Legile logaritmilor. Identitatea logaritmică de bază

1.1. Determinarea gradului pentru un exponent întreg

X 1 = X
X 2 = X * X
X 3 = X * X * X

X N \u003d X * X * ... * X - N ori

1.2. Grad zero.

Prin definiție, se obișnuiește să presupunem că puterea zero a oricărui număr este egală cu 1:

1.3. grad negativ.

X-N = 1/XN

1.4. Exponent fracționar, rădăcină.

X 1/N = a N-a rădăcină a lui X.

De exemplu: X 1/2 = √X.

1.5. Formula de adunare a puterilor.

X (N+M) = X N * X M

1.6.Formulă pentru scăderea gradelor.

X (N-M) = X N / X M

1.7. Formula de multiplicare a puterii.

XN*M = (XN)M

1.8. Formula pentru ridicarea unei fracții la o putere.

(X/Y)N = XN/YN

2. Numărul e.

Valoarea numărului e este egală cu următoarea limită:

E = lim(1+1/N), ca N → ∞.

Cu o precizie de 17 cifre, numărul e este 2,71828182845904512.

3. Egalitatea lui Euler.

Această egalitate leagă cinci numere care joacă un rol deosebit în matematică: 0, 1, numărul e, numărul pi, unitatea imaginară.

E(i*pi) + 1 = 0

4. Funcția exponențială exp (x)

exp(x) = e x

5. Derivata functiei exponentiale

O funcție exponențială are o proprietate remarcabilă: derivata unei funcții este egală cu funcția exponențială în sine:

(exp(x))" = exp(x)

6. Logaritm.

6.1. Definiția funcției logaritm

Dacă x = b y , atunci logaritmul este funcția

Y = Logb(x).

Logaritmul arată în ce măsură este necesar să se ridice un număr - baza logaritmului (b) pentru a obține un număr dat (X). Funcția logaritm este definită pentru X mai mare decât zero.

De exemplu: Log 10 (100) = 2.

6.2. Logaritm zecimal

Acesta este logaritmul la baza 10:

Y = Log 10 (x) .

Notat Log(x): Log(x) = Log 10 (x).

Un exemplu de utilizare a logaritmului zecimal este decibelul.

6.3. Decibel

Elementul este separat într-o pagină separată Decibel

6.4. logaritm binar

Acesta este logaritmul de bază 2:

Y = Log2(x).

Notat cu Lg(x): Lg(x) = Log 2 (X)

6.5. logaritmul natural

Acesta este logaritmul pentru baza e:

Y = Loge(x) .

Notat cu Ln(x): Ln(x) = Log e (X)
Logaritmul natural este inversul funcției exponențiale exp(X).

6.6. puncte caracteristice

Loga(1) = 0
Log a(a) = 1

6.7. Formula pentru logaritmul produsului

Log a (x*y) = Log a (x)+Log a (y)

6.8. Formula pentru logaritmul coeficientului

Log a (x/y) = Log a (x) - Log a (y)

6.9. Formula logaritmului puterii

Log a (x y) = y*Log a (x)

6.10. Formula pentru conversia într-un logaritm cu o bază diferită

Jurnal b (x) = (Jurnal a (x)) / Jurnal a (b)

Exemplu:

Bușten 2 (8) = Bușten 10 (8)/Bușten 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. Formule utile în viață

Adesea există probleme de conversie a volumului în zonă sau lungime, iar problema inversă este conversia ariei în volum. De exemplu, plăcile sunt vândute în cuburi (metri cubi) și trebuie să calculăm câtă suprafață a peretelui poate fi acoperită cu plăci conținute într-un anumit volum, vezi calculul plăcilor, câte plăci sunt într-un cub. Sau, dimensiunile peretelui sunt cunoscute, este necesar să se calculeze numărul de cărămizi, vezi calculul cărămizii.


Este permisă utilizarea materialelor site-ului cu condiția să fie setat un link activ către sursă.

FUNCTII EXPONENTIALE SI LOGARITMICE VIII

§ 184. Logaritm de grad și rădăcină

Teorema 1. Logaritmul puterii unui număr pozitiv este egal cu produsul exponentului acestei puteri cu logaritmul bazei sale.

Cu alte cuvinte, dacă A și X pozitivă și A =/= 1, apoi pentru orice număr real k

Buturuga un x k = k Buturuga un x . (1)

Pentru a demonstra această formulă, este suficient să arătăm că

= A k Buturuga un x . (2)

= X k

A k Buturuga un x = (A Buturuga un x ) k = X k .

