантом такой протяжённой системы может также являться упорядоченное пространственное объединение множества митохондрий (хондриом или митохондрион), обеспечивающее их кооперативную работу и встречающееся как у одноклеточных, так и у многоклеточных организмов. Особенно сложно этот тип хондриома устроен в скелетных мышцах млекопитающих, где группы гигантских разветвлённых митохондрий связаны друг с другом с помощью межмитохондриальных контактов (ММК). Последние образованы плотно прилегающими друг к другу наружными митохондриальными мембранами, в результате чего межмембранное пространство в этой зоне имеет повышенную электронную плотность. Особенно обильно ММК представлены в клетках сердечных мышц, где они связывают множественные отдельные митохондрии в согласованную работающую кооперативную систему.

16. Комплекс Гольджи

это сложная сеть полостей, трубочек и пузырьков вокруг ядра. Он состоит из трех основных компонентов: группы мембранных полостей, системы трубочек, отходящих от полостей, и пузырьков на концах трубочек. Выполняет следующие функции: В пузырьках накапливаются вещества, которые синтезируются и транспортируются по ЭПС, здесь они подвергаются химическим изменениям. Измененные вещества упаковываются в мембранные пузырьки, которые выделяются клеткой в виде секретов. Часть пузырьков выполняет функцию лизосом, кото­рые участвуют в переваривании частиц, попавших в клетку в результате фаго- и пиноцитоза.

17. Клеточный центр

Клеточный центр - немембранный органоид, главный центр организации микротрубочек (ЦОМТ) и регулятор хода клеточного цикла в клетках эукариот. Впервые обнаружена в 1883 году Теодором Бовери, который назвал её «особым органом клеточного деления». Центросома играет важнейшую роль в клеточном делении, однако, наличие клеточного центра в клетке не является необходимым для митоза. В подавляющем большинстве случаев в клетке в норме присутствует только одна центросома. Аномальное увеличение числа центросом характерно для клеток злокачественных опухолей. Более одной центросомы в норме характерно для некоторых полиэнергидных простейших и для синцитиальных структур. У многих живых организмов (животных и ряда простейших) центросома содержит пару центриолей, цилиндрических структур, расположенных под прямым углом друг к другу. Каждая центриоль образована девятью триплетами микротрубочек, расположенными по кругу, а также ряда структур, образованных центрином, ценексином и тектином. В интерфазе клеточного цикла центросомы ассоциированы с ядерной мембраной. В профазе митоза ядерная мембрана разрушается, центросома делится, и продукты ее деления (дочерние центросомы) мигрируют к полюсам делящегося ядра. Микротрубочки, растущие из дочерних центросом, крепятся другим концом к так называемым кинетохорам на центромерах хромосом, формируя веретено деления. По завершении деления в каждой из дочерних клеток оказывается только по одной центросоме. Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для микротрубочек аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых и базидиевых грибов, покрытосеменных растений), жгутики не развиваются. У планарий и, возможно, других плоских червей нет центросом.

18. Эргастоплазма

Эргастоплазма (от греч. ergastikуs - деятельный и плазма -базофильные (окрашивающиеся основными красителями) участки животных и растительных клеток, богатые рибонуклеиновой кислотой (например, глыбки Берга в клетках печени, тельца Ниссля в нейронах). В электронном микроскопе эти участки наблюдаются как упорядоченно расположенные элементы гранулярной эндоплазматической сети.

19. Рибосома

Рибосома - важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 15--20 нанометров (прокариоты) до 25--30 нанометров (эукариоты), состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией.

20. Органоиды

Органеллы -- в цитологии: постоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки с органами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ. Иногда органоидами считают только постоянные структуры клетки, расположенные в её цитоплазме. Часто ядро и внутриядерные структуры (например, ядрышко) не называют органоидами. Клеточную мембрану, реснички и жгутики тоже обычно не причисляют к органоидам. Рецепторы и прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Все чаще к органоидам причисляют и другие подобные комплексы сравнимых размеров и уровня сложности -- протеасомы, сплайсосомы и др. В то же время сравнимые по размерам элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят. Степень постоянства клеточной структуры -- тоже ненадёжный критерий её отнесения к органоидам. Так, веретено деления, которое хотя и не постоянно, но закономерно присутствует во всех эукариотических клетках, обычно к органоидам не относят, а везикулы, которые постоянно появляются и исчезают в процессе обмена веществ -- относят.

