Теплопередача воды. От чего зависит электропроводность жидкости

Под теплопроводностью понимается способность различных тел проводить теплоту во все стороны от точки приложения нагретого предмета. Теплопроводность возрастает по мере увеличения плотности вещества, потому что тепловые колебания легче передаются в более плотном веществе, где отдельные частицы расположены ближе одна к другой. Этому закону подчиняются и жидкости.

Теплопроводность определяется количеством калорий, проходящих в 1 сек. через площадь в 1 см2 при падении температуры на 1° на протяжении 1 см пути. По теплопроводности вода занимает место между стеклом и эбонитом и почти в 28 раз превосходит воздух.

Теплоемкость воды . Под удельной теплоемкостью понимается то количество теплоты, которое может нагреть 1 г массы вещества на 1 °. Это количество теплоты измеряется калориями. За единицу теплоты принимается грамм-калория. Вода воспринимает при 14-15° большее количество теплоты, чем другие вещества; например, количество тепла, потребное для нагрева 1 кг воды на 1°, может нагреть на 1° 8 кг железа или 33 кг ртути.

Механическое действие воды

Наиболее сильным механическим действием отличается душ, наиболее слабым - полные ванны. Сравним механическое влияние, например, душа Шарко и полных ванн.
Дополнительное давление воды на кожу в ванне, где столб воды не превышает 0,5 м, составляет около 0,005, или 1,20 атмосферного давления, а сила удара водяной струи в душе Шарко, направленной на тело с расстояния 15-20 м, равняется 1,5- 2 атмосферам.

Независимо от температуры применяемой воды, под влиянием душа наступает энергичное, расширение кожных сосудой немедленно после падения на тело водяной струи. Одновременно проявляется возбуждающее действие душа.

Для исследования механического действия морских и речных: купаний применима формула F=mv2/2, где сила F равняется половине произведения массы т на квадрат скорости v2. Механическое действие морской и речной волн зависит не столько от массы воды, надвигающейся на тело, сколько от скорости, с которой совершается это движение.

Вода как химический растворитель . Вода обладает способностью растворять различные минеральные соли, жидкости и газы, от этою усиливается раздражающее действие воды. Большое значение придается ионному обмену, происходящему между водой и телом человека, погруженным в минерализованную ванну.

При нормальном давлении (т. е. при нулевой температуре) один объем воды поглощает 1,7 объема углекислоты; при повышении давления растворимость углекислоты в воде значительно повышается; при двух атмосферах давления при температуре в 10° растворяются три объема углекислоты вместо 1,2 объема при нормальном давлении.

Теплопроводность углекислоты в два раза меньше теплопроводности воздуха и в тридцать раз меньше теплопроводности воды. Этим свойством воды пользуются для устройства различных газовых ванн, заменяющих иногда минеральные источники.

Вода – уникальное вещество, которое имеет сложную молекулярную структуру, до конца еще не изученную. Вне зависимости от агрегатного состояния, молекулы H2O прочно связаны между собой, что определяет множество физических свойств воды и ее растворов. Давайте выясним,обладает ли обычная вода тепло- и электропроводностью.

К основным физическим свойствам H2O относятся:

  • плотность;
  • прозрачность;
  • цвет;
  • запах;
  • вкус;
  • температура;
  • сжимаемость;
  • радиоактивность;
  • тепло- и электропроводность.

Последние характеристики теплопроводность и электропроводность воды – очень нестабильны и зависят от многих факторов. Рассмотрим их более подробно.

Электропроводность

Электрический ток представляет собой одностороннее движение негативно заряженных частиц – электронов. Некоторые вещества могут переносить эти частицы, а некоторые – нет. Эта способность выражается в числовой форме и представляет собой значение электропроводности.

