Как называется делимое к делителю. Деление нацело или без остатка

Мы можем представить, как числа самого с собой столько раз, на сколько нам надо его умножить.

Деление можно представить, как многократное . Давайте рассмотрим этот вопрос поподробнее.

Деление чисел

Рассмотрим картинку.

На картинке мы видим 12 яблок на блюде. Яблоки разделены на четыре группы по 3 яблока. Записать это можно так:

12 ÷ 4 = 3

Число, которое мы делим, называется делимым , число на которое мы делим, называется делителем , а результат деления называется частным . В нашем примере делимое 12 , делитель 4 , а частное 3 .

Деление можно проверить умножением:

3 × 4 = 12

А также деление можно проверить, многократным вычитанием:

12 – 3 – 3 – 3 – 3 = 0

Мы видим, что если из 12 вычесть 4 раза 3 , то получится ноль . Значит, 12 на 4 делится без остатка .

Рассмотрим другой пример, разделим 13 на 4 .

Из рисунка видно, что при делении 13 яблок на 4 получился 3 и остаток – одно яблоко .

13 ÷ 4 = 3 (ост.1)

Проверим вычитанием:

13 – 3 – 3 – 3 – 3 = 1

Мы видим, что если из 13 четыре раза вычесть число 3, то останется 1. Наш пример называется делением с остатком. Здесь 13 – делимое , 4 – делитель , а 3 – неполное частное , 1 – остаток от деления .

Теперь проверим умножением:

3 × 4 + 1 = 13

Основные правила деления

1. НА НУЛЬ ДЕЛИТЬ НЕЛЬЗЯ!

2. Если делимое и делитель равны, то частное будет равно 1:

а ÷ а = 1

То есть, если 5 груш надо разделить между пятью мальчиками, то каждому достанется по одной груше.

8 ÷ 8 = 1

12 ÷ 12 = 1

3. Если делимое равно нулю, и частное будет равно нулю:

0 ÷ а = 0

То есть, если ничего разделить на что угодно, то и получится ничего.
Пример:

0 ÷ 9 = 0

0 ÷ 34 = 0

4. Если делитель равен 1, то частное равно делимому:

а ÷ 1 = а

То есть, если у мальчика есть пять груш и он один, то ему достанутся все пять груш.

6 ÷ 1 = 6

81 ÷ 1 = 81

В следующих статьях мы рассмотрим деление больших чисел, а также будет представлено несколько заданий для закрепления материала.

Если вы хотите получать анонсы наших статей подпишитесь на рассылку “Новости сайта”. Для этого пройдите, пожалуйста по .

Определить, сколько раз нужно взять слагаемым меньшее число 2, чтобы получить большее число 6, значит определить, сколько раз число 2 содержится в 6, или сколько раз число 6 содержит 2.

Число 2 содержится в 6 три раза, ибо, чтобы получить 6, нужно взять сумму трех равных слагаемых:

Найти, сколько раз число 2 содержится в 6, значит разделить 6 на 2.

Определение . Деление есть такое действие, в котором по двум данным числам определяют, сколько раз одно число содержится в другом.

Данные числа в делении называются делимым и делителем , искомое называется частным .

Делимое есть то число, которое содержит другое.

Делитель есть то число, которое содержится в другом.

Частное показывает, сколько раз делитель содержится в делимом.

В данном примере делимое есть 6, делитель 2, частное 3.

Разделить 6 на 2 значит также разбить 6 на 2 равных слагаемых и отыскать их величину. Число 6 представится при помощи двух равных слагаемых в виде:

Каждое из равных слагаемых называется частью делимого.

Посредством деления целых чисел также узнается, как велико каждое слагаемое, если делимое разобьется на столько равных слагаемых, сколько в делителе единиц.

В этом случае делимое есть то число, которое делится или разбивается на равные части. Делитель показывает, на сколько равных частей делится делимое. Частное показывает, сколько приходится на каждую часть .

Способы деления

Имея два числа 12 и 4, мы можем разделить 12 на 4 различными способами.