Aceasta implică validitatea formulei (2) și, prin urmare, și (1).

Rețineți că dacă numărul k este natural ( k = n ), atunci formula (1) este un caz particular al formulei

Buturuga A (X 1 X 2 X 3 ... X n ) = jurnal un x 1 + jurnal un x 2 + jurnal un x 3 + ...log un x n .

dovedit în secțiunea anterioară. Într-adevăr, presupunând în această formulă

X 1 = X 2 = ... = X n = X ,

primim:

Buturuga un x n = n Buturuga un x .

1) log 3 25 = log 3 5 2 = 2 log 3 5;

2) log 3 2 √ 3 = √3 log 3 2.

Pentru valori negative X formula (1) își pierde sensul. De exemplu, nu puteți scrie log 2 (-4) 2 = 2 log 2 (- 4) deoarece expresia log 2 (-4) este nedefinită. Rețineți că expresia din partea stângă a acestei formule are sens:

log 2 (-4) 2 = log 2 16 = 4.

În general, dacă numărul X este negativ, atunci expresia log un x 2k = 2k Buturuga un x determinat pentru că X 2k > 0. Expresia este 2 k Buturuga un x nu are sens in acest caz. Deci scrie

Buturuga un x 2k = 2k Buturuga un x

este interzis. Cu toate acestea, se poate scrie

Buturuga un x 2k = 2k Buturuga a | X | (3)

Această formulă se obține cu ușurință din (1) dacă ținem cont de faptul că

X 2k = | X | 2k

De exemplu,

log 3 (-3) 4 = 4 log 3 | -3 | = 4 log 3 3 = 4.

Teorema 2. Logaritmul rădăcinii unui număr pozitiv este egal cu logaritmul expresiei rădăcinii împărțit la exponentul rădăcinii.

Cu alte cuvinte, dacă numerele A și X sunt pozitive A =/= 1 și P este un număr natural, atunci

Buturuga A n X = 1 / n Buturuga un x

Într-adevăr, n X = . Prin urmare, prin teorema 1

Buturuga A n X = jurnal A = 1 / n Buturuga un x .

1) log 3 √ 8 = 1 / 2 log 3 8; 2) log 2 5 √27 = 1/5 log 2 27.

Exerciții

1408. Cum se va schimba logaritmul unui număr dacă, fără a schimba baza:

a) la pătrat numărul

b) se ia rădăcina pătrată a unui număr?

1409. Cum se va schimba diferența log 2 A - jurnalul 2 b dacă numere A și b înlocuiți în mod corespunzător cu:

A) A 3 și b 3; b) 3 A și 3 b ?

1410. Știind că log 10 2 ≈ 0,3010, log 10 3 ≈ 0,4771, găsiți logaritmii la baza a 10 numere:

8; 9; 3 √2 ; 3 √6 ; 0,5; 1 / 9

1411. Demonstrați că logaritmii membrilor succesivi ai unei progresii geometrice formează o progresie aritmetică.

1412. Funcţiile sunt diferite unele de altele

la = jurnalul 3 X 2 și la = 2 log 3 X

Construiți grafice ale acestor funcții.

1413. Găsiți o eroare în următoarele transformări:

log 2 1 / 3 = log 2 1 / 3

2log 2 1 / 3 > log 2 1 / 3 ;

log 2 (1 / 3) 2 > log 2 1 / 3

(1 / 3) 2 > 1 / 3 ;

Logaritmul unui număr pozitiv b la baza a (a>0, a nu este egal cu 1) este un număr c astfel încât a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Rețineți că logaritmul unui număr nepozitiv nu este definit. De asemenea, baza logaritmului trebuie să fie un număr pozitiv, nu egal cu 1. De exemplu, dacă pătratăm -2, obținem numărul 4, dar asta nu înseamnă că baza -2 logaritmului lui 4 este 2.

Identitatea logaritmică de bază

a log a b = b (a > 0, a ≠ 1) (2)

Este important ca domeniile de definire ale părților din dreapta și din stânga acestei formule să fie diferite. Partea stângă este definită numai pentru b>0, a>0 și a ≠ 1. Partea dreaptă este definită pentru orice b și nu depinde deloc de a. Astfel, aplicarea „identității” logaritmice de bază în rezolvarea ecuațiilor și inegalităților poate duce la o modificare a DPV.

Două consecințe evidente ale definiției logaritmului

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Într-adevăr, când ridicăm numărul a la prima putere, obținem același număr, iar când îl ridicăm la puterea zero, obținem unul.

