Почему водород первый в таблице менделеева.

1. Ядро висмунта испытывает бета распад, при этом образуется элемент Х. Этот элемент можно обозначить как... 2. Какой порядковый номер в

таблице менделеева имеет элемент, который образуется в результате бета распада элемента с порядковым номером Z?

3. В результате альфа распада изменятеся....

В результете бета распада изменятеся....

Известно, осколки ядра урана представляют собой ядра атомов разных химических элементов из середины таблицы Д. И. Менделеева. Например, одна из

возможных реакций может быть записана в виде: 92U + 0n1 56Ва + X + 2 * 0n Пользуясь законом сохранения заряда и таблицей менделеева определите что это за элемент. решение пожалуйста:)

1.С какой силой притягиваются два корабля массами по 10000т, находящихся на расстоянии 1км друг от друга?

А. 6,67 мкН; Б. 6,67мН; В. 6,67Н; Г. 6,67МН.

2.В соревнованиях по перетягиванию каната участвуют четверо мальчиков. Влево тянут канат двое мальчиков с силами 530Н и 540Н соответственно, а вправо – двое мальчиков с силами 560Н и 520Н соответственно. В какую сторону и какой результирующей силой перетянется канат?

А. Вправо, силой 10Н; Б. Влево, силой 10Н; В. Влево, силой 20Н; Г. Победит дружба.

3. Порядковый номер алюминия в таблице Менделеева 13, а массовое число равно 27. Сколько электронов вращаются вокруг ядра атома алюминия?

А. 27; Б. 13; В. 40; Г. 14.

4.Двигаясь с начальной скоростью 54км/ч, автомобиль за 10с прошел путь 155м. С каким ускорением двигался автомобиль и какую скорость он приобрел в конце пути?

5.Какова сила тока в стальном проводнике длиной 12м и сечением 4мм2, на который подано напряжение 72мВ? (удельное сопротивление стали 0,12 Ом мм2/м)

1)отметьте число электронов,которое может содержаться на s-подуровне электронной оболочки атомов А)2 В)6 Б)3 Г)8 2)Отметьте форму р-орбиталей: A)шар

В)обьемная восьмерка Б)еллипс Г)тороид 3) Отметье название семейства простых вешеств,которое образуют элементы главной подгруппы седьмой группы Периодической системы А)инертные газы Б)Щелочные металлы В)Галогенты Г)щелочноземельные металлы 4)Подчеркните одной чертой символы металлических элементов,которые входят в состав главных подгрупп,а двумя - металлические элементы побочных подгрупп:Na,S,Cu,Br,Pb,Ba,Fe,Si,Au. 5)Соедините линиями названия химических элементов и число электронов на внешнем электронном уровне их атомов: Хлор 1 Силиций 7 Цезий 4 6)определите число протонов,электронов и нейтронов в атомах,Хакактеристика 7)Запишите названия химических эдементов,которым соответсвуют электронные конфигурации: (ПРОПУСКАЕМ) 8)Изобразите распределение электронов в электронной оболочке атомов карбона и сульфура. 9) Составьте уравнения реакций взаимодействия высшего оксида сульфура с данными веществами А) ___PbO + _________ --> _____________ Б) ____KOH + __________ ---> ___________ В) _____Mg(OH)2 + _______ --> ___________ Г) _____Zno + ___________ --> ______________ 10)Порядковые номера элементов А и Б Соответсвтвенно N и N +2,Если химический элемент А - самый легкий галоген,то каким химическим элементов будет Б? Определите его порядковый номер в периодической системе. 11)Простое вещестров массой 2,75 Г,которое образовано элементом с электронной конфигурацией 1s22S22p1 (После 1s и 2s двойки идут маленькие,после p еденица маленькая) прореагировало с простыми веществом,образованным элементом,в ядраъ атома которого на три протона больше,чем у вышеупомянутого элемента,вычислите массу продукта реакции. ЭТО ВСЁ буду весьма благодарен если правельно поможете с заданиями.

Общая характеристика водорода как элемента

Химический знак – Н

Относительная атомная масса – 1,008

В соединениях водород одновалентен, степень окисления в соединениях с неметаллами равна +1, в соединениях с металлами равна –1.

Водород как вещество

Химическая формула – Н 2

Относительная молекулярная масса – 2,016

Способы получения водорода:

В лабораторных условиях водород получают несколькими способами:

· Действием кислот (серной, соляной) на некоторые металлы, в частности на цинк и железо;

· Действием раствора щелочи на металлический алюминий;

· Вытеснением активными металлами (Na, Ca и др.) из воды.