    С помощью сложения мы можем определить, сколько раз нужно взять 4 слагаемым для того, чтобы получить в сумме 12. Так, взяв 4 слагаемым 3 раза, находим в сумме:

    следовательно, 4 содержится в 12 три раза.

    С помощью вычитания определяем, сколько раз можно из большего числа 12 вычесть меньшее 4. При этом мы вычитаем делитель до тех пор, пока это возможно. Так, вычитая последовательно из 12 по 4, имеем:

    12 - 4 = 8
    8 - 4 = 4
    4 - 4 = 0

    Отсюда находим, что можно вычесть 4 из 12 ровно три раза.

    Деление есть сокращенное вычитание равных вычитаемых.

    Наконец, посредством умножения , мы можем определить, на какое число нужно помножить 4, чтобы получить 12. Умножая последовательно 4 на 1, 2, 3, находим, что для того, чтобы получить 12, нужно 4 помножить на 3.

Различные случаи при делении

При делении целых чисел бывают два случая:

    Разделяя 12 на 4, мы находим в частном 3. Делитель 4 содержится ровно 3 раза в делимом 12. Вычитая последовательно из 12 по 4, мы могли вычесть число 4 ровно три раза и не получили никакого остатка. В этом случае говорят, что деление совершилось нацело или без остатка . Умножив частное 3 на делитель 4, получаем делимое 12.

    Разделяя 26 на 8, мы при последовательном вычитании получаем:

26 - 8 = 18
18 - 8 = 10
10 - 8 = 2

Остаток всегда меньше делителя . В этом случае говорят, что деление не совершается нацело или деление совершается с остатком .

Разделяя 26 на 8, мы могли вычесть делитель 8 три раза, и у нас получился остаток 2. Число 3 мы будем называть целым частным. Целое частное есть не полное частное, ибо оно не выражает вполне, сколько раз меньшее число содержится в большем. Число 8 не содержится в 26 ровно 3 раза. В этом случае говорят: число 8 содержится в 26 три раза и еще получается остаток. Умножив делитель 8 на целое частное 3, мы не получим делимого 26, а число 24 - меньшее делимого. Чтобы получить делимое, нужно к этому произведению прибавить еще остаток 2.

Целое частное иногда называют просто частным.

Итак, при делении мы имеем два случая:

    Деление нацело или без остатка. Когда делитель содержится в делимом ровное число раз, тогда деление совершается нацело или без остатка. Частное выражает, сколько раз делитель содержится в делимом. Делимое равно делителю, умноженному на частное. В этом случае деление есть действие в котором по данному произведению и одному из производителей находится другой производитель.

    Если дается произведение и множимое, отыскивают множитель, то есть число равных слагаемых; если дается произведение и множитель, отыскивают множимое, то есть величину равных слагаемых.

    Деление с остатком. Когда делитель не содержится в делимом ровное число раз, тогда деление не совершается нацело, или деление совершается с остатком. Остаток всегда меньше делителя и делимое равно произведению делителя на целое частное, сложенное с остатком.

При делении целых чисел делимое всегда уменьшается во столько раз, сколько в делителе единиц, поэтому деление есть действие, обратное умножению .

Знак деления

В нашем примере деление изображается письменно:

Знак деления прешел к нам от древних математиков.

Основные приемы при делении

Делить значит последовательно вычитать делитель из делимого, пока это возможно. Этот способ деления можно считать общим. Прием этот, однако, приводит к длинным вычислениям, если делимое очень велико, поэтому существуют различные сокращенные приемы деления.

Чтобы определить частное в том случае, когда оно выражается одной цифрой, прибегают к таблице умножения.

Чтобы разделить 27 на 3 мы пишем

Для частного выбираем такое число, чтобы, умножив делитель на частное, получить делимое. Чтобы найти цифру частного, мы пробуем умножать делитель на разные числа или, как обыкновенно говорят, задаемся разными числами, и сравниваем произвдение делителя на частное с делимым.