Logaritmul produsului și logaritmul coeficientului

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Aș dori să îi avertizez pe școlari împotriva folosirii necugetate a acestor formule atunci când rezolvă ecuații și inegalități logaritmice. Când sunt folosite „de la stânga la dreapta”, ODZ se îngustează, iar când se trece de la suma sau diferența de logaritmi la logaritmul produsului sau al coeficientului, ODZ se extinde.

Într-adevăr, expresia log a (f (x) g (x)) este definită în două cazuri: când ambele funcții sunt strict pozitive sau când f(x) și g(x) sunt ambele mai mici decât zero.

Transformând această expresie în suma log a f (x) + log a g (x) , suntem forțați să ne restrângem doar la cazul în care f(x)>0 și g(x)>0. Există o restrângere a intervalului de valori admisibile, iar acest lucru este categoric inacceptabil, deoarece poate duce la pierderea soluțiilor. O problemă similară există pentru formula (6).

Gradul poate fi scos din semnul logaritmului

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Și din nou aș dori să fac apel la acuratețe. Luați în considerare următorul exemplu:

Log a (f (x) 2 = 2 log a f (x)

Partea stângă a egalității este în mod evident definită pentru toate valorile lui f(x), cu excepția zero. Partea dreaptă este doar pentru f(x)>0! Luând puterea din logaritm, restrângem din nou ODZ. Procedura inversă duce la o extindere a intervalului de valori admisibile. Toate aceste observații se aplică nu numai puterii lui 2, ci și oricărei puteri par.

Formula pentru mutarea la o nouă bază

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Acel caz rar în care ODZ nu se schimbă în timpul conversiei. Dacă ați ales cu înțelepciune baza c (pozitivă și nu egală cu 1), formula de schimbare la o bază nouă este perfect sigură.

Dacă alegem numărul b ca bază nouă c, obținem un caz particular important de formula (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Câteva exemple simple cu logaritmi

Exemplul 1 Calculați: lg2 + lg50.
Soluţie. lg2 + lg50 = lg100 = 2. Am folosit formula pentru suma logaritmilor (5) și definiția logaritmului zecimal.


Exemplul 2 Calculați: lg125/lg5.
Soluţie. lg125/lg5 = log 5 125 = 3. Am folosit noua formulă de tranziție de bază (8).

Tabel de formule legate de logaritmi

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Ce este un logaritm?

Atenţie!
Există suplimentare
material din Secțiunea Specială 555.
Pentru cei care puternic „nu foarte...”
Și pentru cei care „foarte mult...”)

Ce este un logaritm? Cum se rezolvă logaritmii? Aceste întrebări îi încurcă pe mulți absolvenți. În mod tradițional, subiectul logaritmilor este considerat complex, de neînțeles și înfricoșător. Mai ales - ecuații cu logaritmi.

Acest lucru nu este absolut adevărat. Absolut! Nu crezi? Bun. Acum, timp de aproximativ 10 - 20 de minute:

1. Înțelegeți ce este un logaritm.

2. Învață să rezolvi o întreagă clasă de ecuații exponențiale. Chiar dacă nu ai auzit de ei.

3. Învață să calculezi logaritmi simpli.

Mai mult, pentru aceasta va trebui doar să cunoașteți tabla înmulțirii și cum se ridică un număr la o putere ...

Simt că te îndoiești... Ei bine, ține timpul! Merge!

Mai întâi, rezolvă următoarea ecuație în minte:

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Învățarea - cu interes!)

vă puteți familiariza cu funcțiile și derivatele.

proprietăți de bază.

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

aceleași temeiuri

log6 4 + log6 9.

Acum să complicăm puțin sarcina.

Exemple de rezolvare a logaritmilor

Ce se întâmplă dacă există un grad în baza sau argumentul logaritmului? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: a > 0, a ≠ 1, x >

O sarcină. Aflați valoarea expresiei:

Trecerea la o nouă fundație

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

O sarcină. Aflați valoarea expresiei:

Vezi si:


Proprietățile de bază ale logaritmului

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este 2,7 și de două ori anul nașterii lui Lev Tolstoi.

Proprietățile de bază ale logaritmilor

Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.


Exemple de logaritmi

Luați logaritmul expresiilor

Exemplul 1
A). x=10ac^2 (a>0, c>0).

După proprietățile 3,5 calculăm

2.

3.

4. Unde .



Exemplul 2 Găsiți x dacă


Exemplul 3. Să fie dată valoarea logaritmilor

Calculați log(x) dacă




Proprietățile de bază ale logaritmilor

Logaritmii, ca orice număr, pot fi adunați, scăzuți și convertiți în toate modurile posibile. Dar, deoarece logaritmii nu sunt numere obișnuite, există reguli aici, care sunt numite proprietăți de bază.