До сих пор идут дискуссии насчет того, обладает ли электропроводностью чистая вода.Она способна проводить ток, но очень плохо. Электропроводность дистиллята объясняется тем, что молекулы H2 O частично распадаются на ионы H+ и OH-. Электрочастицы передвигаются с помощью позитивно заряженных ионов водорода, которые способны перемещаться в толще воды.

От чего зависит электропроводность жидкости

Электропроводность H2 O зависит от таких факторов, как:

  • наличие и концентрация ионных примесей (минерализация);
  • природа ионов;
  • температура жидкости;
  • вязкость воды.

Первые два фактора являются определяющими. Поэтому вычислив значение электропроводности жидкости, мы сможем судить о степени ее минерализации.

В природе не существует чистой воды. Даже родниковая представляет собой некий раствор солей, металлов и других электролитных примесей. Это прежде всего ионы Na+, K+, Ca2 +, Cl-, SO4 2-, HCO3 -. Также в ее состав могут входить слабые электролиты, которые неспособны сильно изменить свойство проводить ток. К ним относятся Fe3 +, Fe2 +, Mn2 +, Al3 +, NO3 -, HPO4 – и другие. Сильное влияние на электропроводность они способны оказать только в случае высокой концентрации, как, например, это бывает в сточных водах с отходами производства. Интересно, что наличие примесей в воде, которая находится в состоянии льда, не влияет на ее способность проводить электричество.

Электропроводность морской воды

Морская вода способна лучше проводить электрический ток, чем пресная. Это объясняется наличием в ней растворенной соли NaCl, которая является хорошим электролитом. Механизм увеличения проводимости можно описать следующим образом:

  1. Хлорид натрия при растворении в воде распадается на ионы Na+ и Cl-, которые имеют разные заряды.
  2. Ионы Na+притягивают электроны, так как имеют противоположный заряд.
  3. Движение ионов натрия в толще воды приводит к перемещению электронов, что, в свою очередь, ведет к возникновению электрического тока.

Таким образом, электропроводность воды определяется наличием в ней солей и других примесей. Чем их меньше, тем ниже способность проводить электрический ток. У дистиллированной воды она практически нулевая.

Измерение электропроводности

Измерение электропроводности растворов осуществляется с помощью кондуктометров. Это специальные приборы, принцип действия которых основан на анализе соотношения электропроводности и концентрации примесей-электролитов. На сегодняшний день существует множество моделей, которые способны измерять электропроводность не только высококонцентрированных растворов, но и чистой дистиллированной воды.

Теплопроводность

Теплопроводность – это способность физического вещества проводить тепло от нагретых частей к более холодным. Вода, как и другие вещества, обладает таким свойством. Передача тепла происходит либо от молекулы к молекуле H2 O, что представляет собой молекулярный тип теплопроводности, либо при перемещении потоков жидкости – турбулентный тип.

Теплопроводность воды в несколько раз выше, чем у других жидких веществ, за исключением расплавленных металлов – у них этот показатель еще более высокий.

Способность воды проводить тепло зависит от двух факторов: давления и температуры. При увеличении давления показатель проводимости растет, при повышении температуры до 150 °C растет, затем начинает снижаться.

Теплопроводность воды – свойство, которым мы все, того не подозревая, очень часто пользуемся в быту.

Кратко про это свойство мы уже писали в нашей статье ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ В ЖИДКОМ СОСТОЯНИИ → , в данном же материале дадим более развернутое определение.

Вначале рассмотрим значение термина теплопроводность в общем.

Теплопроводность, это …

Справочник технического переводчика

Теплопроводность — теплообмен, при котором перенос теплоты в неравномерно нагретой среде имеет атомно-молекулярный характер

[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

Теплопроводность — способность материала пропускать тепловой поток

[СТ СЭВ 5063-85]

Справочник технического переводчика

Толковый словарь Ушакова

Теплопроводность, теплопроводности, мн. нет, жен. (физ.) — свойство тел распространять тепло от более нагретых частей к менее нагретым.

Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940

Большой Энциклопедический словарь

Теплопроводность — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры (закон Фурье). Коэффициент пропорциональности называют коэффициентом теплопроводности.

Большой Энциклопедический словарь. 2000

Теплопроводность воды

Для более объемного понимания общей картины отметим несколько фактов:

  • Теплопроводность воздуха приблизительно в 28 раз меньше теплопроводности воды;
  • У масла теплопроводность ориентировочно в 5 раз меньше чем у воды;
  • При повышении давления теплопроводность повышается;
  • В большинстве случаях, при повышении температуры, теплопроводность слабо концентрированных растворов солей, щелочей и кислот так же растет.

В качестве примера, приведем динамику изменений значений теплопроводности воды в зависимости от температуры, при давлении 1 бар:

0°С – 0,569 Вт/(м град);
10°С – 0,588 Вт/(м град);
20°С – 0,603 Вт/(м град);
30°С – 0,617 Вт/(м град);
40°С – 0,630 Вт/(м град);
50°С – 0,643 Вт/(м град);
60°С – 0,653 Вт/(м град);
70°С – 0,662 Вт/(м град);
80°С – 0,669 Вт/(м град);
90°С – 0,675 Вт/(м град);

100°С – 0,0245 Вт/(м град);
110°С – 0,0252 Вт/(м град);
120°С – 0,026 Вт/(м град);
130°С – 0,0269 Вт/(м град);
140°С – 0,0277 Вт/(м град);
150°С – 0,0286 Вт/(м град);
160°С – 0,0295 Вт/(м град);
170°С – 0,0304 Вт/(м град);
180°С – 0,0313 Вт/(м град).

Теплопроводность, впрочем, как и все остальные, является весьма важным для всех нас свойством воды. Например мы очень часто, сами того не зная, пользуемся им в быту — используем воду для быстрого охлаждения нагретых предметов, а грелку для аккумулирования тепла и его хранения.

Коэффициент теплопроводности является физическим параметром вещества и в общем случае зависит от температуры, давления и рода вещества. В большинстве случаев коэффициент теплопроводности для различных материалов определяется экспериментально с помощью различных методов. Большинство из них основано на измерении теплового потока и градиента температур в исследуемом веществе. Коэффициент теплопроводности λ, Вт/(м×К), при этом определяется из соотношения: из которого следует, что коэффициент теплопроводности численно равен количеству теплоты, которое проходит в единицу времени через единицу изотермической поверхности при температурном градиенте, равном единице. Примерные значения коэффициента теплопроводности различных веществ показаны нарис. 1.4Так как тела могут иметь различную температуру, а при наличии теплообмена и в самом теле температура будет распределена неравномерно, т.е. в первую очередь важно знать зависимость коэффициента теплопроводности от температуры. Опыты показывают, что для многих материалов с достаточной для практики точностью зависимость коэффициента теплопроводности от температуры можно принять линейной: где λ 0 - значение коэффициента теплопроводности при температуре t 0 ; b - постоянная, определяемая опытным путём.

Коэффициент теплопроводности газов. Согласно кинетической теории перенос теплоты теплопроводностью в газах при обычных давлениях и температурах определяется переносом кинетической энергии молекулярного движения в результате хаотического движения и столкновения отдельных молекул газа. При этом коэффициент теплопроводности определяется соотношением: где- средняя скорость перемещения молекул газа;- средняя длина свободного пробега молекул газа между соударениями;- теплоёмкость газа при постоянном объёме;- плотность газа. С увеличением давления в равной мере увеличивается плотность, уменьшается длина пробегаи произведениесохраняется постоянным. Поэтому коэффициент теплопроводности заметно не меняется с изменением давления. Исключение составляют очень малые (меньше 2,66×10 3 Па) и очень большие (2×10 9 Па) давления. Средняя скорость перемещения молекул газа зависит от температуры: где R μ - универсальная газовая постоянная, равная 8314,2 Дж/(кмоль×К); μ - молекулярная масса газа; Т - температура, К. Теплоемкость газов возрастает с повышением температуры. Этим объяс­няется тот факт, что коэффициент теплопроводности для газов с повышением температуры возрастает. Коэффициент теплопроводности λ газов лежит в пределах от 0,006 до 0,6 Вт/(м×К). На рис. 1.5 представлены результаты измерений коэффициента тепло­проводности различных газов, проведенных Н. Б. Варгафтиком. Среди газов резко выделяются своим коэффициентом теплопроводности гелий и водород. Коэффициент теплопроводности у них в 5-10раз больше, чем у других газов. Это наглядно видно на рис. 1.6. Молекулы гелия и водорода обладают малой массой, а следовательно, имеют большую среднюю скорость перемещения, чем и объясняется их высокий коэффициент теплопроводности. Коэффициенты теплопроводности водяного пара и других реальных газов, существенно отличающихся от идеальных, сильно зависят также от давления. Для газовых смесей коэффициент теплопроводности не может быть определён по закону аддитивности, его нужно определять опытным путём.

Рис.1.5 Коэффициенты теплопроводности газов.

1-водяной пар; 2-двуокись углерода; 3-воздух; 4-аргон; 5-кислород; 6-азот.

Рис. 1.6 Коэффициенты теплопроводности гелия и водорода.

Коэффициент теплопроводности жидкостей. Механизм распространения теплоты в капельных жидкостях можно представить как перенос энергии путем нестройных упругих колебаний. Такое теоретическое представление о механизме передачи теплоты в жидкостях, выдвинутое А. С. Предводителевым, было использовано Н. Б. Варгафтиком для описания опытных данных по теплопроводности различных жидкостей. Для большинства жидкостей теория нашла хорошее подтверждение. На основании этой теории была получена формула для коэффициента теплопроводности следующего вида: где- теплоёмкость жидкости при постоянном давлении;- плотность жидкости; μ - молекулярная масса. Коэффициент А, пропорциональный скорости распространения упругих волн в жидкости, не зависит от природы жидкости, но зависит от температуры, при этом Ас р ≈const. Так как плотность ρ жидкости с повышением температуры убывает, то из уравнения (1.21) следует, что для жидкостей с постоянной молекулярной массой (неассоциированные и слабо ассоциированные жидкости) с повышением температуры коэффициент теплопроводности должен уменьшаться. Для жидкостей, сильно ассоциированных (вода, спирты и т. д.) в формулу (1.21) нужно ввести коэффициент ассоциации, учитывающий изменение молекулярной массы. Коэффициент ассоциации зависит также от температуры, и поэтому при различных температурах он может влиять на коэффициент теплопроводности по-разному. Опыты подтверждают, что для большинства жидкостей с повышением температуры коэффициент теплопроводности λ убывает, исключение составляют вода и глицерин (рис. 1.7). Коэффициент теплопроводности капельных жидкостей лежит примерно в пределах от 0,07 до 0,7Вт/(м×К). При повышении давления коэффициенты теплопроводности жидкостей возрастают.

Рис. 1.7 Коэффициенты теплопроводности различных жидкостей.

1-вазелиновое масло; 2-бензол; 3-ацетон; 4-касторовое масло; 5-спирт этиловый; 6-спирт метиловый; 7-глицерин; 8-вода.

Коэффициент теплопроводности твердых тел. В металлах основным передатчиком теплоты являются свободные электроны, которые можно уподобить идеальному одноатомному газу. Передача теплоты при помощи колебательных движений атомов или в виде упругих звуковых волн не исключается, но ее доля незначительна по сравнению с переносом энергии электронным газом. Вследствие движения свободных электронов происходит выравнивание температуры во всех точках нагревающегося или охлаждающегося металла. Свободные электроны движутся как из областей, более нагретых, в области, менее нагретые, так и в обратном направлении. В первом случае они отдают энергию атомам, во втором отбирают ее. Так как в металлах носителем тепловой энергии являются электроны, то коэффициенты тепло- и электропроводности пропорциональны друг другу. При повышении температуры вследствие усиления тепловых неоднородностей рассеивание электронов увеличивается. Это влечет за собой уменьшение коэффициентов тепло- и электропроводности чистых металлов (рис. 1.8). При наличии разного рода примесей коэффициент теплопроводности металлов резко убывает. Последнее можно объяснить увеличением структурных неоднородностей, которое приводит к рассеиванию электронов. Так, например, для чистой меди λ= 396Вт/(м×К), для той же меди со следами мышьяка λ= 142Bт/(м×K). В отличие от чистых металлов коэффициенты теплопроводности сплавов при повышении температуры увеличиваются (рис. 1.9). В диэлектриках с повышением температуры коэффициент теплопроводности обычно увеличивается (рис. 1.10). Как правило, для материалов с большей плотностью коэффициент теплопроводности имеет более высокое значение. Он зависит от структуры материала, его пористости и влажности.

Рис. 1.8 Зависимость коэффициента теплопроводности от температуры для некоторых чистых металлов.

Многие строительные и теплоизоляционные материалы имеют пористое строение (кирпич, бетон, асбест, шлак и др.), и применение закона Фурье к таким телам является в известной мере условным. Наличие пор в материале не позволяет рассматривать такие тела как сплошную среду. Условным является также коэффициент теплопроводности пористого материала. Эта величина имеет смысл коэффициента теплопроводности некоторого однородного тела, через которое при одинаковых форме, размерах и температурах на границах проходит то же количество теплоты, что и через данное пористое тело. Коэффициент теплопроводности порошкообразных и пористых тел сильно зависит от их плотности. Например, при возрастании плотности ρ от 400 до 800 кг/м 3 коэффициент теплопроводности асбеста увеличивается от 0,105 до 0,248 Вт/(м×К). Такое влияние плотности ρ на коэффициент теплопроводности объясняется тем, что теплопроводность заполняющего поры воздуха значительно меньше, чем твердых компонентов пористого материала. Эффективный коэффициент теплопроводности пористых материалов сильно зависит также от влажности. Для влажного материала коэффициент теплопроводности значительно больше, чем для сухого и воды в отдельности. Например, для сухого кирпича λ= 0,35, для воды λ = 0,60, а для влажного кирпича λ≈1,0 Вт/(м×К). Этот эффект может быть объяснен конвективным переносом теплоты, возникающим благодаря капиллярному движению воды внутри пористого материала, и частично тем, что абсорбционно связанная влага имеет другие характеристики по сравнению со свободной водой. Увеличение коэффициента теплопроводности зернистых материалов с изменением температуры можно объяснить тем, что с повышением температуры возрастает теплопроводность среды, заполняющей промежутки между зернами, а также увеличивается теплопередача излучением зернистого массива. Коэффициенты теплопроводности строительных и теплоизоляционных материалов имеют значения, лежащие примерно в пределах от 0,023 до 2,9Bт/(м×K). Материалы с низким значением коэффициента теплопроводности [меньше 0,25Вт/(м×К)], обычно применяемые для тепловой изоляции, называются теплоизоляционными.

Теории явлений переноса, основанные на статистическом методе Гиббса, ставят перед собой задачу получить кинетические уравнения, из которых можно найти конкретный вид неравновесных функций распределения. Предполагается, что неравновесная функция распределения системы имеет квазиравновесную форму, причем температура, плотность числа частиц и их средняя скорость зависят от

пространственно-временных координат. Корреляция последовательных столкновений достигается тем, что учитываются не только жесткие столкновения (обусловленные отталкиванием), но и так называемые мягкие столкновения (обусловленные притяжением), в результате чего частицы движутся по искривленным траекториям.

Наибольшей известностью пользуется метод Кирквуда, в котором мягкие соударения определяют коэффициент трения. Согласно Эйнштейну - Смолуховскому коэффициент трения

где постоянная Больцмана, Т - абсолютная температура и коэффициент самодиффузии.

Корреляция взаимодействия окружающих частиц с данной частицей по Кирквуду осуществляется на протяжении характерного времени та, по прошествии которого силы, действующие со стороны других частиц на данную, рассматриваются как некоррелированные Причем величина времени корреляции взаимодействия должна быть меньше характеристического времени релаксации макроскопических характеристик вещества.

Для коэффициента теплопроводности Кирквуд получает следующее выражение

где число частиц в единице объема, радиальная равновесная функция распределения частиц, -потенциал парных сил.

Кроме того, что для вычисления № по эгой формуле необходимо знать с большой точностью не только но и ее производные, а также (что само по себе представляет пракшчески неразрешимую в настоящий момент задачу) Недавно было показано, что кинетические коэффициенты нельзя непосредственно разлагать в ряд по степеням плотности, как целает Кирквуд, а необходимо использовать более сложное разложение. Это связано с необходимостью учитывав повторные соударения частиц, уже скоррелированные в

результат предыдущих столкновений с другими частицами. В связи с перечисленными трудностями приходится прибегать к модельным методам исследования.

Среди модельных работ представляют интерес работы, основанные на представлениях о характере теплового движения в жидкостях, при котором перенос тепла определяется посредством гиперакустических колебаний среды (фононов). Такой подход учитывает коллективный характер движения молекул в жидкости. При этом теплопроводность К определяется, например, следующим образом (формула Сакиадиса и Котеса)

где - скорость гиперзвука; теплоемкость при постоянном давлении, среднее расстояние между молекулами, плотность.

Помимо модельного подхода имеют место и полуэмпирические соотношения для теплопроводности (Филиппов,

Теплопроводность примерно в 5 раз меньше теплопроводности (табл. 43). Четыреххлористый углерод - обычная жидкость, для которой имеет место, как и для всех других жидкостей, уменьшение скорости звука с ростом температуры, уменьшение теплопроводности и рост теплоемкости. У воды при малых температурах все наоборот. Характер изменения всех этих свойств в воде напоминает характер их изменения для обычных веществ в газообразном состоянии. В самом деле, теплопроводность газа растет с ростом температуры

Средняя скорость молекул, теплоемкость и длина свободного пробега).

Для примера ниже приводится зависимость теплопроводности воздуха при атмосферном давлении для ряда температур.

Изменение теплопроводности при плавлении льда I и дальнейшее изменение Т с ростом температуры жидкой воды представлено на рис. 57, откуда видно, что теплопроводность при плавлении льда I уменьшается приблизительно в

Таблица 43 (см. скан) Температурные зависимости теплопроводностей воды и четыреххлористого углерода

4 раза. Исследование изменения теплопроводности переохлажденной воды вплоть до -40°С показывает, что переохлажденная вода не имеет никаких особенностей при 0°С (табл. 43). Для иллюстрации нормального температурного хода теплопроводности представлена зависимость теплопроводности от температуры. Теплопроводность монотонно уменьшается с ростом температуры.

Все нормальные жидкости с ростом давления изменяют знак изменения теплопроводности с температурой. Для большого класса жидкостей это изменение имеет место при давлении Теплопроводность воды не изменяет характера температурной зависимости под давлением. Относительная величина увеличения теплопроводности воды при давлении составляет -50%, в то время как для

других нормальных жидкостей это увеличение при том же давления составляет (рис. 58).

Зависимость К от давления для воды представлена на рис. 58. Такое маленькое относительное увеличение теплопроводности воды с ростом давления связано с малой сжимаемостью воды по сравнению с другими жидкостями, которая определяется характером сил межмолекулярного взаимодействия.

Рис. 57. Зависимость теплопроводности воды и от температуры

Рис. 58. Зависимость от температуры теплопроводности и силиконового масла для ряда давлений