Разделяя 27 на 3 и перебирая в уме все произведения 3 на разные числа, содержащиеся в таблице умножения, находим, что произведение 3 × 9 составляет 27 и потому пишем в частном 9. Вычитая произведение делителя на частное из делимого, получаем в остатке нуль.

Само вычисление выражают письменно:

Деление совершилось нацело.

Иногда делитель не содержится в делимом ровное число раз; так, разделяя 27 на 4, мы не находим в таблице целого числа, которое, будучи помножено на 4, дало бы 27; тогда деление не совершается нацело.

Отыскивая целое частно, мы имеем при этом три случая:

Правило определения частного:

    Если при делении остаток более или равен делителю, цифра частного мала и ее нужно увеличить.

    Если произведение делителя на частное больше делимого, цифра частно велика и ее нужно уменьшить.

    Если остаток меньше делителя, цифра частного верна.

Это правило показывает, что при делении нужно для частного выбирать такое число, чтобы остаток был меньше делителя. Задаваться так, значит задаваться наибольшим целым числом.

В данном примере 27 не делится нацело на 4, а получается остаток 3; число 6 есть целое частное и

27 = 4 × 6 + 3 = 24 + 3

Делимое 27 равно произведению делителя 4 на целое частное 6, сложенному с остатком 3.

Деление многозначного числа на однозначное

Частное от деления многозначного числа на однозначное иногда выражается числом, состоящим также из нескольких цифр. В этом случае деление распадается на несколько отдельных действий.

Разделим 702 на 3. Частное содержит три цифры. Оно больше 100 и меньше 1000, ибо делимое больше 300 (3 × 100) и меньше 3000 (3 × 1000). Включая три цифры, частное содержит сотни, десятки и единицы. В данном случае разбиваем деление на три отдельных действия, то есть отыскиваем последовательно сотни, потом десятки и, наконец, единицы частного. Самое действие начинаем с сотен.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, деление изобразится письменно:

словесно:

    Отделяем 7 - одну цифру делимого; 3 в 7 содержится 2 раза, - пишем в частном 2; умножая на нее делителя 3 и вычитая произведение 6 из 7, получаем первый остаток 1.

    Сносим 3 - следующую цифру делимого; 3 в 13 содержится 4 раза, 3-жды 4 составляет 12; вычитая 12 из 13, получаем в остатке 1.

    Сносим 2 следующую цифру делимого; 3 в 12 содержится 4 раза, пишем в частном 4; 3-жды 4 составляет 12. Вычитая 12, получаем в остатке нуль и в частном 244.

Пример . Разделить 2417 на 3. Ход вычисления выразится письменно:

словесно:

    Отделив одну цифру 2, мы видим, что 3 в 2 не содержится целое число раз, поэтому нужно отделить две цифры; 3 в 24 содержится 8 раз, - пишем 8 в частном. Умножив 8 на делителя 3 и вычитая произведение 24, получаем в остатке нуль.

    Сносим следующую цифру 1; 3 в 1 не содержится, - пишем в частном нуль.

    Сносим следующую цифру 7; 3 в 17 содержится 5 раз, - пишем в частном 5; 3-жды 5 составляет 15; вычитая 15 из 17, получим в остатке 2 и целое частное 805.

Деление многозначного числа на многозначное

При делении многозначного числа на многозначное поступаем точно так же, как поступали при делении многозначного числа на однозначное.

Разделяя число 37207 на 47, мы прежде всего определяем, из скольких цифр состоит частное. Частное меньше 1000 и больше 100, ибо 37207 меньше 47000 (47 × 1000) и больше 4700 (47 × 100), следовательно, частное состоит из сотен, десятков и единиц. Начиная с сотен, мы определяем каждую цифру частного отдельно:

Итак, после деления имеем в целом частном 791 и в остатке 30.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, ход вычисления изобразится письменно:

словесно:

    Отделяем в делимом от левой руки к правой столько цифр, чтобы делитель мог содержаться в отделенной части делимого. В данном случае отделяем 3 цифры, 47 содержится в 372 семь раз; умножаем делитель 47 на 7, цифру частного, и, вычитая произведение 47 × 7 = 329 из 372, получаем в остатке 43.

