Môže byť logaritmus menší ako nula? Logaritmus - vlastnosti, vzorce, graf

Ako viete, pri násobení výrazov mocninami sa ich exponenty vždy sčítajú (a b *a c = a b+c). Tento matematický zákon odvodil Archimedes a neskôr, v 8. storočí, vytvoril matematik Virasen tabuľku celočíselných exponentov. Boli to oni, ktorí slúžili na ďalšie objavovanie logaritmov. Príklady využitia tejto funkcie nájdete takmer všade tam, kde si potrebujete zjednodušiť ťažkopádne násobenie jednoduchým sčítaním. Ak strávite 10 minút čítaním tohto článku, vysvetlíme vám, čo sú to logaritmy a ako s nimi pracovať. Jednoduchým a prístupným jazykom.

Definícia v matematike

Logaritmus je vyjadrením nasledujúceho tvaru: log a b=c, teda logaritmus ľubovoľného nezáporného čísla (teda akéhokoľvek kladného) „b“ k základu „a“ sa považuje za mocninu „c“. “, na ktorú musí byť základ „a“ zvýšený, aby sa nakoniec získala hodnota „b“. Analyzujme logaritmus na príkladoch, povedzme, že existuje výraz log 2 8. Ako nájsť odpoveď? Je to veľmi jednoduché, musíte nájsť výkon tak, aby od 2 po požadovaný výkon dostal 8. Po vykonaní niekoľkých výpočtov v hlave dostaneme číslo 3! A to je pravda, pretože 2 ku 3 dáva odpoveď ako 8.

Typy logaritmov

Pre mnohých žiakov a študentov sa táto téma zdá komplikovaná a nepochopiteľná, ale v skutočnosti logaritmy nie sú také strašidelné, hlavnou vecou je pochopiť ich všeobecný význam a zapamätať si ich vlastnosti a niektoré pravidlá. Existujú tri samostatné typy logaritmických výrazov:

  1. Prirodzený logaritmus ln a, kde základom je Eulerovo číslo (e = 2,7).
  2. Desatinné a, kde základ je 10.
  3. Logaritmus ľubovoľného čísla b na základ a>1.

Každá z nich je riešená štandardným spôsobom, vrátane zjednodušenia, redukcie a následnej redukcie na jeden logaritmus pomocou logaritmických viet. Aby ste získali správne hodnoty logaritmov, mali by ste si pamätať ich vlastnosti a postupnosť akcií pri ich riešení.

Pravidlá a určité obmedzenia

V matematike existuje niekoľko pravidiel-obmedzení, ktoré sú akceptované ako axióma, to znamená, že nie sú predmetom diskusie a sú pravdivé. Napríklad nie je možné deliť čísla nulou a je tiež nemožné extrahovať párnu odmocninu záporných čísel. Logaritmy majú tiež svoje pravidlá, podľa ktorých sa ľahko naučíte pracovať aj s dlhými a objemnými logaritmickými výrazmi:

  • Základ „a“ musí byť vždy väčší ako nula a nie rovný 1, inak výraz stratí svoj význam, pretože „1“ a „0“ sa v akomkoľvek stupni vždy rovnajú svojim hodnotám;
  • ak a > 0, potom a b > 0, ukáže sa, že „c“ musí byť tiež väčšie ako nula.

Ako vyriešiť logaritmy?

Úlohou je napríklad nájsť odpoveď na rovnicu 10 x = 100. Je to veľmi jednoduché, treba zvoliť mocninu zvýšením čísla desať, na ktoré sa dostaneme 100. To je samozrejme 10 2 = 100.

Teraz si predstavme tento výraz v logaritmickej forme. Dostaneme log 10 100 = 2. Pri riešení logaritmov sa všetky akcie prakticky zbiehajú, aby našli mocninu, do ktorej je potrebné zadať základ logaritmu, aby sme získali dané číslo.

Ak chcete presne určiť hodnotu neznámeho stupňa, musíte sa naučiť pracovať s tabuľkou stupňov. Vyzerá to takto:

Ako vidíte, niektoré exponenty sa dajú uhádnuť intuitívne, ak máte technické myslenie a znalosti násobilky. Pre väčšie hodnoty však budete potrebovať tabuľku výkonu. Využiť ho môžu aj tí, ktorí o zložitých matematických témach nevedia vôbec nič. Ľavý stĺpec obsahuje čísla (základ a), horný riadok čísel je hodnota mocniny c, na ktorú je číslo a umocnené. Na priesečníku bunky obsahujú číselné hodnoty, ktoré sú odpoveďou (a c = b). Zoberme si napríklad úplne prvú bunku s číslom 10 a odmocnime ju, dostaneme hodnotu 100, ktorá je naznačená na priesečníku našich dvoch buniek. Všetko je také jednoduché a ľahké, že to pochopí aj ten najpravdivejší humanista!

Rovnice a nerovnice

Ukazuje sa, že za určitých podmienok je exponentom logaritmus. Preto akékoľvek matematické numerické výrazy možno zapísať ako logaritmickú rovnosť. Napríklad 3 4 = 81 možno zapísať ako základný 3 logaritmus 81 rovný štyrom (log 3 81 = 4). Pre záporné mocniny sú pravidlá rovnaké: 2 -5 = 1/32 zapíšeme to ako logaritmus, dostaneme log 2 (1/32) = -5. Jednou z najfascinujúcejších častí matematiky je téma „logaritmov“. Na príklady a riešenia rovníc sa pozrieme nižšie, hneď po preštudovaní ich vlastností. Teraz sa pozrime, ako vyzerajú nerovnosti a ako ich odlíšiť od rovníc.

Je uvedený nasledujúci výraz: log 2 (x-1) > 3 - ide o logaritmickú nerovnosť, keďže neznáma hodnota „x“ je pod logaritmickým znamienkom. A tiež vo výraze sa porovnávajú dve veličiny: logaritmus požadovaného čísla so základom dva je väčší ako číslo tri.

Najdôležitejší rozdiel medzi logaritmickými rovnicami a nerovnosťami je v tom, že rovnice s logaritmami (napríklad logaritmus 2 x = √9) zahŕňajú jednu alebo viac konkrétnych číselných hodnôt v odpovedi, zatiaľ čo pri riešení nerovnosti je rozsah prijateľných hodnoty a body sú určené porušovaním tejto funkcie. V dôsledku toho odpoveď nie je jednoduchá množina jednotlivých čísel ako v odpovedi na rovnicu, ale súvislý rad alebo množina čísel.

Základné vety o logaritmoch

Pri riešení primitívnych úloh hľadania hodnôt logaritmu nemusia byť jeho vlastnosti známe. Pokiaľ však ide o logaritmické rovnice alebo nerovnice, v prvom rade je potrebné jasne pochopiť a prakticky aplikovať všetky základné vlastnosti logaritmov. Na príklady rovníc sa pozrieme neskôr, najprv sa pozrime na každú vlastnosť podrobnejšie.

  1. Hlavná identita vyzerá takto: a logaB =B. Platí len vtedy, keď a je väčšie ako 0, nerovná sa jednej a B je väčšie ako nula.
  2. Logaritmus súčinu môže byť vyjadrený v nasledujúcom vzorci: log d (s 1 * s 2) = log d s 1 + log d s 2. V tomto prípade je povinná podmienka: d, s 1 a s 2 > 0; a≠1. Tento logaritmický vzorec môžete dokázať príkladmi a riešením. Nech log a s 1 = f 1 a log a s 2 = f 2, potom a f1 = s 1, a f2 = s 2. Dostaneme, že s 1 * s 2 = a f1 *a f2 = a f1+f2 (vlastnosti stupne ), a potom podľa definície: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, čo bolo potrebné dokázať.
  3. Logaritmus kvocientu vyzerá takto: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Veta vo forme vzorca má tento tvar: log a q b n = n/q log a b.

Tento vzorec sa nazýva „vlastnosť stupňa logaritmu“. Pripomína vlastnosti bežných stupňov a nie je to prekvapujúce, pretože celá matematika je založená na prirodzených postulátoch. Pozrime sa na dôkaz.

Nech log a b = t, ukáže sa a t =b. Ak obe časti zdvihneme na mocninu m: a tn = b n ;

ale keďže a tn = (a q) nt/q = b n, preto log a q b n = (n*t)/t, potom log a q b n = n/q log a b. Veta bola dokázaná.

Príklady problémov a nerovností

Najbežnejšími typmi problémov na logaritmoch sú príklady rovníc a nerovníc. Nachádzajú sa takmer vo všetkých problémových knihách a sú tiež povinnou súčasťou skúšok z matematiky. Ak chcete vstúpiť na univerzitu alebo zložiť prijímacie skúšky z matematiky, musíte vedieť, ako správne riešiť takéto úlohy.