21. Схема высвобождения энергии из АТФ

22. Клетка с органоидами

23. Хроматин

Хроматин - это вещество хромосом -- комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеотида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК. Основную массу хроматина составляют белки гистоны. Гистоны являются компонентом нуклеосом, -- надмолекулярных структур, участвующих в упаковке хромосом. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа -- всего восемь белков. Гистон H1, более крупный, чем другие гистоны, связывается с ДНК в месте её входа на нуклеосому. Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине не транскрибируется, обычно это состояние характерно для незначащих или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночныйгетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов -- ацетилированием и фосфорилированием. Считается, что в ядре существуют так называемые функциональные домены хроматина (ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». Вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядернойламины.

24. Хромосомы

Хромосомы - нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости. Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки начала инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва, более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот -- это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот -- это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов -- это молекула ДНК или РНК в составе капсида.

25. Эукариоты и прокариоты. Характеристика

Эукариоты, или ядерные -- домен (надцарство) живых организмов, клетки которых содержат ядра. Все организмы, кроме бактерий и архей, являются ядерными. Животные, растения, грибы, а также группы организмов под общим названием протисты -- все являются эукариотическими организмами. Они могут быть одноклеточными и многоклеточными, но все имеют общий план строения клеток. Считается, что все эти столь несхожие организмы имеют общее происхождение, поэтому группа ядерных рассматривается как монофилетический таксон наивысшего ранга. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5--2 млрд лет назад. Важную роль в эволюции эукариот сыграл симбиогенез -- симбиоз между эукариотической клеткой, видимо, уже имевшей ядро и способной к фагоцитозу, и поглощёнными этой клеткой бактериями -- предшественниками митохондрий и пластидов.

Прокариоты, или доядерные -- одноклеточные живые организмы, не обладающие (в отличие отэукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Для клеток прокариот характерно отсутствие ядерной оболочки, ДНК упакована без участия гистонов. Тип питания осмотрофный и автотрофный (фотосинтез и хемосинтез). Единственная крупная кольцевая (у некоторых видов -- линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток -- митохондрии и пластиды. Изучение бактерий привело к открытию горизонтального переноса генов, который был описан в Японии в 1959 г. Этот процесс широко распространен среди прокариот, а также у некоторых эукариот. Открытие горизонтального переноса генов у прокариот заставило по-другому взглянуть на эволюцию жизни. Ранее эволюционная теория базировалась на том, что виды не могут обмениваться наследственной информацией. Прокариоты могут обмениваться генами между собой непосредственно (конъюгация, трансформация) а также с помощью вирусов -- бактериофагов (трансдукция).

26. Кариосома. Характеристика

1). Сравнительно крупное, расположенное в центре ядра, шаровидное ядрышко. 2). Хроматиновые утолщения и узелки ядерной сети, отдающие в начале клеточного деления свое вещество развивающимся хромосомам. 3). Округлые плотные хроматиновые тельца, представляющие собой отдельные хромосомы или их группы, сохраняющиеся в ядре после окончания клеточного деления. 4). Более крупные шарообразные тела, содержащие на определенной стадии весь хроматин ядра и дающие начало всей совокупности хромосом.

27. Размеры ядра

Ядра обычно имеют обычно шаровидную или яйцевидную форму; диаметр первых равен приблизительно 10 мкм, а длина вторых - 20 мкм.

Ядро (лат. nucleus) -- это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хроматина, ядрышка, кариоплазмы (или нуклеоплазмы) и ядерной оболочки.

29. Кем и когда было открыто ядро

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

30. Энуклеация

Энуклеация - (от лат. Enucleo - вынимаю ядро, очищаю от скорлупы) удаление клеточного ядра.

Один из способов удаления опухолей и органов.

31. Функции ядра. Отличия от ядерного вещества

Функции ядра: 1) обмен веществ; 2) размножение; 3) хранение, переработка и передача наследственной информации; 4) регенеративная.

В отличие от оформленного ядра, ядерное вещество не выполняет двух функций: размножение и регенерация.

32. Кем и когда был открыт митоз

Первые описания фаз митоза и установление их последовательности были предприняты в 70--80-х годах XIX века. В 1878 году немецкий гистолог Вальтер Флемминг для обозначения процесса непрямого деления клетки ввёл термин «митоз». Подробно изучен был немецким гистологом Вейсманом в 1888 году.

Митоз - непрямое деление, универсальный способ деления незрелых половых и соматических клеток с промежуточным удвоением диплоидного набора хромосом до тетраплоидного и его последущим эквивалентным распределениям по 2 образовавшимся дочерних клеток с идентичным материнским диплоидным набором хромосом.

34. Чем отличается митоз от амитоза и эндомитоза

Митоз - это процесс непрямого деления.

Амитоз - это процесс прямого деления клети.

Эндомитоз - процесс удвоения числа хромосом в ядрах клеток многих протистов, растений и животных, за которым не следует деление ядра и самой клетки.