    К остатку 43 сносим 0, следующую цифру делимого; 47 содержится в 430 девять раз, пишем в частном 9. Умножая 47 на 9 и вычитая произведение 423 из 430, получаем остаток 7.

    Сносим к остатку следующую цифру частного 7; 47 содержится в 77 один раз. Пишем единицу в частном.

Умножая ею делитель и вычитая 47 из 77, получаем в остатке 30 и в целом частно 791.

Пример . Разделить 671064 на 335. Деление изобразится письменно:

словесно:

    Отделяем 671 в делимом; 335 содержится в 671 два раза, пишем в частном 2. Умножая 335 на 2 и вычитая произведение 670, получим в остатке 1.

    Сносим 0, следующую цифру делимого; 335 не содержится в 10, - пишем для второй цифры частного 0.

    Сносим 6, следующую цифру делимого; 335 не содержится в 106, - пишем для третьей цифры частного 0.

    Сносим следующую цифру делимого 4; 335 содержится в 1064 три раза, - пишем в частном 3. Умножая делитель на 3 и вычитая произведение, получим в остатке 59 и в целом частном 2003.

Из предложенных примеров выводим следующее правило:

    Чтобы разделить многозначное число на однозначное или многозначное, нужно отделить в делимом от левой руки к правой столько цифр, сколько их находится в делителе. Если делитель не содержится, отделяют в делимом одной цифрой больше. Разделив отделенное число на делитель, получают первую цифру частного, умножают ей делитель и полученное произведение вычитают из отделенной части делимого.

    К остатку сносят следующую цифру делимого и снова задаются.

    Если при этом получается число меньше делителя, пишут в частном нуль, сносят следующую цифру и снова задаются.

    Получив новую цифру частного, поступают с нею так же, как и с первой цифрой.

    Деление продолжают до тех пор, пока не снесут всех цифр делимого и не получат таким образом всех цифр частного.

Всякий раз, когда приходится делить, нужно задаваться в частном такою цифрой, чтобы остаток был меньше делителя. Чтобы легче найти такую цифру частного, при делении многозначного числа на многозначное обращают внимание на одну или две старшие цифры делителя и задаются только ими в соответствующей части делимого. При этом в делимом и в делителе отделяют от правой руки к левой одинаковое число цифр. Так, определяя, сколько раз содержится 6373 в 27302, мы задаемся четырьмя, ибо 6 в 27 содержится 4 раза.

Полученная при этом цифра частного будет или равна или больше действительной. В последнем случае ее нужно уменьшить.

Иногда при делении не подписывают произведение цифры частного на делитель, а, подразумевая его в уме, подписывают один остаток. Сокращая таким образом деление, изображают его письменно:

словесно:

    8 в 43 содержится 5 раз; 5-ю 8 - сорок. Вычитая 40 из 43, получаем в остатке 3.

    Сносим 2; 8 в 32 содержится 4 раза; 4-жды 8 составляет 32. Вычитая 32, получим в остатке нуль.

    Сносим 8; 8 в 8-ми содержится 1 раз, 1-жды 8 составляет 8. Вычитая 8, получаем в остатке нуль и в частном 541.

Деление на 10, 100, 1000 и т. д.

Разделяя число на 10, мы десятки делимого обращаем в единицы, сотни в десятки, тысячи в сотни, вообще понижаем на единицу все порядки делимого. Этого мы достигаем, отделяя запятою цифру единиц. Число до запятой будет выражать частное, а после запятой - остаток.

Разделяя на 100, мы понижаем все порядки делимого на две единицы, для чего отделяем запятою от правой руки к левой две цифры и т. д. Отсюда правило:

Чтобы разделить какое-нибудь число на единицу с нулями, нужно от правой руки к левой отделить столько цифр, сколько нулей в делителе; тогда число до запятой выражает целое частное, а после запятой - остаток.

Пример . Разделяя 30207 на 100. Отделяя справа 2 цифры, находим 302,07. Целое частное будет 302, а остаток 7.