Bohužiaľ neexistuje jednotný plán alebo schéma na riešenie a určenie neznámej hodnoty logaritmu, ale na každú matematickú nerovnosť alebo logaritmickú rovnicu možno použiť určité pravidlá. V prvom rade by ste mali zistiť, či je možné výraz zjednodušiť alebo zredukovať na všeobecnú formu. Dlhé logaritmické výrazy môžete zjednodušiť, ak správne použijete ich vlastnosti. Poďme sa s nimi rýchlo zoznámiť.

Pri riešení logaritmických rovníc musíme určiť, aký typ logaritmu máme: vzorový výraz môže obsahovať prirodzený logaritmus alebo desiatkový.

Tu sú príklady ln100, ln1026. Ich riešenie sa scvrkáva na skutočnosť, že potrebujú určiť výkon, s ktorým bude základňa 10 rovná 100 a 1026. Ak chcete vyriešiť prirodzené logaritmy, musíte použiť logaritmické identity alebo ich vlastnosti. Pozrime sa na príklady riešenia logaritmických problémov rôznych typov.

Ako používať logaritmické vzorce: s príkladmi a riešeniami

Pozrime sa teda na príklady použitia základných teorémov o logaritmoch.

  1. Vlastnosť logaritmu súčinu sa dá využiť v úlohách, kde je potrebné rozložiť veľkú hodnotu čísla b na jednoduchšie faktory. Napríklad log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odpoveď je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - ako vidíte, pomocou štvrtej vlastnosti logaritmickej mocniny sa nám podarilo vyriešiť zdanlivo zložitý a neriešiteľný výraz. Stačí vypočítať základ a potom odobrať hodnoty exponentov zo znamienka logaritmu.

Úlohy z jednotnej štátnej skúšky

Logaritmy sa často vyskytujú pri prijímacích skúškach, najmä veľa logaritmických problémov pri Jednotnej štátnej skúške (štátna skúška pre všetkých absolventov škôl). Tieto úlohy sa zvyčajne nachádzajú nielen v časti A (najjednoduchšia testovacia časť skúšky), ale aj v časti C (najzložitejšie a najobsiahlejšie úlohy). Skúška vyžaduje presnú a dokonalú znalosť témy „Prirodzené logaritmy“.

Príklady a riešenia problémov sú prevzaté z oficiálnych verzií jednotnej štátnej skúšky. Pozrime sa, ako sa takéto úlohy riešia.

Daný log 2 (2x-1) = 4. Riešenie:
prepíšme výraz, trochu ho zjednodušíme log 2 (2x-1) = 2 2, podľa definície logaritmu dostaneme, že 2x-1 = 2 4, teda 2x = 17; x = 8,5.

  • Najlepšie je zredukovať všetky logaritmy na rovnaký základ, aby riešenie nebolo ťažkopádne a mätúce.
  • Všetky výrazy pod logaritmickým znamienkom sú označené ako kladné, preto keď exponent výrazu, ktorý je pod logaritmickým znamienkom a jeho základ sa vyberie ako násobiteľ, výraz zostávajúci pod logaritmom musí byť kladný.

Ťažiskom tohto článku je logaritmus. Tu uvedieme definíciu logaritmu, ukážeme akceptovaný zápis, uvedieme príklady logaritmov a porozprávame sa o prirodzených a desiatkových logaritmoch. Potom zvážime základnú logaritmickú identitu.

Navigácia na stránke.

Definícia logaritmu

Koncept logaritmu vzniká pri riešení problému v určitom inverznom zmysle, keď potrebujete nájsť exponent zo známej hodnoty exponentu a známeho základu.

Ale dosť predslovov, je čas odpovedať na otázku „čo je to logaritmus“? Uveďme zodpovedajúcu definíciu.

Definícia.

Logaritmus b na základ a, kde a>0, a≠1 a b>0 je exponent, na ktorý musíte zvýšiť číslo a, aby ste dostali b.

V tejto fáze si všimneme, že hovorené slovo „logaritmus“ by malo okamžite vyvolať dve nadväzujúce otázky: „aké číslo“ a „na akom základe“. Inými slovami, jednoducho neexistuje logaritmus, ale iba logaritmus čísla k nejakému základu.

Hneď vstúpme logaritmický zápis: logaritmus čísla b k základu a sa zvyčajne označuje ako log a b. Logaritmus čísla b na základ e a logaritmus na základ 10 majú svoje vlastné špeciálne označenia lnb a logb, to znamená, že nepíšu log e b, ale lnb a nie log 10 b, ale lgb.