35. Характеристика интерфазы митоза. Периоды: G1, S, G2

Интерфаза - фаза относительного покоя клетки. Клетка на этом этапе хотя и не делится, однако активно растет, формирует свои структуры, синтезирует энергетически богатые химические вещества и готовится к предстоящему делению.

Период (фаза) G1 (G1 period) [греч. periodos -- круговращение; англ. g(ap) -- промежуток, интервал] -- этап клеточного цикла (этап интерфазы), во время которого происходит активный рост и функционирование клетки, обусловленные возобновлением транскрипции и накоплением синтезированных белков, а также подготовка к синтезу ДНК; фаза роста, предшествующая периоду репликации ДНК.

Период (фаза) S (S period) [греч. periodos -- круговращение; англ. (synthesis) -- синтез] -- этап клеточного цикла (этап интерфазы), во время которого происходят репликация ДНК и удвоение материала хромосом; предшествует периоду G2

Период (фаза) G2 (G2 period) [греч. periodos -- круговращение; англ. (gap) -- промежуток, интервал] -- этап клеточного цикла, начинающийся после репликации ДНК (периода S) и предшествующий митозу; в этот период происходит подготовка клетки к делению, осуществляется синтез белков веретена деления.

36. Изображение ранней и поздней профазы митоза

Под номером 4 - ранняя профаза

Под номером 5 - поздняя профаза

37. Изображение метафазы митоза

38. Изображение анафазы митоза

39. Изображение телофазы митоза

40. Изображение всех фаз митоза

41. Характеристика веретена деления

Веретено деления - палочковидная система микротрубочек в цитоплазме клетки в процессе митоза или мейоза. Хромосомы прикреплены к выпуклости веретена деления (экватору). Веретено деления вызывает расхождение хромосом, заставляя клетки делиться.

42. Явление осмоса. Характеристика. Осмотическое давление. Определение

Осмос - процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону большей концентрации растворённого вещества (меньшей концентрации растворителя).

Явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Как правило, это связано с размерами и подвижностью молекул, например, молекула воды меньше большинства молекул растворённых веществ.

Осмотическое давление (обозначается р) -- избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

43. Плазмолиз. Характеристика

Плазмолиз - отделение протопласта от оболочки под действием на клетку гипертонического раствора. Плазмолиз характерен главным образом для клеток растений, имеющих прочную целлюлозную оболочку.

44. Характеристика растворов по концентрации солей в цитоплазме

1) изотонический раствор - раствор, осмотическое давление которого равно осмотическому давлению плазмы крови; например, 0,9 % раствор хлорида натрия, 5% водный раствор глюкозы.

2) гипертонический раствор - это раствор, осмотическое давление которого выше осмотического давления плазмы крови (раствор с более высокой концентрацией растворенных веществ)

3) гипотонический раствор - раствор, осмотическое давление которого ниже нормального осмотического давления плазмы крови (раствор с меньшей концентрацией растворенных веществ)

45. Характеристика физиологического раствора

Физиологический раствор «физраствор» - это 0,9 % водный раствор NaCl (хлорида натрия) -простейший изотонический раствор. Физиологический раствор необходим для восполнения жидкости в организме в случае обезвоживания. Важным свойством физиологического раствора является его антимикробное свойство. В связи с этим он широко используется при лечении простудных заболеваний.

46. Фен (признак). Определение

Фен - (от греч. phaino - являю, обнаруживаю) (биол.), дискретный, генетически обусловленный признак организма.

47. Ген. Определение

Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК.

48.Фенотип. Определение

Фенотип -- совокупность характеристик, присущих индивиду на определённой стадии развития

49. Генотип. Определение

Генотип -- совокупность генов данного организма, которая, в отличие от понятия генофонд, характеризует особь, а не вид.

50. Аллель. Определение

Аллель (греч. allelon - друг друга, взаимно), или аллеломорфы - альтернативная форма структурного состояния гена, от которой зависит проявление наследственного признака (аллели гомологичных хромосом расположены в одном локусе).

51. Какие признаки называются доминантными, а какие рецессивными

Доминантный признак - признак, проявляющийся у гибридов первого поколения при скрещивании чистой линии.

Рецессивный признак - признак, не проявляющийся у гетерозиготных особей вследствие подавления проявления рецессивного аллеля.