В промышленности основным видом сырья для получения водорода являются природные и нефтезаводские газы. В СССР водород получали в небольших масштабах методом неполного окисления метана при температуре 850 - 900°С в присутствии катализатора – никеля, нанесенного на оксид алюминия:

2CH 4 + O 2 → 2CO + 4H 2 + 71,4 кдж

Отделить водород от оксида углерода (II) можно путем его окисления водяным паром при температуре 200 – 250°С и в присутствии катализатора:

CO + H 2 O ↔ H 2 + CO 2 + 42 кдж

В местах с дешевой электрической энергией водород получают электролизом воды, к которой для увеличения ее электропроводности прибавляют какой-либо электролит, обычно щелочь или кислоту.

Физические свойства водорода:

  • Неметалл
  • Бесцветный, легкий (в 14,5 раз легче воздуха), трудно сжижаемый газ
  • Очень мало растворяется в воде, лучше – в органических растворителях
  • Наибольшая среди газообразных веществ скорость диффузии – молекулы водорода быстрее любых иных распространяются в среде другого вещества
  • Температура плавления равна -259,2°С, температура кипения равна -252,9°С.

Химические свойства водорода:

При комнатной температуре водород мало активен и реагирует только с фтором, а на свету – с хлором. В смесях с кислородом и воздухом водород при содержании более 4,5% образует взрывчатые смеси («гремучий газ»). Взрыв может произойти даже от маленькой искры.

1. Водород соединяется с кислородом

2H 2 + O 2 → 2H 2 O

2. Водород реагирует с оксидами некоторых металлов (при нагревании)

H 2 + CuO → H 2 O + Cu

3. Водород соединяется с некоторыми неметаллами и активными металлами

H 2 + Cl 2 → 2HCl

H 2 + S → H 2 S

H 2 + 2Na → 2NaH

Применение водорода:

Большое количество водорода используется для синтеза аммиака, который, в свою очередь, применяется для производства удобрений, азотной кислоты и как рабочее вещество холодильных машин. Много водорода расходуют на такие важные химические производства, как получение синтетической соляной кислоты, превращение жидких растительных жиров в твердые, преобразования низкосортных углей в жидкое топливо, получение метилового спирта из оксида углерода (II) и т.д. В металлургии его используют для получения таких металлов, как молибден и вольфрам восстановлением их оксидов.

Источники

1. Барков, С. А. Галогены и подгруппа марганца. Элементы VII группы периодической системы Д. И. Менделеева. Пособие для учащихся / С. А. Барков // М.: Просвещение, 1976.

2. Кузнецова, Н. Е. Химия: 8 класс. Учебник для учащихся общеобразовательных учреждений / Н. Е. Кузнецова, И. М. Титова, Н. Н. Гара, А. Ю. Жегин // М.: Вентана-Граф, 2008.

3. Леенсон, И. А. Путеводитель по химическим элементам. Из чего состоит Вселенная? / И. А. Леенсон // М.: АСТ, 2014. – 168 с.: ил.

4. Лидин, Р. А. Химические свойства неорганических веществ / Р. А. Лидин, В. А. Молочко, Л. Л. Андреева // М.: Химия, 2000.

5. Рудзитис, Г. Е. Химия. Учебное пособие для 7 – 11 классов вечерней (сменной) общеобразовательной школы. Часть 1 // Г. Е. Рудзитис, Ф. Г. Фельдман // М.: Просвещение, 1985.

  • Обозначение - H (Hydrogen);
  • Латинское название - Hydrogenium;
  • Период - I;
  • Группа - 1 (Ia);
  • Атомная масса - 1,00794;
  • Атомный номер - 1;
  • Радиус атома = 53 пм;
  • Ковалентный радиус = 32 пм;
  • Распределение электронов - 1s 1 ;
  • t плавления = -259,14°C;
  • t кипения = -252,87°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,02/-;
  • Степень окисления: +1; 0; -1;
  • Плотность (н. у.) = 0,0000899 г/см 3 ;
  • Молярный объем = 14,1 см 3 /моль.

Бинарные соединения водорода с кислородом:

Водород ("рождающий воду") был открыт английским ученым Г. Кавендишем в 1766 году. Это самый простой элемент в природе - атом водорода имеет ядро и один электрон, наверное, по этой причине водород является самым распространенным элементом во Вселенной (составляет более половины массы большинства звезд).

Про водород можно сказать, что "мал золотник, да дорог". Несмотря на свою "простоту", водород дает энергию всем живым существам на Земле - на Солнце идет непрерывная термоядерная реакция в ходе которой из четырех атомов водорода образуется один атом гелия, данный процесс сопровождается выделением колоссального количества энергии (подробнее см. Ядерный синтез).

В земной коре массовая доля водорода составляет всего 0,15%. Между тем, подавляющее число (95%) всех известных на Земле химических веществ содержат один или несколько атомов водорода.

В соединениях с неметаллами (HCl, H 2 O, CH 4 ...) водород отдает свой единственный электрон более электроотрицательным элементам, проявляя степень окисления +1 (чаще), образуя только ковалентные связи (см. Ковалентная связь).

В соединениях с металлами (NaH, CaH 2 ...) водород, наоборот, принимает на свою единственную s-орбиталь еще один электрон, пытаясь, таким образом, завершить свой электронный слой, проявляя степень окисления -1 (реже), образуя чаще ионную связь (см. Ионная связь), т. к., разность в электроотрицательности атома водорода и атома металла может быть достаточно большой.

H 2

В газообразном состоянии водород находится в виде двухатомных молекул, образуя неполярную ковалентную связь.

Молекулы водорода обладают:

  • большой подвижностью;
  • большой прочностью;
  • малой поляризуемостью;
  • малыми размерами и массой.

Свойства газа водорода:

  • самый легкий в природе газ, без цвета и запаха;
  • плохо растворяется в воде и органических растворителях;
  • в незначительных кол-вах растворяется в жидких и твердых металлах (особенно в платине и палладии);
  • трудно поддается сжижению (по причине своей малой поляризуемости);
  • обладает самой высокой теплопроводностью из всех известных газов;
  • при нагревании реагирует со многими неметаллами, проявляя свойства восстановителя;
  • при комнатной температуре реагирует со фтором (происходит взрыв): H 2 + F 2 = 2HF;
  • с металлами реагирует с образованием гидридов, проявляя окислительные свойства: H 2 + Ca = CaH 2 ;

В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Восстановительные свойства водорода широко используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов и галлидов.

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Реакции водорода с простыми веществами

Водород принимает электрон, играя роль восстановителя , в реакциях:

  • с кислородом (при поджигании или в присутствии катализатора), в соотношении 2:1 (водород:кислород) образуется взрывоопасный гремучий газ: 2H 2 0 +O 2 = 2H 2 +1 O+572 кДж
  • с серой (при нагревании до 150°C-300°C): H 2 0 +S ↔ H 2 +1 S
  • с хлором (при поджигании или облучении УФ-лучами): H 2 0 +Cl 2 = 2H +1 Cl
  • с фтором : H 2 0 +F 2 = 2H +1 F
  • с азотом (при нагревании в присутствии катализаторов или при высоком давлении): 3H 2 0 +N 2 ↔ 2NH 3 +1

Водород отдает электрон, играя роль окислителя , в реакциях с щелочными и щелочноземельными металлами с образованием гидридов металлов - солеобразные ионные соединения, содержащие гидрид-ионы H - - это нестойкие кристаллические в-ва белого цвета.

Ca+H 2 = CaH 2 -1 2Na+H 2 0 = 2NaH -1

Для водорода нехарактерно проявлять степень окисления -1. Реагируя с водой, гидриды разлагаются, восстанавливая воду до водорода. Реакция гидрида кальция с водой имеет следующий вид:

CaH 2 -1 +2H 2 +1 0 = 2H 2 0 +Ca(OH) 2

Реакции водорода со сложными веществами

  • при высокой температуре водород восстанавливает многие оксиды металлов: ZnO+H 2 = Zn+H 2 O
  • метиловый спирт получают в результате реакции водорода с оксидом углерода (II): 2H 2 +CO → CH 3 OH
  • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице "Водород и его соединения - уравнения химических реакций с участием водорода ".

Применение водорода

  • в атомной энергетике используются изотопы водорода - дейтерий и тритий;
  • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
  • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
  • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
  • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
  • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
  • как топливо водород используют в смеси с СО.

В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является "водородная" энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

Способы получения водорода

Промышленные способы получения водорода:

  • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH 4 + 2H 2 O = 4H 2 + CO 2 ;
  • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe 2 O 3: CO + H 2 O = CO 2 + H 2 ;
  • термическим разложением метана: CH 4 = C + 2H 2 ;
  • газификацией твердых топлив (t=1000°C): C + H 2 O = CO + H 2 ;
  • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H 2 O → 2H 2 + O 2 .

Лабораторные способы получения водорода:

  • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl 2 + H 2 ; Zn + H 2 SO 4 = ZnSO 4 + H 2 ;
  • взаимодействием паров воды с раскаленными железными стружками: 4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 .

Водород - самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна - Н2. При нормальных условиях - это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9·106 Дж/кг, малорастворим в воде - 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) - снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм. При высоком давлении водород переходит в металлическое состояние.

Молекулярный водород существует в двух спиновых формах (модификациях) - в виде орто- и параводорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвёздной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Введение

Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий №Н, дейтерий ІН или D, тритий іН или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий в природе находится в ничтожно малых количествах.

Ядро атома водорода №Н содержит один протон. Ядро дейтерия и трития включают не только протон, но и один, два нейтрона. Молекула водорода состоит из двух атомов. Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Энергия ионизации атома, эВ 13,60

Сродство атома к электрону, эВ 0,75

Относительная электроотрицательность 2,1

Радиус атома, нм 0,046

Межъядерное расстояние в молекуле, нм 0,0741

Стандартная энтальпия диссоциации молекул при 25єС 436,1

Водород. Положение водорода в периодической таблице Д.И. Менделеева

В самом конце XVIII и в начале XIХ века химия вступила в период установления количественных закономерностей: в 1803 году был сформулирован закон кратных отношений (вещества реагируют между собой в весовых отношениях, кратных химическим эквивалентам), а в 1814 году опубликована первая в истории химической науки таблица относительных атомных весов элементов. В этой таблице на первом месте оказался водород, а атомные массы других элементов выражались числами, близкими к целым.

Особое положение, которое с самого начала занял водород, не могло не привлечь внимания ученых, и в 1841 году химики смогли ознакомиться с теорией Уильяма Праута, развившего теорию Древнегреческих философов о единстве мира и предположившего, что все элементы образованы из водорода как из самого легкого элемента. Прауту возражал Й.Я. Берцелиус, как раз занимавшийся уточнением атомных весов: из его опытов следовало, что атомные веса элементов не находятся в целочисленных отношениях к атомному весу водорода. Но, возражали сторонники Праута, атомные веса определены еще недостаточно точно и в качестве примера ссылались на эксперименты Жана Стаса, который в 1840 году исправил атомный вес углерода с 11,26 (эта величина была установлена Берцелиусом) на 12,0.

И все же привлекательную гипотезу Праута пришлось на время оставить: вскоре тот же Стас тщательными и не подлежащими сомнению исследованиями установил, что, например, атомный вес хлора равен 35,45, т. е. никак не может быть выражен числом, кратным атомному весу водорода...

Но вот в 1869 году Дмитрий Иванович Менделеев создал свою периодическую классификацию элементов, положив в ее основу атомные веса элементов как их наиболее фундаментальную характеристику. И на первом месте в системе элементов, естественно, оказался водород.

С открытием периодического закона стадо ясно, что химические элементы образуют единый ряд, построение которого подчиняется какой-то внутренней закономерности. И это не могло вновь не вызвать к жизни гипотезу Праута, -- правда, в несколько измененной форме: в 1888 году Уильям Крукс предположил, что все элементы, в том числе и водород, образованы путем уплотнения некоторой первичной материи, названной им протилом. А так как протил, рассуждал Крукс, по-видимому, имеет очень малый атомный вес, то отсюда понятно и возникновение дробных атомных весов.

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 году Менделеев называет... «мировой эфир». Более того, он помещает его в нулевую группу над гелием и рассчитывает его атомный вес -- 0,000001! Инертный газ со столь малым атомным весом должен быть по мнению Менделеева, всепроникающим, а его упругие колебания могли бы объяснить световые явления...

Увы, атому предвидению великого ученого не было суждено сбыться. Но Менделеев был прав в том отношении, что элементы не построены из тождественных частиц: мы знаем теперь, что они построены из протонов, нейтронов и электронов.

Но позвольте, воскликнете вы, ведь протон -- это ядро атома водорода. Значит Праут был все-таки прав? Да, он действительно был по-своему прав. Но это была, если можно так выразиться, преждевременная правота, потому что в то время ее нельзя было ни по-настоящему подтвердить, ни по-настоящему опровергнуть...

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчитанный на ее основе спектр водорода полностью совпал с наблюдаемым.