Teraz môžeme dať: .
A záznamy nedávajú zmysel, pretože v prvom z nich je pod znamienkom logaritmu záporné číslo, v druhom je záporné číslo v základe a v treťom je pod znamienkom logaritmu záporné číslo a jednotka v základ.

Teraz si pohovorme o pravidlá čítania logaritmov. Log a b sa číta ako "logaritmus b na základ a". Napríklad log 2 3 je logaritmus troch k základu 2 a je to logaritmus dvoch bodových dvoch tretín k základnej odmocnine z piatich. Logaritmus k základu e sa nazýva prirodzený logaritmus a zápis lnb znie "prirodzený logaritmus b". Napríklad ln7 je prirodzený logaritmus čísla sedem a budeme ho čítať ako prirodzený logaritmus čísla pí. Základný 10 logaritmus má tiež špeciálny názov - desiatkový logaritmus a lgb sa číta ako "desiatkový logaritmus b". Napríklad lg1 je desiatkový logaritmus jednej a lg2,75 je desiatkový logaritmus dvoch bodiek sedem päť stotín.

Oplatí sa venovať osobitnú pozornosť podmienkam a>0, a≠1 a b>0, za ktorých je daná definícia logaritmu. Vysvetlíme, odkiaľ tieto obmedzenia pochádzajú. Pomôže nám k tomu rovnosť tvaru s názvom , ktorá priamo vyplýva z definície logaritmu uvedenej vyššie.

Začnime s ≠1. Keďže jedna ku ktorejkoľvek mocnine sa rovná jednej, rovnosť môže platiť iba vtedy, keď b=1, ale log 1 1 môže byť akékoľvek reálne číslo. Aby sa predišlo tejto nejednoznačnosti, predpokladá sa a≠1.

Zdôvodnime účelnosť podmienky a>0. S a=0 by sme podľa definície logaritmu mali rovnosť, čo je možné len s b=0. Ale potom log 0 0 môže byť akékoľvek nenulové reálne číslo, pretože nula až akákoľvek nenulová mocnina je nula. Podmienka a≠0 nám umožňuje vyhnúť sa tejto nejednoznačnosti. A keď a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Nakoniec podmienka b>0 vyplýva z nerovnosti a>0, keďže , a hodnota mocniny s kladnou bázou a je vždy kladná.

Na záver tohto bodu povedzme, že uvedená definícia logaritmu vám umožňuje okamžite uviesť hodnotu logaritmu, keď číslo pod znakom logaritmu predstavuje určitú mocninu základu. Definícia logaritmu nám skutočne umožňuje tvrdiť, že ak b=a p, potom sa logaritmus čísla b so základom a rovná p. To znamená, že log rovnosti a a p = p je pravdivý. Napríklad vieme, že 2 3 = 8, potom log 2 8 = 3. Viac si o tom povieme v článku.

Logaritmus kladného čísla b na základ a (a>0, a sa nerovná 1) je číslo c také, že a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Všimnite si, že logaritmus nezáporného čísla nie je definovaný. Okrem toho základom logaritmu musí byť kladné číslo, ktoré sa nerovná 1. Napríklad, ak odmocníme -2, dostaneme číslo 4, ale to neznamená, že logaritmus na základ -2 zo 4 sa rovná 2.

Základná logaritmická identita

a log a b = b (a > 0, a ≠ 1) (2)

Je dôležité, aby rozsah definície pravej a ľavej strany tohto vzorca bol odlišný. Ľavá strana je definovaná len pre b>0, a>0 a a ≠ 1. Pravá strana je definovaná pre ľubovoľné b a vôbec nezávisí od a. Aplikácia základnej logaritmickej „identity“ pri riešení rovníc a nerovníc teda môže viesť k zmene OD.

Dva zrejmé dôsledky definície logaritmu

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Skutočne, keď zvýšime číslo a na prvú mocninu, dostaneme rovnaké číslo a keď ho zvýšime na nulu, dostaneme jednotku.

Logaritmus súčinu a logaritmus kvocientu

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Chcel by som varovať školákov pred bezmyšlienkovitým používaním týchto vzorcov pri riešení logaritmických rovníc a nerovníc. Pri ich použití „zľava doprava“ sa ODZ zužuje a pri prechode od súčtu alebo rozdielu logaritmov k logaritmu súčinu alebo kvocientu sa ODZ rozširuje.

V skutočnosti je výraz log a (f (x) g (x)) definovaný v dvoch prípadoch: keď sú obe funkcie striktne kladné alebo keď sú f(x) a g(x) obe menšie ako nula.