52. Написать

а) генотип, состоящий из трех аллелей: ААВВСС

б) дать полное название этому генотипу: гомозиготный по доминантному признаку по трем аллелям

в) гамета АВС

53. Написать

а) любую гамету, несущую три признака: АВС

б) все варианты генотипов, образующих эту гамету: ААВВСС; АаВВСС; АаВвСС; АаВвСс; АаВВСс; ААВвСС; ААВВСс; ААВвСс;

54. Гомозиготное и гетерозиготное состояние генотипа. Определение. Примеры

Гомозиготное состояние генотипа - его несет диплоидный организм, несущий единичные аллели в гомозиготных хромосомах. (АА, аа)

Гетерозиготное состояние генотипа - присуще всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные аллели того или иного гена.(Аа, Вв)

55. Дать название генотипу

ААВbСсdd - гомозиготное состояние генотипа по доминантному признаку по первой паре признаков(аллели) и по рецессивному признаку по четвертой аллели. Гетерозиготное состояние генотипа по второй и третьей аллели.

56. Дать название генотипу

АаВbСсDd - гетерозиготное состояние генотипа по четырем парам признаков.(аллелям)

57. Наследование фенотипа или генотипа

В отличие от фенотипа, генотип передается по наследству, так как он наследственно детерминирован (определен)

генетический клеточный митоз хромосома

58. Как называются половые и неполовые хромосомы

Гоносомы - это половые хромосомы, хромосомы, набор которых отличает мужские и женские особи.

Аутосомы - это неполовые хромосомы. Хромосомы не связанные с половыми признаками. Имеются как у мужского так и женского организма.

59. Перечислите типы наследования

1) Аутосомно-доминантный тип наследования

2) Аутосомно-рецессивный тип наследования

60. Формулу определения количества типов гамет, образуемое генотипом

Определение числа типов гамет проводится по формуле, где n - число пар генов в гетерозиготном состоянии.

61. Первый закон Менделя

Закон единообразия гибридов первого поколения: при моногибридном скрещивание все потомство в первом поколение характеризуется единообразием по фенотипу и генотипу.

62.Второй закон Менделя

Закон расщепления: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

63.Третий закон Менделя

Закон независимого наследования: при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

64.Определение всех трех законов Менделя

Ответ в 61,62,63 вопросе.

65. Какое расщепление наблюдается во втором поколении при выведение третьего закона Менделя

3:1 - фенотип

1:2:1 - генотип

66. Общая формула доминантных - доминантных и доминантных - рецессивных

Общая формула доминантных - доминантных: А_В_

Общая формула доминантных - рецессивных: А_вв

67. Закономерности в решетке Пеннета

Решетка Пеннета представляет собой графическую запись результатов различных скрещиваний. По горизонтали вписываются гаметы одного родителя, по вертикали - другого. В ячейках таблицы вписываем генотипы потомства, которые получились при слиянии соответствующих гамет.

68. «Характер» законов Менделя

Законы Менделя носят статистический характер: отклонение от теоретически ожидаемого расщепления тем меньше, чем больше число наблюдений. Каждому генотипу соответствует определенный фенотип (100%-ная пенетрантность признаков). У всех особей с данным генотипом признак выражен в равной степени (100%-ная экспрессивность признаков). Изучаемые признаки не сцеплены с полом. Жизнеспособность особей не зависит от их генотипа и фенотипа.

69. Все возможные варианты генотипов "желтых-гладких"

ААВВ, АаВв, АаВВ, ААВв, - варианты "желтых-гладких"

70. Дополнения к законам Менделя. Характеристика

Далеко не все результаты скрещиваний, обнаруженных при исследованиях укладывались в законы Менделя, отсюда и возникли дополнения к законам.

Доминирующий признак в некоторых случаях может проявляться не полно или и вовсе отсутствовать. При этом имеет место та называемое промежуточное наследование, когда ни один из двух взаимодействующих генов не доминирует над другим и их действие проявляется в генотипе животного в равной степени, один признак как бы разбавляет другой.

В качестве примера можно привести тонкинезийских кошек. При скрещивании сиамских кошек с бурманскими рождаются котята более темные, чем сиамы, но более светлые чем бурмы - такой промежуточный окрас получил название тонкинез.

Наряду с промежуточным наследованием признаков наблюдается различное взаимодействие генов, то есть гены, отвечающие за одни признаки могут влиять на проявление других признаков:

Взаимовлияние - например ослабление черного окраса под действием гена сиамского окраса у кошек, являющихся его носителями.

Комплементарность - проявление признака возможно только под влиянием двух или более генов. Например, все табби окрасы проявляются только при наличии доминантного гена агути.

Эпистаз - действие одного гена полностью скрывает действие другого. Например доминантный ген белого окраса (W) скрывает любой окрас и рисунок, его называют так же эпистатическим белым.

Полимерия - на проявление одного признака влияет целая серия генов. Например - густота шерсти.