Aceste reguli trebuie cunoscute - nicio problemă logaritmică serioasă nu poate fi rezolvată fără ele. În plus, sunt foarte puține dintre ele - totul poate fi învățat într-o singură zi. Deci sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceeași bază: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este - aceleași temeiuri. Dacă bazele sunt diferite, aceste reguli nu funcționează!

Aceste formule vor ajuta la calcularea expresiei logaritmice chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Deoarece bazele logaritmilor sunt aceleași, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

O sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

O sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou, bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt considerați separat. Dar după transformări apar numere destul de normale. Multe teste se bazează pe acest fapt. Da, control - expresii similare cu toată seriozitatea (uneori - practic fără modificări) sunt oferite la examen.

Eliminarea exponentului din logaritm

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers, adică. puteți introduce numerele dinaintea semnului logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

O sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument conform primei formule:
log7 496 = 6 log7 49 = 6 2 = 12

O sarcină. Aflați valoarea expresiei:

Rețineți că numitorul este un logaritm a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu trebuie clarificat. Unde s-au dus logaritmii? Până în ultimul moment, lucrăm doar cu numitorul.

Formule de logaritmi. Logaritmii sunt exemple de soluții.

Ei au prezentat baza și argumentul logaritmului aflat acolo sub formă de grade și au scos indicatorii - au obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul au același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor de aritmetică, cele patru pot fi transferate la numărător, ceea ce a fost făcut. Rezultatul este răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă bazele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă bază vin în ajutor. Le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă punem c = x, obținem:

Din a doua formulă rezultă că este posibil să se schimbe baza și argumentul logaritmului, dar în acest caz întreaga expresie este „întoarsă”, i.e. logaritmul este la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există sarcini care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să luăm în considerare câteva dintre acestea:

O sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi sunt exponenți exacti. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să inversăm al doilea logaritm:

Deoarece produsul nu se schimbă din permutarea factorilor, am înmulțit cu calm patru și doi, apoi am dat seama de logaritmi.

O sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să-l notăm și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, formulele ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, pentru că este doar valoarea logaritmului.

A doua formulă este de fapt o definiție parafrazată. Se numeste asa:

Într-adevăr, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: acesta este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni „atârnă” de el.

La fel ca noile formule de conversie de bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

O sarcină. Aflați valoarea expresiei:

Rețineți că log25 64 = log5 8 - tocmai a scos pătratul de la bază și argumentul logaritmului. Având în vedere regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu cunoaște, aceasta a fost o sarcină reală din cadrul examenului unificat de stat 🙂

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care sunt greu de numit proprietăți - mai degrabă, acestea sunt consecințe din definiția logaritmului. Se găsesc constant în probleme și, în mod surprinzător, creează probleme chiar și elevilor „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a din acea bază în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul este unul, logaritmul este zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat sheet la începutul lecției, imprimați-o și rezolvați problemele.

Vezi si:

Logaritmul numărului b la baza a denotă expresia. A calcula logaritmul înseamnă a găsi o astfel de putere x () la care egalitatea este adevărată

Proprietățile de bază ale logaritmului

Proprietățile de mai sus trebuie cunoscute, deoarece, pe baza lor, aproape toate problemele și exemplele sunt rezolvate pe baza logaritmilor. Proprietățile exotice rămase pot fi derivate prin manipulări matematice cu aceste formule

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

La calcularea formulelor pentru suma și diferența de logaritmi (3.4) sunt întâlnite destul de des. Restul sunt oarecum complexe, dar într-o serie de sarcini sunt indispensabile pentru simplificarea expresiilor complexe și calcularea valorilor acestora.

Cazuri comune de logaritmi

Unii dintre logaritmii obișnuiți sunt cei în care baza este chiar zece, exponențială sau deuce.
Logaritmul de bază zece este de obicei numit logaritm de bază zece și este simplu notat lg(x).

Din înregistrare se poate observa că elementele de bază nu sunt scrise în înregistrare. De exemplu

Logaritmul natural este logaritmul a cărui bază este exponentul (notat ln(x)).

Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este 2,7 și de două ori anul nașterii lui Lev Tolstoi. Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.

Și un alt logaritm important de bază doi este

Derivata logaritmului funcției este egală cu una împărțită la variabilă

Logaritmul integral sau antiderivat este determinat de dependență

Materialul de mai sus este suficient pentru a rezolva o clasă largă de probleme legate de logaritmi și logaritmi. Pentru a asimila materialul, voi da doar câteva exemple comune din programa școlară și universități.