Premenou tohto výrazu na súčet log a f (x) + log a g (x) sme nútení obmedziť sa len na prípad, keď f(x)>0 a g(x)>0. Dochádza k zúženiu rozsahu prijateľných hodnôt, čo je kategoricky neprijateľné, pretože to môže viesť k strate riešení. Podobný problém existuje pre vzorec (6).

Stupeň možno odobrať zo znamienka logaritmu

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

A opäť by som chcel požiadať o presnosť. Zvážte nasledujúci príklad:

Log a (f (x) 2 = 2 log a f (x)

Ľavá strana rovnosti je samozrejme definovaná pre všetky hodnoty f(x) okrem nuly. Pravá strana je len pre f(x)>0! Vybratím stupňa z logaritmu opäť zúžime ODZ. Opačný postup vedie k rozšíreniu rozsahu prijateľných hodnôt. Všetky tieto poznámky platia nielen pre mocninu 2, ale aj pre akúkoľvek párnu mocninu.

Vzorec na prechod na nový základ

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Ten ojedinelý prípad, keď sa ODZ pri transformácii nemení. Ak ste múdro zvolili základ c (kladný a nerovná sa 1), vzorec na prechod na nový základ je úplne bezpečný.

Ak zvolíme číslo b ako nový základ c, dostaneme dôležitý špeciálny prípad vzorca (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Niekoľko jednoduchých príkladov s logaritmami

Príklad 1. Vypočítajte: log2 + log50.
Riešenie. log2 + log50 = log100 = 2. Použili sme vzorec súčtu logaritmov (5) a definíciu desiatkového logaritmu.


Príklad 2. Vypočítajte: lg125/lg5.
Riešenie. log125/log5 = log 5 125 = 3. Použili sme vzorec na prechod na nový základ (8).

Tabuľka vzorcov súvisiacich s logaritmami

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

(z gréčtiny λόγος – „slovo“, „vzťah“ a ἀριθμός – „číslo“) b založené na a(log α b) sa nazýva takéto číslo c, A b= a c, teda záznamy log α b=c A b=ac sú rovnocenné. Logaritmus má zmysel, ak a > 0, a ≠ 1, b > 0.

Inými slovami logaritmusčísla b založené na A formulovaný ako exponent, na ktorý sa musí číslo zvýšiť a získať číslo b(logaritmus existuje len pre kladné čísla).

Z tejto formulácie vyplýva, že výpočet x= log α b, je ekvivalentné riešeniu rovnice a x =b.

Napríklad:

log 2 8 = 3, pretože 8 = 2 3 .

Zdôraznime, že uvedená formulácia logaritmu umožňuje okamžite určiť logaritmickú hodnotu, keď číslo pod znamienkom logaritmu pôsobí ako určitá mocnina základu. Formulácia logaritmu skutočne umožňuje zdôvodniť, že ak b = a c, potom logaritmus čísla b založené na a rovná sa s. Je tiež zrejmé, že téma logaritmov úzko súvisí s témou mocniny čísla.

Výpočet logaritmu sa nazýva logaritmus. Logaritmus je matematická operácia logaritmu. Pri logaritmovaní sa súčin faktorov transformuje na súčty členov.

Potencovanie je inverzná matematická operácia logaritmu. Počas potenciácie sa daná báza zvýši na stupeň expresie, pri ktorom sa potenciácia vykonáva. V tomto prípade sa súčty členov transformujú na súčin faktorov.

Pomerne často sa používajú skutočné logaritmy so základňami 2 (binárne), Eulerovým číslom e ≈ 2,718 (prirodzený logaritmus) a 10 (desatinné).

V tejto fáze je vhodné zvážiť vzorky logaritmu denník 7 2 , ln 5, lg0,0001.

A položky lg(-3), log -3 3,2, log -1 -4,3 nedávajú zmysel, pretože v prvom z nich je pod znamienkom logaritmu umiestnené záporné číslo, v druhom je záporné číslo v základe a v treťom je záporné číslo pod znamienkom logaritmu a jednotkou v základni.

Podmienky na určenie logaritmu.

Samostatne sa oplatí zvážiť podmienky a > 0, a ≠ 1, b > 0.za ktorých sa dostaneme definícia logaritmu. Pozrime sa, prečo boli prijaté tieto obmedzenia. Pomôže nám k tomu rovnosť tvaru x = log α b, nazývaná základná logaritmická identita, ktorá priamo vyplýva z definície logaritmu uvedenej vyššie.