Плейотропия - один ген влияет на проявление серии признаков. Например, все тот же ген белого окраса (W) сцепленный с голубым цветом глаз провоцирует развитие глухоты.

Так же распространенным отклонением, не противоречащим однако законам Менделя, являются сцепленные гены. То есть ряд признаков наследуются в определенном сочетании. Примером могут служить гены, сцепленные с полом - крипторхизм (самки являются его носителями), красный окрас (он передается только по Х хромосоме).

71. Общая формула для генотипов

Розовидной формы гребня;

Гороховидной формы гребня;

Ореховидной формы гребня

Механизм наследования этих признаков имеют моногенный характер. Расщепление одинаково среди самцов и самок, ген не сцеплен с полом.

Ген гребня необычной формы - В

Ген простого гребня - в

Общая формула генотипов: В_вв

72. Нуклеиновые кислоты

Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

В природе существуют нуклеиновые кислоты двух типов, различающихся по составу, строению и функциям. Одна из них содержит дезоксирибозу и названа дезоксирибонуклеиновой кислотой (ДНК). Другая содержит рибозу и названа рибонуклеиновой кислотой (РНК)

73. Кем и когда была предложена модель ДНК

Модель ДНК предложена в 1953 Дж. Уотсоном и Ф. Криком, за что им была присвоена Нобелевская премия.

74. Что собой представляет модель ДНК

Молекула ДНК - это двухцепочечная спираль, закрученная вокруг собственной оси. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между фосфатной группой одного нуклеотида и З"-спиртовой группой пентозы другого. Такие связи называются фосфодиэфирными. Фосфатная группа образует мостик между З"-углеродом одного пентозного цикла и 5"-углеродом следующего.

Остов цепей ДНК образован, таким образом, сахарофосфатными остатками.

Полинуклеотидная цепь ДНК закручена в виде спирали, напоминая винтовую лестницу и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между аденином и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными. В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых -- числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностъю, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

75. Характеристика пуриновых и пиримидиновых азотистых оснований

Пуриновые азотистые основания - органические природные соединения, производные пурина. К ним относятся аденин и гуанин. Они имеют прямое отношение к обменным процессам. Пиримидиновые азотистые основания - группы природных веществ, производные пиримидина. Биологически наиболее важными пиримидиновыми основаниями являются урацил, цитозин, тимин. Последовательность нуклеотидов одной цепи нуклеиновой кислоты полностью комплементарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эрвин Чаргафф в 1951 г. установил закономерности в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С).

76. Составные части нуклеотида

Нуклеотид состоит из 3 составных частей: азотистое основание (пуриновое или пиримидиновое), моносахарид (рибоза или дезоксирибоза), остаток фосфорной кислоты.

77. Комлементарность. Характеристика

Комплементарность - свойство двойной спирали ДНК, согласно которому против аденина в противоположной цепи молекулы всегда стоит тимин, против гуанина - цитозин и наоборот, образуя водородные связи. Комплементарность очень важна для репликации ДНК.

Комплементарность в молекулярной биологии, взаимное соответствие, обеспечивающее связь дополняющих друг друга структур (макромолекул, молекул, радикалов) и определяемое их химическими свойствами. К. возможна, «если поверхности молекул имеют комплементарные структуры, так что выступающая группа (или положительный заряд) на одной поверхности соответствуют полости (или отрицательному заряду) на другой. Иными словами, взаимодействующие молекулы должны подходить друг к другу, как ключ к замку» (Дж. Уотсон). К. цепей нуклеиновых кислот основана на взаимодействии входящих в их состав азотистых оснований. Так, только при расположении аденина (А) в одной цепи против тимина (Т) (или урацила -- У) в другой, а гуанина (Г) -- против цитозина (Ц), в этих цепях между основаниями возникают водородные связи. К. -- по-видимому, единственный и универсальный химический механизм матричного хранения и передачи генетической информации.

78. Правило Чаргаффа

Правила Чаргаффа -- система эмпирически выявленных правил, описывающих количественные соотношения между различными типами азотистых оснований в ДНК. Были сформулированы в результате работы группы биохимика Эрвина Чаргаффа в 1949--1951 гг.Соотношения, выявленные Чаргаффом для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказались следующими:

Количество аденина равно количеству тимина, а гуанина -- цитозину:

Количество пуринов равно количеству пиримидинов:

Количество оснований с аминогруппами в положении 6 равно количеству оснований с кетогруппами в положении 6:

Вместе с тем, соотношение (A+Т):(Г+Ц) может быть различным у ДНК разных видов. У одних преобладают пары АТ, в других -- ГЦ.

Правила Чаргаффа, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК Дж. Уотсоном и Фрэнсисом Криком.