Exemple de logaritmi

Luați logaritmul expresiilor

Exemplul 1
A). x=10ac^2 (a>0, c>0).

După proprietățile 3,5 calculăm

2.
Prin proprietatea de diferență a logaritmilor, avem

3.
Folosind proprietățile 3.5 găsim

4. Unde .

O expresie aparent complexă folosind o serie de reguli este simplificată la forma

Găsirea valorilor logaritmilor

Exemplul 2 Găsiți x dacă

Soluţie. Pentru calcul, aplicăm proprietățile 5 și 13 până la ultimul termen

Înlocuiește în evidență și plânge

Deoarece bazele sunt egale, echivalăm expresiile

Logaritmi. Primul nivel.

Să fie dată valoarea logaritmilor

Calculați log(x) dacă

Soluție: Luați logaritmul variabilei pentru a scrie logaritmul prin suma termenilor


Acesta este doar începutul cunoașterii logaritmilor și proprietăților lor. Exersați calculele, îmbogățiți-vă abilitățile practice - veți avea nevoie în curând de cunoștințele dobândite pentru a rezolva ecuații logaritmice. După ce am studiat metodele de bază pentru rezolvarea unor astfel de ecuații, vă vom extinde cunoștințele pentru un alt subiect la fel de important - inegalitățile logaritmice ...

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice număr, pot fi adunați, scăzuți și convertiți în toate modurile posibile. Dar, deoarece logaritmii nu sunt numere obișnuite, există reguli aici, care sunt numite proprietăți de bază.

Aceste reguli trebuie cunoscute - nicio problemă logaritmică serioasă nu poate fi rezolvată fără ele. În plus, sunt foarte puține dintre ele - totul poate fi învățat într-o singură zi. Deci sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceeași bază: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este - aceleași temeiuri. Dacă bazele sunt diferite, aceste reguli nu funcționează!

Aceste formule vor ajuta la calcularea expresiei logaritmice chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

O sarcină. Aflați valoarea expresiei: log6 4 + log6 9.

Deoarece bazele logaritmilor sunt aceleași, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

O sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

O sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou, bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt considerați separat. Dar după transformări apar numere destul de normale. Multe teste se bazează pe acest fapt. Da, control - expresii similare cu toată seriozitatea (uneori - practic fără modificări) sunt oferite la examen.

Eliminarea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă există un grad în baza sau argumentul logaritmului? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers, adică. puteți introduce numerele dinaintea semnului logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

O sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument conform primei formule:
log7 496 = 6 log7 49 = 6 2 = 12

O sarcină. Aflați valoarea expresiei:

Rețineți că numitorul este un logaritm a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu trebuie clarificat. Unde s-au dus logaritmii? Până în ultimul moment, lucrăm doar cu numitorul. Ei au prezentat baza și argumentul logaritmului aflat acolo sub formă de grade și au scos indicatorii - au obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul au același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor de aritmetică, cele patru pot fi transferate la numărător, ceea ce a fost făcut. Rezultatul este răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă bazele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă bază vin în ajutor. Le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă punem c = x, obținem:

Din a doua formulă rezultă că este posibil să se schimbe baza și argumentul logaritmului, dar în acest caz întreaga expresie este „întoarsă”, i.e. logaritmul este la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există sarcini care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să luăm în considerare câteva dintre acestea:

O sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi sunt exponenți exacti. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să inversăm al doilea logaritm:

Deoarece produsul nu se schimbă din permutarea factorilor, am înmulțit cu calm patru și doi, apoi am dat seama de logaritmi.

O sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să-l notăm și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, formulele ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, pentru că este doar valoarea logaritmului.

A doua formulă este de fapt o definiție parafrazată. Se numeste asa:

Într-adevăr, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: acesta este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni „atârnă” de el.

La fel ca noile formule de conversie de bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

O sarcină. Aflați valoarea expresiei:

Rețineți că log25 64 = log5 8 - tocmai a scos pătratul de la bază și argumentul logaritmului. Având în vedere regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu cunoaște, aceasta a fost o sarcină reală din cadrul examenului unificat de stat 🙂

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care sunt greu de numit proprietăți - mai degrabă, acestea sunt consecințe din definiția logaritmului. Se găsesc constant în probleme și, în mod surprinzător, creează probleme chiar și elevilor „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a din acea bază în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul este unul, logaritmul este zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat sheet la începutul lecției, imprimați-o și rezolvați problemele.