Zoberme si podmienku a≠1. Keďže jedna ku ktorejkoľvek mocnine sa rovná jednej, potom rovnosť x=log α b môže existovať len vtedy b = 1, ale log 1 1 bude akékoľvek reálne číslo. Aby sme túto nejednoznačnosť odstránili, berieme a≠1.

Dokážme nevyhnutnosť podmienky a>0. o a=0 podľa formulácie logaritmu môže existovať iba vtedy b = 0. A podľa toho potom log 0 0 môže byť akékoľvek nenulové reálne číslo, pretože nula až akákoľvek nenulová mocnina je nula. Túto nejednoznačnosť možno odstrániť podmienkou a≠0. A kedy a<0 museli by sme odmietnuť analýzu racionálnych a iracionálnych hodnôt logaritmu, pretože stupeň s racionálnym a iracionálnym exponentom je definovaný len pre nezáporné základy. Z tohto dôvodu je podmienka stanovená a>0.

A posledná podmienka b>0 vyplýva z nerovnosti a>0, pretože x=log α b, a hodnotu stupňa s kladným základom a vždy pozitívny.

Vlastnosti logaritmov.

Logaritmy vyznačujúce sa výrazným Vlastnosti, čo viedlo k ich širokému použitiu na výrazné uľahčenie starostlivých výpočtov. Pri prechode „do sveta logaritmov“ sa násobenie premení na oveľa jednoduchšie sčítanie, delenie na odčítanie a umocňovanie a extrakcia odmocniny na násobenie a delenie exponentom.

Formuláciu logaritmov a tabuľku ich hodnôt (pre goniometrické funkcie) prvýkrát publikoval v roku 1614 škótsky matematik John Napier. Logaritmické tabuľky, rozšírené a podrobné inými vedcami, boli široko používané vo vedeckých a technických výpočtoch a zostali relevantné až do použitia elektronických kalkulačiek a počítačov.

Dnes budeme hovoriť o logaritmické vzorce a dáme orientačné príklady riešenia.

Sami implikujú vzory riešení podľa základných vlastností logaritmov. Pred použitím logaritmických vzorcov na riešenie vám pripomenieme všetky vlastnosti:

Teraz si to na základe týchto vzorcov (vlastností) ukážeme príklady riešenia logaritmov.

Príklady riešenia logaritmov na základe vzorcov.

Logaritmus kladné číslo b na základ a (označené log a b) je exponent, na ktorý musí byť a umocnené, aby sme dostali b, pričom b > 0, a > 0 a 1.

Podľa definície log a b = x, čo je ekvivalent a x = b, teda log a a x = x.

Logaritmy, príklady:

log 2 8 = 3, pretože 2 3 = 8

log 7 49 = 2, pretože 72 = 49

log 5 1/5 = -1, pretože 5-1 = 1/5

Desatinný logaritmus- ide o obyčajný logaritmus, ktorého základňa je 10. Označuje sa ako lg.

log 10 100 = 2, pretože 102 = 100

Prirodzený logaritmus- tiež obyčajný logaritmus, logaritmus, ale so základom e (e = 2,71828... - iracionálne číslo). Označené ako ln.

Je vhodné zapamätať si vzorce alebo vlastnosti logaritmov, pretože ich budeme potrebovať neskôr pri riešení logaritmov, logaritmických rovníc a nerovníc. Prepracujme každý vzorec znova s ​​príkladmi.

  • Základná logaritmická identita
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritmus súčinu sa rovná súčtu logaritmov
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Logaritmus kvocientu sa rovná rozdielu logaritmov
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Vlastnosti mocniny logaritmického čísla a základu logaritmu

    Exponent logaritmického čísla log a b m = mlog a b

    Exponent základu logaritmu log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ak m = n, dostaneme log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Prechod na nový základ
    log a b = log c b/log c a,

    ak c = b, dostaneme log b b = 1

    potom log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Ako vidíte, vzorce pre logaritmy nie sú také zložité, ako sa zdá. Teraz, keď sme sa pozreli na príklady riešenia logaritmov, môžeme prejsť k logaritmickým rovniciam. Na príklady riešenia logaritmických rovníc sa pozrieme podrobnejšie v článku: "". Nenechajte si ujsť!

Ak máte stále otázky týkajúce sa riešenia, napíšte ich do komentárov k článku.

Poznámka: rozhodli sme sa získať inú triedu vzdelávania a študovať v zahraničí ako voliteľnú možnosť.