79. Кодон из пуриновых азотистых оснований и комплиментарный ему антикодон

80. Кодон. Определение

Кодон (кодирующий тринуклеотид) -- единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, обычно кодирующих включение одной аминокислоты. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном.

81. Антикодон. Определение

Антикодон -- триплет (тринуклеотид), участок в транспортной рибонуклеиновой кислоте (тРНК), состоящий из трёх неспаренных (имеющих свободные связи) нуклеотидов. Спариваясь с кодоном матричной РНК (мРНК), обеспечивает правильную расстановку каждой аминокислоты при биосинтезе белка.

82. Кем и когда был впервые просинтезирован белок

Биосинтез белка был впервые искусственно осуществлен французским ученым Шакобом и Мано в 1957 году.

83. Необходимые структуры и компоненты для биосинтеза белка

Для непосредственного биосинтеза белка необходимо, чтобы в клетке присутствовали следующие компоненты:

информационная РНК (иРНК) -- переносчик информации от ДНК к месту сборки белковой молекулы;

рибосомы -- органоиды, где происходит собственно биосинтез белка;

набор аминокислот в цитоплазме;

транспортные РНК (тРНК), кодирующие аминокислоты и переносящие их к месту биосинтеза на рибосомы;

ферменты, катализирующие процесс биосинтеза;

АТФ -- вещество, обеспечивающее энергией все процессы.

84. Под действием каких ферментов происходит биосинтез белка

Биосинтез белка происходит под действием следующих ферментов: ДНК-полимераза, РНК-полимераза, интетаза.

85. Биосинтез белка. Характеристика. Схема

Биосинтез белка -- сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии.

Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включает трансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов, переводится в последовательность остатков аминокислот.

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5ґ-концу присоединяется кэп, а к 3ґ-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемых единой последовательностью нуклеотидов ДНК, -- альтернативный сплайсинг.

У прокариот мРНК может считываться рибосомами в аминокислотную последовательность белков сразу после транскрипции, а у эукариот она транспортируется из ядра в цитоплазму, где находятся рибосомы. Скорость синтеза белков выше у прокариот и может достигать 20 аминокислот в секунду. Процесс синтеза белка на основе молекулы мРНК называется трансляцией.

Рибосома содержит 2 функциональных участка для взаимодействия с тРНК: аминоацильный (акцепторный) и пептидильный (донорный). Аминоацил-тРНК попадает в акцепторный участок рибосомы и взаимодействует с образованием водородных связей между триплетами кодона и антикодона. После образования водородных связей система продвигается на 1 кодон и оказывается в донорном участке. Одновременно в освободившемся акцепторном участке оказывается новый кодон, и к нему присоединяется соответствующий аминоацил-т-РНК.

Во время начальной стадии биосинтеза белков, инициации, обычно метиониновый кодон узнаётся малой субъединицей рибосомы, к которой при помощи белковых факторов инициации присоединена метиониновая транспортная РНК (тРНК). После узнавания стартового кодона к малой субъединице присоединяется большая субъединица и начинается вторая стадия трансляции -- элонгация. При каждом движении рибосомы от 5" к 3" концу мРНК считывается один кодон путём образования водородных связей между тремя нуклеотидами (кодоном) мРНК и комплементарным ему антикодоном транспортной РНК, к которой присоединена соответствующая аминокислота. Синтез пептидной связи катализируется рибосомальной РНК (рРНК), образующей пептидилтрансферазный центр рибосомы. Рибосомальная РНК катализирует образование пептидной связи между последней аминокислотой растущего пептида и аминокислотой, присоединённой к тРНК, позиционируя атомы азота и углерода в положении, благоприятном для прохождения реакции. Ферменты аминоацил-тРНК-синтетазы присоединяют аминокислоты к их тРНК. Третья и последняя стадия трансляции, терминация, происходит при достижении рибосомой стоп-кодона, после чего белковые факторы терминации гидролизуют последнюю тРНК от белка, прекращая его синтез. Таким образом, в рибосомах белки всегда синтезируются от N- к C-концу.

...

Подобные документы

    Научное определение жизни по Ф. Энгельсу. Молекулярно-генетический, организменный, популяционно-видовой уровень организации жизни. Прокариоты как одноклеточные доядерные организмы. Строение метафазной хромосомы. Уровни упаковки генетического материала.

    реферат , добавлен 29.05.2013

    Молекулярно-генетический уровень организации живого. Схема строения ДНК. Экспрессия гена как процесс реализации информации, закодированной в нем. Центральная догма молекулярной биологии. Транскрипционный аппарат клетки. Схемы транскрипции и сплайсинга.

    презентация , добавлен 21.02.2014

    Изучение химических основ наследственности. Характеристика строения, функций и процесса репликации рибонуклеиновой и дезоксирибонуклеиновой кислот. Рассмотрение особенностей распределение генов. Ознакомление с основными свойствами генетического кода.

    контрольная работа , добавлен 30.07.2010

    Анализ молекулярного, клеточного, тканевого, органного, организменного, популяционно-видового, биогеоценотического и биосферного уровней жизни. Изучение строения и функционирования тканей. Исследование генетических и экологических особенностей популяций.

    презентация , добавлен 11.09.2016

    Сущность и значение митоза - процесса распределения скопированных хромосом между дочерними клетками. Общая характеристика основных стадий митоза – профазы, метафазы, анафазы и телофазы, а также описание особенностей разделения клеточных хромосом в них.

    презентация , добавлен 04.12.2010

    Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация , добавлен 21.02.2013

    Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.

    контрольная работа , добавлен 23.04.2013

    Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация , добавлен 28.10.2014

    Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация , добавлен 07.12.2014

    Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.

Жизнь является многоуровневой системой (от греч. система - объединение, совокупность). Выделяют такие основные уровни организации живого: молекулярный, клеточный, органно-тканевой, организменный, популяционно-видовой, экосистемный, биосферный. Все уровни тесно связаны между собой и возникают один из другого, что свидетельствует о целостности живой природы.

Молекулярный уровень организации живого

Это единство химического состава (биополимеры: белки, углеводы, жиры, нуклеиновые кислоты), химических реакций. С этого уровня начинаются процессы жизнедеятельности организма: энергетический, пластический и прочие обмены, изменение и реализация генетической информации.

Клеточный уровень организации живого

Клеточный уровень организации живого. Животная клетка

Клетка является элементарной структурной единицей живого. Это единица развития всех живых организмов, живущих на Земле. В каждой клетке происходят процессы обмена веществ, преобразования энергии, обеспечивается сохранение, преобразование и передача генетической информации.

Каждая клетка состоит из клеточных структур, органелл, которые выполняют определенные функции, поэтому возможно выделить субклеточный уровень .

Органно-тканевой уровень организации живого

Органно-тканевой уровень организации живого. Эпителиальные ткани, соединительные ткани, мышечные ткани и нервные клетки

Клетки многоклеточных организмов, которые выполняют подобные функции, имеют одинаковое строение, происхождение, объединяются в ткани. Различают несколько типов тканей, которые имеют отличия в строении и выполняют разные функции (тканевой уровень).

Ткани в разном соединении образуют разные органы, которые имеют определенное строение и выполняют определенные функции (органный уровень).

Органы объединяются в системы органов (системный уровень).

Организменный уровень организации живого

Организменный уровень организации живого

Ткани объединяются в органы, системы органов и функционируют как единое целое - организм. Элементарной единицей этого уровня является особь, которая рассматривается в развитии от момента зарождения до конца существования как единая живая система.

Популяционно-видовой уровень организации живого

Популяционно-видовой уровень организации живого

Совокупность организмов (особей) одного вида, имеющего общее место обитания, образует популяции. Популяция является элементарной единицей вида и эволюции, так как в ней происходят элементарные эволюционные процессы, этот и следующие уровни - надорганизменные.

Экосистемный уровень организации живого

Экосистемный уровень организации живого

Совокупность организмов разных видов и уровней организации образует этот уровень. Здесь можно выделить биоценотический и биогеоценотический уровни.

Популяции разных видов взаимодействуют между собой, образуют многовидовые группировки (биоценотический уровень).

Взаимодействие биоценозов с климатическими и другими небиологическими факторами (рельефом, почвой, соленостью и т. п.) приводит к образованию биогеоценозов (биогеоценотический). В биогеоценозах происходит поток энергии между популяциями разных видов и круговорот веществ между его неживой и живой частями.

Биосферный уровень организации живого

Биосферный уровень организации живого. 1 – молекулярный; 2 – клеточный; 3 – организменный; 4 – популяционно-видовой; 5 – биогеоценотический; 6 – биосферный

Представлен частью оболочек Земли, где существует жизнь, - биосферой. Биосфера состоит из совокупности биогеоценозов, функционирует как единая целостная система.

Не всегда можно выделить весь перечисленный набор уровней. Например, у одноклеточных клеточный и организменный уровни совпадают, а органно-тканевой уровень отсутствует. Иногда можно выделить дополнительные уровни, например, субклеточный, тканевой, органный, системный.

Выделяют следующие уровни организации жизни: молекулярный, клеточный, органно-тканевой (иногда их разделяют), организменный, популяционно-видовой, биогеоценотический, биосферный. Живая природа представляет собой систему, а различные уровни ее организации формируют ее сложное иерархическое строение, когда нижележащие более простые уровни определяют свойства вышележащих.

Так сложные органические молекулы входят в состав клеток и определяют их строение и жизнедеятельность. У многоклеточных организмов клетки организованы в ткани, несколько тканей образуют орган. Многоклеточный организм состоит из систем органов, с другой стороны, организм сам является элементарной единицей популяции и биологического вида. Сообщество представляется собой взаимодействующие популяции разных видов. Сообщество и окружающая среда формируют биогеоценоз (экосистему). Совокупность экосистем планеты Земля образует ее биосферу.

На каждом уровне возникают новые свойства живого, отсутствующие на нижележащем уровне, выделяются свои элементарные явления и элементарные единицы. При этом во многом уровни отражают ход эволюционного процесса.

Выделение уровней удобно для изучения жизни как сложного природного явления.

Рассмотрим подробнее каждый уровень организации жизни.

Молекулярный уровень

Хотя молекулы состоят из атомов, отличие живой материи от неживой начинает проявляться только на уровне молекул. Только в состав живых организмов входит большое количество сложных органических веществ – биополимеров (белков, жиров, углеводов, нуклеиновых кислот). Однако молекулярный уровень организации живого включает и неорганические молекулы, входящие в клетки и играющие важную роль в их жизнедеятельности.

Функционирование биологических молекул лежит в основе живой системы. На молекулярном уровне жизни проявляется обмен веществ и превращение энергии как химические реакции, передача и изменение наследственной информации (редупликация и мутации), а также ряд других клеточных процессов. Иногда молекулярный уровень называют молекулярно-генетическим.

Клеточный уровень жизни

Именно клетка является структурной и функциональной единицей живого. Вне клетки жизни нет. Даже вирусы могут проявлять свойства живого, лишь оказавшись в клетке хозяина. Биополимеры в полной мере проявляют свою реакционную способность будучи организованы в клетку, которую можно рассматривать как сложную систему взаимосвязанных в первую очередь различными химическими реакциями молекул.

На этом клеточном уровне проявляется феномен жизни, сопрягаются механизмы передачи генетической информации и превращения веществ и энергии.

Органно-тканевой

Ткани есть только у многоклеточных организмов. Ткань представляет собой совокупность сходных по строению и функциям клеток.

Ткани образуются в процессе онтогенеза путем дифференцировки клеток имеющих одну и ту же генетическую информацию. На этом уровне происходит специализация клеток.

У растений и животных выделяют разные типы тканей. Так у растений это меристема, защитная, основная и проводящая ткани. У животных - эпителиальная, соединительная, мышечная и нервная. Ткани могут включать перечень подтканей.

Орган обычно состоит из нескольких тканей, объединенных между собой в структурно-функциональное единство.

Органы формируют системы органов, каждая из которых отвечает за важную для организма функцию.

Органный уровень у одноклеточных организмов представлен различными органеллами клетки, выполняющими функции переваривания, выделения, дыхания и др.

Организменный уровень организации живого

Наряду с клеточным на организменном (или онтогенетическом) уровне выделяются обособленной структурные единицы. Ткани и органы не могут жить независимо, организмы и клетки (если это одноклеточный организм) могут.

Многоклеточные организмы состоят из систем органов.

На организменном уровне проявляются такие явления жизни как размножение, онтогенез, обмен веществ, раздражимость, нервно-гуморальная регуляция, гомеостаз. Другими словами, его элементарные явления составляют закономерные изменения организма в индивидуальном развитии. Элементарной единицей является особь.

Популяционно-видовой

Организмы одного вида, объединенные общим местообитанием, формируют популяцию. Вид обычно состоит из множества популяций.

Популяции имеют общий генофонд. В пределах вида они могут обмениваться генами, т. е. являются генетически открытыми системами.

В популяциях происходят элементарные эволюционные явления, приводящие в конечном итоге к видообразованию. Живая природа может эволюционировать только в надорганизменных уровнях.

На этом уровне возникает потенциальное бессмертие живого.

Биогеоценотический уровень

Биогеоценоз представляет собой взаимодействующую совокупность организмов разных видов с различными факторами среды их обитания. Элементарные явления представлены вещественно-энергетическими круговоротами, обеспечиваемыми в первую очередь живыми организмами.

Роль биогеоценотического уровня состоит в образовании устойчивых сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания.

Биосфера

Биосферный уровень организации жизни - это система высшего порядка жизни на Земле. Биосфера охватывает все проявления жизни на планете. На этом уровне происходит глобальный круговорот веществ и поток энергии (охватывающий все биогеоценозы).