Деление на число, оканчивающееся нулями

Разделяя число 27057 на 400 и поступая при этом по общему правилу

мы замечаем, что две последние цифры делимого не оказывают никакого влияния на частное. Они являются в остатке без всякой перемены. Откуда правило:

Если делитель оканчивается нулями, отделяют в делимом запятою от правой руки к левой столько цифр, сколько зачеркнуто нулей в делителе, и делят часть делимого до запятой на значащие цифры делителя. Отделенные цифры делимого приписывают к остатку.

В данном примере деление представится в виде

Если делимое и делитель оканчиваются нулями, их зачеркивают поровну в делимом, делителе и производят деление; зачеркнутые нули делимого приписывают к остатку.

Чтобы разделить 27300 на 4100, делим 273 на 41:

Частное будет 6, а остаток 2700.

Число цифр частного. При делении отделяют в делимом от левой руки к правой столько цифр, сколько их находится во делителе, или одною больше. Каждой оставшейся цифре делимого соответствует особая цифра частного, следовательно, число цифр частного будет равно или разности числа цифр делимого и делителя или на единицу больше этой разности .

Зависимость между данными и искомыми деления

При делении целых чисел мы имеем два случая: а) деление нацело, или без остатка , и б) деление с остатком .

Каждому из этих случаев соответствует особая зависимость между данными и искомыми деления.

Деление нацело или без остатка

При делении нацело

    Частное равно делимому, разделенному на делитель .

    Разделяя 42 на 7, имеем в частном 6; следовательно,

    42 ÷ 7 = 6, или 6 = 42 ÷ 7

    Делимое равно делителю, умноженному на частное .

    Так как делитель и частное - два множителя, произведение которых равно делимому, то делитель равен делимому, разделенному на частное .

Деление с остатком

При делении с остатком

    Делимое равно произведению делителя на целое частное, сложенное с остатком .

    При делении 47 на 6, имеем в целом частном 7, в остатке 5.

    Делимое 47 = 6 × 7 + 5.

    Делимое без остатка делится нацело на делитель и на целое частное .

Разность делимого без остатка равна произведению делителя на целое частное, то есть эта разность при делении на делитель дает целое частное, при делении на целое частное дает делитель.

Данный урок посвящен изучению темы «Название компонентов и результата деления». Мы сможем узнать, как называются числа при делении. Также мы поговорим о том, как правильно читать деление и какие названия имеют компоненты и результат деления.

Посмотрите на данное выражение.

В этом выражении использован знак деления. Давайте его прочитаем.

21: 7 = 3 (21 разделить на 7, получим 3).

При делении, как и при другом математическом действии, каждое число имеет свое название.

Число, которое делят, называется делимое.

Число, на которое делят, называется делителем.

Результат деления называется частное. (Рис. 1)

Рис. 1. Названия чисел при делении

Давайте прочитаем это же выражение с использованием новых терминов.

21: 7 = 3 (делимое - 21, делитель - 7, частное равно 3).

Это же равенство можно записать по-другому. Частное 21 и 7 равно 3.

Давайте найдем частное, используя рисунки.

Выясним, сколько раз по 3 находится в числе 9.

Давайте число 9 для удобства представим в виде рисунка. (Рис. 2)

Рис. 2. Число 9

Сколько раз по 3 клубнички содержится в числе 9. Разделим клубнички по 3. (Рис. 3).

Рис. 3. Разделим клубнички по 3

Мы видим, что в числе 9 по 3 содержится 3 раза. Запишем это в виде выражения.

Прочитайте наше равенство.

9 разделить на 3, получится 3; делимое - 9, делитель - 3, частное - 3; частное 9 и 3 равно 3.

Давайте узнаем, сколько раз по 4 содержится в числе 8. Для того чтобы было удобнее, мы представим число 8 в виде рисунка. (Рис. 4).

Рис. 4. Число 8

Сколько раз по 4 содержится в числе 8?

Разделим число 8 на группы по 4. (Рис. 5)

Рис. 5. Разделим число 8 на группы по 4

Запишем с помощью выражения то, что мы выполнили.

Прочитаем наше равенство.

Делимое - 8, делитель - 4, частное - 2; частное 8 и 4 равно 2.

Давайте потренируемся записывать равенство, используя новые термины.

Частное 10 и 2 равно 5 .

Мы помним, что частное - это результат деления. Поэтому равенство запишем так:

Делимое - 12, делитель - 2, частное равно 6 .

Делимое, делитель и частное - это компоненты деления. Поэтому равенство будет выглядеть так:

Теперь попробуйте записать самостоятельно равенства:

Частное 15 и 3 равно 5 .

Делимое - 20, делитель - 5, частное - 4.

Правильный ответ:

На этом уроке мы узнали, как называются компоненты деления и результат деления. Так же мы научились считать равенства разными способами.

Список литературы

  1. Александрова Э.И. Математика. 2 класс. - М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. - М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. - М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. Nsportal.ru ().
  3. Irina-se.com ().

Домашнее задание

Составьте выражения и найдите их результаты:

а) делимое - 24, делитель - 6 б) делимое - 10, делитель - 2 в) делимое - 18, делитель - 6.

Решите выражения:

а) 14: 7 б) 28: 4 в) 30: 6

Дополните равенства пропущенными числами:

а) 16: * = 4 б) 21: 3 = * в) 25: * = 5

Деление - это арифметическое действие обратное умножению, посредством которого узнаётся, сколько раз одно число содержится в другом.

Число, которое делят, называют делимым , число, на которое делят, называют делителем , результат деления называют частным .

Подобно тому, как умножение заменяет неоднократно повторяемое сложение, деление заменяет неоднократно повторяемое вычитание. Например, число 10 разделить на 2 - значит узнать, сколько раз число 2 содержится в 10:

10 - 2 - 2 - 2 - 2 - 2 = 0

Повторяя операцию вычитания 2 из 10, мы находим, что 2 содержится в числе 10 пять раз. Это легко проверить сложив пять раз 2 или умножив 2 на 5:

10 = 2 + 2 + 2 + 2 + 2 = 2 · 5

Для записи деления используется знак: (двоеточие), ÷ (обелюс) или / (косая черта). Он ставится между делимым и делителем, при этом делимое записывается слева от знака деления, а делитель - справа. Например, запись 10: 5 означает, что число 10 делится на число 5. Справа от записи деления ставят знак = (равно), после которого записывают результат деления. Таким образом, полная запись деления выглядит так:

Эта запись читается так: частное десяти и пяти равняется двум или десять разделить на пять равно два.

Также деление можно рассматривать как действие, посредством которого одно число делится на столько равных частей, сколько единиц содержится в другом числе (на которое делится). Таким образом определяется сколько единиц содержится в каждой отдельной части.

Например, у нас есть 10 яблок, разделив 10 на 2 мы получим две равные части, каждая из которых содержит 5 яблок:

Проверка деления

Для проверки деления можно частное умножить на делитель (или наоборот). Если в результате умножения получится число, равное делимому, то деление выполнено верно.

Рассмотрим выражение:

где 12 - это делимое, 4 - это делитель, а 3 - частное. Теперь выполним проверку деления, умножив частное на делитель:

или делитель на частное:

Деление также можно проверить делением, для этого надо делимое разделить на частное. Если в результате деления получится число, равное делителю, то деление выполнено правильно:

Основное свойство частного

У частного есть одно важное свойство:

Частное не изменится, если делимое и делитель умножить или разделить на одно и то же натуральное число.

Например,

32: 4 = 8, (32 · 3) : (4 · 3) = 96: 12 = 8 32: 4 = 8, (32: 2) : (4: 2) = 16: 2 = 8

Деление числа самого на себя и единицу

Для любого натурального числа a верны равенства:

a : 1 = a
a : a = 1

Число 0 в делении

При делении нуля на любое натуральное число получается нуль:

0: a = 0

Делить на нуль нельзя.

Рассмотрим, почему нельзя делить на нуль. Если делимое не нуль, а любое другое число, например 4, то разделить его на нуль значило бы найти такое число, которое после умножения на нуль даёт в результате число 4. Но такого числа нет, потому что любое число после умножения на нуль даёт снова нуль.

Если же делимое тоже равно нулю, то деление возможно, но частным может служить любое число, потому что в этом случае любое число после умножения на делитель (0) даёт нам делимое (т. е. снова 0). Таким образом, деление хоть и возможно, но не приводит к единственному определённому результату.

Деление (математика)

Деле́ние (операция деления) - одно из четырёх простейших арифметических действий, обратное умножению . Деление - это такая операция, в результате которой получается число (частное), которое при умножении на делитель даёт делимое. Существует несколько символов , используемых для обозначения оператора деления.

Рассмотрим, например, такой вопрос:

Сколько раз 3 содержится в 14?

Повторяя операцию вычитания 3 из 14, мы находим, что 3 «входит» в 14 четыре раза, и ещё «остаётся» число 2.

В этом случае число 14 называется делимым , число 3 - делителем , число 4 - (неполным) частным и число 2 - остатком (от деления) .

Результат деления также называют отношением .

Деление натуральных чисел

Обычно на остаток накладываются следующие ограничения (чтобы он был корректно, то есть однозначно, определён):

, ,

где - делимое, - делитель, - частное и - остаток.

Деление целых чисел

Деление произвольных целых чисел несущественно отличается от деления натуральных чисел - достаточно поделить их модули и учесть правило знаков.

Однако деление целых чисел с остатком определяется неоднозначно. В одном случае, (так же как и без остатка) рассматривают сначала модули и в результате остаток приобретает тот же знак, что делитель или делимое (например, с остатком (-1)); в другом случае понятие остатка напрямую обобщается и ограничения заимствуются из натуральных чисел:

.

Деление рациональных чисел

Отличие же заключается в том, что при делении многочленов основной упор делается на степени делимого и делителя, а не на коэффициенты. Поэтому обычно считается, что частное и делитель (а следовательно и остаток) определены с точностью до постоянного множителя.

Деление на ноль

По правилам стандартной арифметики деление на число 0 запрещено.

Другое дело - деление на бесконечно малую функцию или последовательность. Деление конечных функций на бесконечно малые приводит к появлению бесконечно больших, а отношение двух бесконечно малых называется неопределённостью 0/0, которую можно преобразовать (см. раскрытие неопределённостей) с тем, чтобы получить определённый результат.

Как следует из определения операции деления, результатом операции 0:0 может считаться любое действительное число, таким образом, значение операции 0:0 неопределенно и задача деления нуля на нуль имеет бесчисленное множество решений. . Это не соответствует стандартному определению бинарной операции , согласно которому результатом операции с двумя числами может быть только единственное значение.

Операции деления ненулевого числа на ноль не соответствует никакое действительное число.

Результат этой операции считается бесконечно большим и равным бесконечности :
, где
Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным a или приближается к нему, то частное неограниченно увеличивается(по модулю).

Поскольку бесконечность не является действительным числом, то такая операция выходит за пределы алгебры действительных чисел, если бинарная операция в ней определяется как . .

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Деление (математика)" в других словарях:

    Деление c остатком (деление по модулю, нахождение остатка от деления, остаток от деления) арифметическая операция, результатом которой является два целых числа: неполное частное и остаток от деления целого числа на другое целое число.… … Википедия

    Операция деления по модулю в различных языках программирования Язык Оператор Знак результата Делимое Ada mod Частное rem Делимое ASP Mod Не определено C (ISO 1990) % Не определено C (ISO 1999) … Википедия

    В Викисловаре есть статья «деление» Деление: Деление (биология) бесполый способ размножения живых организмов. Деление клетки Деление (математика) математическая операция. Деление с остатком … Википедия

    Функция y = 1/x. Когда x стремится к нулю справа, y стремится к бесконечности. Когда x стремится к нулю слева, y стремится к минус бесконечности … Википедия

    - (начало) «Математика в девяти книгах» (кит. трад. 九章算術 … Википедия

    I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая … Большая советская энциклопедия

    Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия