Из чего состоит космический корабль для детей. Три поколения космических кораблей, ссср

Подробности Категория: Встреча с космосом Опубликовано 05.12.2012 11:32 Просмотров: 17243

Пилотируемый космический корабль предназначен для полетов в космическое пространство одного или нескольких человек и безопасного возвращения на Землю после исполнения задания.

При конструировании данного класса космических аппаратов одной из главных задач является создание безопасной, надёжной и точной системы возвращения экипажа на земную поверхность в виде бескрылого спускаемого аппарата (СА) или космоплана. Космоплан - орбитальный самолёт (ОС), воздушно-космический самолёт (ВКС) - это крылатый летательный аппарат самолетной схемы, выходящий или выводимый на орбиту искусственного спутника Земли посредством вертикального или горизонтального старта и возвращающийся с неё после выполнения целевых задач, совершая горизонтальную посадку на аэродром, активно используя при снижении подъемную силу планера. Сочетает в себе свойства как самолета, так и космического корабля.

Важной особенностью пилотируемого космического корабля является наличие системы аварийного спасения (САС) на начальном этапе выведения ракетой-носителем (РН).

Проекты советских и китайских космических кораблей первого поколения не имели полноценной ракетной САС - вместо неё, как правило, использовалось катапультирование кресел экипажа (космический корабль «Восход» не имел и этого). Крылатые космопланы также не оснащены специальной САС, а также могут иметь катапультируемые кресла экипажа. Также космический корабль обязательно должен быть оснащён системой жизнеобеспечения (СЖО) экипажа.

Создание пилотируемого космического корабля – задача высокой сложности и стоимости, поэтому их имеют только три страны: Россия, США и Китай. А многоразовые системы пилотируемых космических кораблей имеют только Россия и США.

Некоторые страны работают над созданием своих пилотируемых космических кораблей: Индия, Япония, Иран, КНДР, а также ESA (Европейское космическое агентство, созданное в 1975 г. в целях исследования космоса). ESA состоит из 15 постоянных членов, иногда, в некоторых проектах, к ним присоединяются Канада и Венгрия.

Космические корабли первого поколения

«Восток»

Это серии советских космических кораблей, предназначенных для пилотируемых полётов по околоземной орбите. Создавались под руководством генерального конструктора ОКБ-1 Сергея Павловича Королёва с 1958 по 1963 год.

Основные научные задачи, стоявшие для корабля «Восток»: изучение воздействий условий орбитального полёта на состояние и работоспособность космонавта, отработка конструкции и систем, проверка основных принципов построения космических кораблей.

История создания

Весной 1957 г. С. П. Королёв в рамках своего ОКБ организовал специальный отдел № 9, предназначенный для проведения работ по созданию первых искусственных спутников Земли. Отдел возглавил соратник Королёва Михаил Клавдиевич Тихонравов . Вскоре, параллельно с разработкой искусственных спутников, в отделе начали выполняться исследования по вопросу создания пилотируемого корабля-спутника. Ракетой-носителем должна была стать королёвская «Р-7». Расчёты показывали, что она, оснащённая третьей ступенью, могла вывести на низкую околоземную орбиту груз массой около 5 тонн.

На ранней стадии разработки расчеты делали математики Академии наук. В частности, было отмечено, что результатом баллистического спуска с орбиты может стать десятикратная перегрузка .

С сентября 1957 по январь 1958 г. в отделе Тихонравова исследовались все условия осуществления задачи. Было обнаружено, что равновесная температура крылатого космического корабля, обладающего наивысшим аэродинамическим качеством, превышает возможности тепловой устойчивости доступных к тому времени сплавов, а использование крылатых вариантов конструкции приводило к снижению величины полезной нагрузки. Поэтому от рассмотрения крылатых вариантов отказались. Наиболее приемлемым способом возвращения человека было его катапультирование на высоте нескольких километров и дальнейший спуск на парашюте. Отдельное спасение спускаемого аппарата при этом можно было не проводить.

В ходе медицинских исследований, проведённых в апреле 1958 г., испытания лётчиков на центрифуге показали, что при определённом положении тела человек способен переносить перегрузки до 10 G без серьёзных последствий для своего здоровья. Поэтому выбрали сферическую форму спускаемого аппарата для первого пилотируемого корабля.

Сферическая форма спускаемого аппарата являлась простейшей и наиболее изученной симметричной формой, сфера обладает стабильными аэродинамическими свойствами при любых возможных скоростях и углах атаки. Смещение центра масс в кормовую часть сферического аппарата позволяло обеспечить его правильную ориентацию во время баллистического спуска.

Первый корабль «Восток-1К» отправился в автоматический полёт в мае 1960 г. Позже была создана и отработана модификация «Востк-3КА», полностью готовая к пилотируемым полётам.

Помимо одной аварии ракеты-носителя на старте, по программе было запущено шесть беспилотных аппаратов, а в дальнейшем ещё шесть пилотируемых космических кораблей.

На кораблях программы осуществлены первые в мире пилотируемый космический полёт («Восток-1»), суточный полёт («Восток-2»), групповые полёты двух кораблей («Восток-3» и «Восток-4») и полёт женщины-космонавта («Восток-6»).

Устройство космического корабля «Восток»

Общая масса космического корабля - 4,73 тонны, длина - 4,4 м, максимальный диаметр - 2,43 м.

Корабль состоял из сферического спускаемого аппарата (массой 2,46 тонны и диаметром 2,3 м), также выполняющего функции орбитального отсека, и конического приборного отсека (массой 2,27 тонны и максимальным диаметром 2,43 м). Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков. Корабль оснащался системами: автоматического и ручного управления, автоматической ориентации на Солнце, ручной ориентации на Землю, жизнеобеспечения (рассчитаной на поддержание внутренней атмосферы, близкой по своим параметрам к атмосфере Земли в течение 10 суток), командно-логического управления, электропитания, терморегулирования и приземления. Для обеспечения задач по работе человека в космическом пространстве корабль снабжался автономной и радиотелеметрической аппаратурой для контроля и регистрации параметров, характеризующих состояние космонавта, конструкции и систем, ультракоротковолновой и коротковолновой аппаратурой для двусторонней радиотелефонной связи космонавта с наземными станциями, командной радиолинией, программно-временным устройством, телевизионной системой с двумя передающими камерами для наблюдения за космонавтом с Земли, радиосистемой контроля параметров орбиты и пеленгации корабля, тормозной двигательной установкой ТДУ-1 и другими системами. Вес космического корабля вместе с последней ступенью ракеты-носителя составлял 6,17 тонны, а их длина в связке - 7,35 м.

Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног. Космонавт, одетый в скафандр, размещался в специальном катапультируемом кресле. На последнем этапе посадки, после торможения спускаемого аппарата в атмосфере, на высоте 7 км, космонавт катапультировался из кабины и совершал приземление на парашюте. Кроме того, была предусмотрена возможность приземления космонавта внутри спускаемого аппарата. Спускаемый аппарат имел собственный парашют, однако не был оснащён средствами выполнения мягкой посадки, что грозило оставшемуся в нём человеку серьёзным ушибом при совместном приземлении.

В случае отказа автоматических систем космонавт мог перейти на ручное управление. Корабли «Восток» не были приспособлены для полётов человека на Луну, а также не допускали возможности полёта людей, не прошедших специальной подготовки.

Пилоты космических кораблей «Восток»:

«Восход»

На освободившееся от катапультного кресла место устанавливались два или три обычных кресла. Поскольку теперь экипаж приземлялся в спускаемом аппарате, то для обеспечения мягкой посадки корабля помимо парашютной системы был установлен твердотопливный тормозной двигатель, срабатывавший непосредственно перед касанием земли от сигнала механического высотомера. На корабле «Восход-2», предназначенном для выхода в открытый космос, оба космонавта были одеты в скафандры «Беркут». Дополнительно была установлена надуваемая шлюзовая камера, которая сбрасывалась после использования.

Космические корабли «Восход» выводились на орбиту ракетой-носителем «Восход», также разработанной на базе РН «Восток». Но система носителя и корабля «Восход» в первые минуты после запуска не имела средств спасения при аварии.

По программе «Восход» были совершены следующие полёты:

«Космос-47» - 6 октября 1964 г. Беспилотный испытательный полёт для отработки и тестирования корабля.

«Восход-1» - 12 октября 1964 г. Первый космический полёт более чем с одним человеком на борту. Состав экипажа - космонавт-пилот Комаров, конструктор Феоктистов и врач Егоров .

«Космос-57» - 22 февраля 1965 г. Беспилотный испытательный полёт для отработки корабля для выхода в космос, завершился неудачей (подорван системой самоуничтожения из-за ошибки командной системы).

«Космос-59» - 7 марта 1965 г. Беспилотный испытательный полёт аппарата другой серии («Зенит-4») с установленным шлюзом корабля «Восход» для выхода в космос.

«Восход-2» - 18 марта 1965 г. Первый выход в открытый космо с. Состав экипажа - космонавт-пилот Беляев и космонавт-испытатель Леонов .

«Космос-110» - 22 февраля 1966 г. Испытательный полёт для проверки работы бортовых систем при длительном орбитальном полёте, на борту были две собаки - Ветерок и Уголёк , полёт продолжался 22 дня.

Космические корабли второго поколения

«Союз»

Серия многоместных космических кораблей для полетов по околоземной орбите. Разработчик и изготовитель корабля - РКК «Энергия» (Ракетно-космическая корпорация «Эне́ргия» имени С. П. Королёва . Головная организация корпорации находится в городе Королёве, филиал - на космодроме Байконур). Как единая организационная структура возникла в 1974 г. под руководством Валентина Глушко.

История создания

Ракетно-космический комплекс «Союз» начал проектироваться в 1962 г. в ОКБ-1 как корабль советской программы для облёта Луны. Сначала предполагалось, что к Луне по программе «А» должна была отправиться связка из космического корабля и разгонных блоков 7К, 9К, 11К . В дальнейшем проект «А» был закрыт в пользу отдельных проектов облёта Луны с использованием корабля «Зонд»/7К-Л1 и высадки на Луне с использованием комплекса Л3 в составе орбитального корабля-модуля 7К-ЛОК и посадочного корабля-модуля ЛК. Параллельно лунным программам на базе того же 7К и закрытого проекта околоземного корабля «Север» начали делать 7К-ОК - многоцелевой трехместный орбитальный корабль (ОК), предназначенный для отработки операций маневрирования и стыковки на околоземной орбите, для проведения различных экспериментов, в том числе по переходу космонавтов из корабля в корабль через открытый космос.

Испытания 7К-ОК начались в 1966 г. После отказа от программы полётов на кораблях «Восход» (с уничтожением задела трёх из четырёх готовых кораблей «Восход») конструкторы корабля «Союз» потеряли возможность отработать на нём решения для своей программы. Наступил двухгодичный перерыв в пилотируемых запусках в СССР, во время которого американцы активно осваивали космическое пространство. Первые три беспилотных пуска кораблей «Союз» оказались полностью либо частично неудачными, были обнаружены серьёзные ошибки в конструкции корабля. Однако четвёртый пуск был предпринят пилотируемым («Союз-1» с В. Комаровым ), который оказался трагическим - космонавт погиб при спуске на Землю. После аварии «Союза-1» конструкция корабля была полностью переработана для возобновления пилотируемых полётов (было выполнено 6 беспилотных пусков), и в 1967 г. состоялась первая, в целом удачная, автоматическая стыковка двух «Союзов» («Космос-186» и«Космос-188»), в 1968 г. были возобновлены пилотируемые полёты, в 1969 г. состоялись первая стыковка двух пилотируемых кораблей и групповой полёт трёх кораблей сразу, а в 1970 г. - автономный полет рекордной длительности (17,8 суток). Первые шесть кораблей «Союз» и («Союз-9») были кораблями серии 7К-ОК. Также готовился к полётам вариант корабля «Союз-Контакт» для отработки систем стыковки кораблей-модулей 7К-ЛОК и ЛК лунного экспедиционного комплекса Л3. В связи с недоведением лунно-посадочной программы Л3 до стадии пилотируемых полётов, необходимость полётов Союза-Контакта отпала.

В 1969 г. началась работа над созданием долговременной орбитальной станции (ДОС) «Салют». Для доставки экипажа был спроектирован корабль 7КТ-ОК (Т - транспортный). Новый корабль отличался от предыдущих наличием стыковочного узла новой конструкции с внутренним люком-лазом и дополнительными системами связи на борту. Третий корабль этого типа («Союз-10») не выполнил поставленную перед ним задачу. Стыковка со станцией была осуществлена, но в результате повреждения стыковочного узла люк корабля был заблокирован, что сделало невозможным переход экипажа на станцию. Во время четвёртого полёта корабля этого типа («Союз-11») из-за разгерметизации на участке спуска погибли Г. Добровольский, В. Волков и В. Пацаев , так как они были без скафандров. После аварии «Союза-11» от развития 7К-ОК/7КТ-ОК отказались, корабль был переделан (внесены изменения в компоновку СА для размещения космонавтов в скафандрах). Из-за возросшей массы систем жизнеобеспечения новый вариант корабля 7К-Т стал двухместным, лишился солнечных батарей. Этот корабль стал «рабочей лошадкой» советской космонавтики 1970-х: 29 экспедиций на станции «Салют» и«Алмаз». Версия корабля 7К-ТМ (М - модифицированный) использовалась в совместном полёте с американским «Аполлоном» по программе ЭПАС. Четыре корабля «Союз», официально стартовавшие после аварии «Союза-11», имели в своей конструкции солнечные батареи различных типов, однако это были другие версии корабля «Союз» - 7К-ТМ («Союз-16», «Союз-19»), 7К-МФ6 («Союз-22») и модификация 7К-Т - 7К-Т-АФ без стыковочного узла («Союз-13»).

С 1968 г. были модифицированы и произведены космические корабли серии «Союз» 7К-С . 7К-С дорабатывался в течение 10 лет и к 1979 году стал кораблём 7К-СТ «Союз Т» , причём в небольшой переходный период космонавты летали одновременно на новом 7К-СТ и устаревшем 7К-Т.

Дальнейшая эволюция систем корабля 7К-СТ привела к модификации 7К-СТМ «Союз ТМ» : новая двигательная установка, улучшенная парашютная система, система сближения и т. д. Первый полёт «Союз ТМ» был совершён 21 мая 1986 г. к станции «Мир», последний «Союз ТМ-34» - в 2002 г. к МКС.

В настоящее время эксплуатируется модификация корабля 7К-СТМА «Союз ТМА» (А - антропометрический). Корабль по требованиям NASA был доработан применительно к полётам на «МКС». На нём могут работать космонавты, которые не смогли бы поместиться в «Союз ТМ» по росту. Пульт космонавтов был заменён на новый, с современной элементной базой, улучшена парашютная система, уменьшена теплозащита. Последний запуск корабля данной модификации «Союз ТМА-22» состоялся 14 ноября 2011 г.

Кроме «Союз ТМА», сегодня для полётов в космос используются корабли новой серии 7К-СТМА-М «Союз ТМА-М» («Союз ТМАЦ») (Ц - цифровой).

Устройство

Корабли этой серии состоят из трёх модулей: приборно-агрегатного отсека (ПАО), спускаемого аппарата (СА), бытового отсека (БО).

В ПАО находится комбинированная двигательная установка, топливо для неё, служебные системы. Длина отсека 2,26 м, основной диаметр 2,15 м. Двигательная установка состоит из 28 ДПО (двигатели причаливания и ориентации) по 14 на каждом коллекторе, а также сближающе-корректирующего двигателя (СКД). СКД предназначен для орбитального маневрирования и схода с орбиты.

Система энергоснабжения состоит из солнечных батарей и аккумуляторов.

В спускаемом аппарате находятся места для космонавтов, системы жизнеобеспечения, управления, парашютная система. Длина отсека 2,24 м, диаметр 2,2 м. Бытовой отсек имеет длину 3,4 м, диаметр 2,25 м. Он оснащен стыковочным узлом и системой сближения. В герметичном объёме БО располагаются грузы для станции, иная полезная нагрузка, ряд систем жизнеобеспечения, в частности туалет. Через посадочный люк на боковой поверхности БО космонавты входят в корабль на стартовой позиции космодрома. БО может быть использован при шлюзовании в открытый космос в скафандрах типа «Орлан» через посадочный люк.

Новая модернизированная версия «Союз ТМА-МС»

Обновление затронет практически каждую систему пилотируемого корабля. Основные пункты программы модернизации космического корабля:

  • энергоотдача солнечных батарей, будет повышена за счёт применения более эффективных фотоэлектрических преобразователей;
  • надёжность сближения и стыковки корабля с космической станцией за счёт изменения установки двигателей причаливания и ориентации. Новая схема этих двигателей позволит выполнить сближение и стыковку даже в случае отказа одного из двигателей и обеспечить спуск пилотируемого корабля при любых двух отказах двигателей;
  • новая система связи и пеленгации, которая позволит помимо улучшения качества радиосвязи, облегчить поиск спускаемого аппарата, приземлившегося в любой точке Земного шара.

На модернизированном «Союз ТМА-МС» будут установлены датчики системы ГЛОНАСС. На этапе парашютирования и после посадки спускаемого аппарата его координаты, полученные по данным ГЛОНАСС/GPS, будут передаваться по спутниковой системе Коспас-Сарсат в ЦУП.

«Союз ТМА-МС» станет последней модификацией «Союза ». Корабль будет использоваться для пилотируемых полётов до тех пор, пока на смену ему не придёт корабль нового поколения. Но это уже совсем другая история…

Быстроходные транспортные машины отличаются от машин, передвигающихся с малой скоростью, легкостью конструкции. Вес огромных океанских лайнеров исчисляется сотнями тысяч килоньютонов. Скорость их передвижения сравнительно невелика (= 50 км/ч). Вес быстроходных катеров не превышает 500 - 700 кн, но зато они могут развивать скорость до 100 км/ч. С увеличением скорости передвижения снижение веса конструкции транспортных машин становится все более важным показателем их совершенства. Особенно большое значение вес конструкции имеет для летательных аппаратов (самолетов, вертолетов).

Космический корабль тоже летательный аппарат, но только предназначен он для передвижения в безвоздушном пространстве. Летать по воздуху можно гораздо быстрее, чем плыть по воде или передвигаться по земле, а в безвоздушном пространстве можно развивать еще большие скорости, но, чем больше скорость, тем важнее вес конструкции. Увеличение веса космического корабля приводит к очень большому увеличению веса ракетной системы, которая выводит корабль в запланированный район космического пространства.

Поэтому все, что находится на борту космического корабля, должно весить как можно меньше, и ничего не должно быть лишнего. Это требование создает одну из самых больших трудностей для конструкторов космических кораблей.

Из каких основных частей состоит космический корабль? Космические аппараты делятся на два класса: обитаемые (на борту их находится экипаж из нескольких человек) и необитаемые (на борту их устанавливается научная аппаратура, которая автоматически передает на Землю все данные измерений). Мы будем рассматривать только обитаемые космические корабли. Первым обитаемым космическим кораблем, на котором совершил свой полет Ю. А. Гагарин, был «Восток». За ним следуют корабли из серии «Восход». Это уже не одноместные, как «Восток», а многоместные аппараты. На космическом корабле «Восход» впервые в мире был совершен групповой полет трех летчиков-космонавтов - Комарова, Феоктистова, Егорова.

Следующая серия космических кораблей, созданных в Советском Союзе, получила название «Союз». Корабли этой серии гораздо сложнее по устройству, чем их предшественники, и задачи, которые они могут выполнять, также сложнее. В США также были созданы космические корабли различных типов.

Рассмотрим общую схему устройства обитаемого космического корабля на примере американского корабля «Аполлон».


Рис. 10. Схема трехступенчатой ракеты с космическим кораблем и системой спасения.


На рисунке 10 приведена схема общего вида ракетной системы «Сатурн» и пристыкованного к ней космического корабля «Аполлон». Космический корабль находится между третьей ступенью ракеты и устройством, которое крепится к космическому кораблю на ферме,- оно называется системой аварийного спасения. Для чего предназначено это устройство? При работе двигателя ракеты или ее системы управления во время запуска ракеты не исключается появление неполадок. Иногда эти неполадки могут привести к аварии - ракета упадет на Землю. Что при этом может произойти? Компоненты топлива смешаются, и образуется море огня, в котором окажутся и ракета и космический корабль. Больше того, при смешении компонентов топлива могут образовываться и взрывчатые смеси. Следовательно, если по какой-либо причине произойдет авария, необходимо корабль увести от ракеты на некоторое расстояние и только после этого приземлиться. При этих условиях ни взрывы, ни пожар для космонавтов не будут опасны. Вот для этой цели и служит система аварийного спасения (сокращенно САС).

В систему САС входят основной и управляющий двигатели, работающие на твердом топливе. Если на систему САС поступает сигнал об аварийном состоянии ракеты, она срабатывает. Космический корабль отделяется от ракеты, а пороховые двигатели системы аварийного спасения уводят космический корабль вверх и в сторону. Когда пороховой двигатель заканчивает работу, из космического корабля выбрасывается парашют и корабль плавно опускается на Землю. Система САС предназначена для спасения космонавтов в случае создания аварийной ситуации, в период запуска ракеты-носителя и полета ее на активном участке.

Если запуск ракеты-носителя прошел нормально и полет на активном участке успешно завершается, надобность в системе аварийного спасения отпадает. После вывода космического корабля на околоземную орбиту эта система становится бесполезной. Поэтому перед выходом космического корабля на орбиту система аварийного спасения отбрасывается от корабля как ненужный балласт.

Система аварийного спасения непосредственно крепится к так называемому спускаемому или возвращаемому аппарату космического корабля. Почему он имеет такое название? Мы уже говорили, что космический корабль, отправляющийся в космический полет, состоит из нескольких частей. А вот на Землю из космического полета возвращается всего лишь одна его составная часть, которая поэтому и называется возвращаемым аппаратом. Возвращаемый, или спускаемый, аппарат, в отличие от других частей космического корабля, имеет толстые стенки и специальную форму, наиболее выгодную с точки зрения полета в атмосфере Земли с большими скоростями. Возвращаемый аппарат, или командный отсек,- это место, где находятся космонавты во время вывода космического корабля на орбиту и, конечно, во время спуска на Землю. В нем устанавливается большая часть аппаратуры, с помощью которой управляют кораблем. Так как командный отсек предназначен для спуска на Землю космонавтов, то в нем располагаются также и парашюты, с помощью которых производится торможение космического корабля в атмосфере, а затем и плавный спуск.

За спускаемым аппаратом идет отсек, называемый орбитальным. В этом отсеке устанавливается научная аппаратура, необходимая для проведения специальных исследований в космосе, а также системы, обеспечивающие корабль всем необходимым: воздухом, электроэнергией и др. Орбитальный отсек после выполнения космическим кораблем задания на Землю не возвращается. Его очень тонкие стенки не способны выдержать тот нагрев, которому подвергается возвращаемый аппарат при спуске на Землю, проходя плотные слои атмосферы. Поэтому, войдя в атмосферу, орбитальный отсек сгорает, подобно метеору.

В космических кораблях, предназначенных для полета в дальний космос с высадкой людей на другие небесные тела, необходимо иметь еще один отсек. В этом отсеке космонавты могут спускаться на поверхность планеты, а когда нужно, взлетать с нее.

Мы перечислили основные части современного космического корабля. Теперь посмотрим, как обеспечивается жизнедеятельность экипажа и работоспособность аппаратуры, устанавливаемой на борту корабля.

Для обеспечения жизнедеятельности человека требуется немало. Начнем с того, что человек не может существовать ни при очень низких, ни при очень высоких температурах. Регулятором температуры на земном шаре является атмосфера, т. е. воздух. А как обстоит дело с температурой на космическом корабле? Известно, что существует три вида передачи тепла от одного тела к другому - теплопроводность, конвекция и излучение. Для передачи тепла теплопроводностью и конвекцией нужен передатчик тепла. Следовательно, в космосе эти виды теплопередачи невозможны. Космический корабль, находясь в межпланетном пространстве, получает тепло от Солнца, Земли и других планет исключительно излучением. Стоит создать тень из тонкого листа какого-либо материала, который преградит путь лучам Солнца (или свету от других планет) к поверхности космического корабля - и он перестанет нагреваться. Поэтому теплоизолировать космический корабль в безвоздушном пространстве нетрудно.

Однако при полете в космическом пространстве приходится опасаться не перегрева корабля солнечными лучами или его переохлаждения в результате излучения тепла стенками в окружающее пространство, а перегрева от тепла, которое выделяется внутри самого космического корабля. За счет чего может повышаться температура в корабле? Во-первых, сам человек является источником, непрерывно излучающим тепло, а во-вторых, космический корабль - это очень сложная машина, оборудованная многими приборами и системами, работа которых связана с выделением большого количества тепла. Перед системой, обеспечивающей жизнедеятельность членов экипажа корабля, стоит очень важная задача - все тепло, выделяемое и человеком, и приборами, своевременно вывести за пределы отсеков корабля и обеспечить поддержание температуры в них на уровне, который требуется для нормального существования человека и работы приборов.

Как можно в условиях космоса, где тепло передается только лучеиспусканием, обеспечить необходимый температурный режим в космическом корабле? Вы знаете, что летом, когда светит знойное Солнце, все ходят в светлой одежде, в которой менее ощущается жара. В чем тут дело? Оказывается, светлая поверхность в отличие от темной плохо поглощает лучистую энергию. Она ее отражает и поэтому гораздо слабее нагревается.

Вот этим свойством тел в зависимости от цвета окраски в большей или меньшей степени поглощать или отражать лучистую энергию можно воспользоваться для регулирования температуры внутри космического корабля. Имеются такие вещества (они называются термофототропами), которые изменяют свою окраску в зависимости от температуры нагрева. При повышении температуры они начинают обесцвечиваться и тем сильнее, чем выше температура их нагрева. Наоборот, при охлаждении они темнеют. Такое свойство термофототропов может оказаться весьма полезным, если их применять в системе терморегулирования космических кораблей. Ведь термофототропы позволяют поддерживать температуру какого-либо объекта на определенном уровне автоматически, без применения каких-либо механизмов, подогревателей или охладителей. Вследствие этого система терморегулирования с применением термофототропов будет иметь небольшую массу (а это для космических кораблей очень важно), для приведения ее в действие не потребуется затрат энергии. (Системы терморегулирования, работающие без потребления энергии, называются пассивными.)

Существуют другие пассивные системы терморегулирования. Все они обладают одним важным свойством - малой массой. Однако они ненадежны в работе, особенно при длительной эксплуатации. Поэтому космические корабли, как правило, оборудуются так называемыми активными системами регулирования температуры. Отличительной особенностью таких систем является возможность изменения режима работы. Активная система регулирования температуры подобна батарее системы центрального отопления - если вам нужно, чтобы в комнате было холоднее, вы перекрываете доступ горячей воды в батарею. Наоборот, если нужно поднять температуру в комнате, перекрывной кран открывается полностью.

Задача системы терморегулирования - поддерживать температуру воздуха в кабине корабля в пределах обычной, комнатной, т. е. 15 - 20°С. Если помещение обогревается с помощью батарей центрального отопления, то температура в любом месте помещения практически устанавливается одна и та же. Почему около горячей батареи и вдалеке от нее разница в температуре воздуха бывает очень незначительной? Это объясняется тем, что в помещении идет непрерывное перемешивание теплых и холодных слоев воздуха. Теплый (легкий) воздух поднимается вверх, холодный (тяжелый) опускается вниз. Такое движение (конвекция) воздуха обусловлено наличием силы тяжести. В космическом корабле все невесомо. Следовательно, там не может быть конвекции, т. е. перемешивания воздуха и выравнивания температуры по всему объему кабины. Нет естественной конвекции, но ее создают искусственно.

Для этой цели в системе терморегулирования предусматривается установка нескольких вентиляторов. Вентиляторы, приводимые в движение электромотором, заставляют воздух непрерывно циркулировать по кабине корабля. Благодаря этому тепло, выделяемое телом человека или каким-либо прибором, не скапливается в одном месте, а равномерно распределяется по всему объему.


Рис. 11. Схема охлаждения воздуха кабины космического корабля.


Практика показала, что в космическом корабле тепла образуется всегда больше, чем излучается в окружающее пространство через стенки. Поэтому в нем целесообразно устанавливать батареи, по которым нужно прокачивать холодную жидкость. Этой жидкости будет отдавать тепло прогоняемый с помощью вентилятора воздух кабины (см. рис. 11), охлаждаясь при этом. В зависимости от температуры жидкости в радиаторе, а также его размеров можно отвадить тепла больше или меньше и таким образом поддерживать температуру внутри кабины корабля на требуемом уровне. Радиатор, охлаждающий воздух, служит и еще для одной цели. Вы знаете, что при дыхании человек выдыхает в окружающую атмосферу газ, в котором содержится значительно меньше кислорода, чем в воздухе, но зато больше углекислого газа и водяных паров. Если водяные пары не удалять из атмосферы, они будут в ней накапливаться, пока не наступит состояние насыщения. Насыщенный пар будет конденсироваться на всех приборах, стенках корабля, все отсыреет. Конечно, в таких условиях человеку длительное время жить и работать вредно, да и не все приборы при такой влажности могут нормально функционировать.

Радиаторы, о которых мы говорили, помогают удалять излишки водяных паров из атмосферы кабины космического корабля. Вы замечали, что происходит с холодным предметом, внесенным с улицы зимой в теплую комнату? Он сразу же покрывается мельчайшими капельками воды. Откуда они взялись? Из воздуха. В воздухе всегда содержатся в том или ином количестве водяные пары. При комнатной температуре (+20°С) в 1 м³ воздуха может содержаться влаги в виде пара до 17 г. С повышением температуры воздуха повышается и возможное содержание влаги, и наоборот: с понижением температуры в воздухе может находиться меньше водяных паров. Вот почему на холодных предметах, внесенных в теплое помещение, и выпадает влага в виде росы.

В космическом корабле холодным предметом служит радиатор, по которому прокачивается холодная жидкость. Как только в воздухе кабины накапливается слишком много водяных паров, она из воздуха, омывающего трубки радиатора, конденсируются на них в виде росы. Таким образом, радиатор служит не только как средство охлаждения воздуха, но одновременно является его осушителем. Так как радиатор выполняет сразу две задачи - охлаждает и осушает воздух, его называют холодильно-сушильным аппаратом.

Итак, для того чтобы поддерживать в кабине космического корабля нормальную температуру и влажность воздуха, необходимо иметь в системе терморегулирования жидкость, которая должна непрерывно охлаждаться, иначе она не сможет выполнить своей роли - отводить излишки тепла из кабины корабля. Как же охлаждать жидкость? Охладить жидкость, конечно, не проблема, если есть обычный электрохолодильник. Но электрохолодильники на космических кораблях не устанавливают, да они там и не нужны. Космическое пространство тем и отличается от земных условий, что там одновременно хватает и тепла, и холода. Оказывается, чтобы охладить жидкость, с помощью которой поддерживаются на заданном уровне температура и влажность воздуха внутри кабины, ее достаточно на некоторое время поместить в космическое пространство, но так, чтобы она находилась в тени.

В системе терморегулирования, помимо вентиляторов, приводящих в движение воздух, предусматриваются насосы. Их задача - перекачивать жидкость из радиатора, находящегося внутри кабины, в радиатор, установленный на внешней стороне оболочки космического корабля, т. е. в космическом пространстве. Эти два радиатора связаны друг с другом трубопроводами, на которых имеются клапаны и датчики, замеряющие температуру жидкости на входе и выходе из радиаторов. В зависимости от показаний этих датчиков регулируется скорость перекачки жидкости из одного радиатора в другой, т. е. количество тепла, отводимого из кабины корабля.

Какими же свойствами должна обладать жидкость, применяемая в системе регулирования температуры? Так как один из радиаторов находится в космическом пространстве, где возможны очень низкие температуры, то одно из главных требований к жидкости - низкая температура затвердевания. Действительно, если жидкость во внешнем радиаторе замерзнет, то система регулирования температуры выйдет из строя.

Поддержание температуры внутри космического корабля на уровне, при котором сохраняется работоспособность человека, очень важная задача. Жить и работать ни в холоде, ни в жаре человек не может. А может ли человек существовать без воздуха? Конечно, нет. Да и такого вопроса перед нами никогда не возникает, так как воздух на Земле находится повсюду. Воздух заполняет и кабину космического корабля. Есть ли разница в обеспечении человека воздухом на Земле и в кабине космического корабля? Воздушное пространство на Земле имеет большой объем. Сколько бы мы ни дышали, сколько бы ни потребляли кислорода для других нужд, его содержание в воздухе практически не меняется.

В кабине космического корабля другое положение. Во-первых, объем воздуха в ней очень мал и, кроме того, нет естественного регулятора состава атмосферы, так как нет растений, которые поглощали бы углекислый газ и выделяли кислород. Поэтому очень скоро люди, находящиеся в кабине космического корабля, начнут ощущать недостаток кислорода для дыхания. Человек нормально себя чувствует, если в атмосфере содержится не менее 19% кислорода. При меньшем содержании кислорода дышать становится трудно. В космическом корабле на одного члена экипажа приходится свободный объем = 1,5 - 2,0 м³. Расчеты показывают, что уже через 1,5 - 1,6 ч воздух в кабине делается непригодным для нормального дыхания.

Следовательно, космический корабль нужно оборудовать системой, которая подпитывала бы его атмосферу кислородом. А откуда взять кислород? Конечно, можно запасать кислород на борту корабля в виде сжатого газа в специальных баллонах. По мере необходимости газ из баллона можно выпускать в кабину. Но такой вид хранения запаса кислорода мало пригоден для космических кораблей. Дело в том, что металлические баллоны, в которых газ находится под большим давлением, очень много весят. Поэтому этот простой способ хранения кислорода на космических кораблях не применяется. Но ведь газообразный кислород можно превратить в жидкость. Плотность жидкого кислорода почти в 1000 раз больше плотности газообразного, вследствие чего для его хранения (одной и той же массы) потребуется гораздо меньшая емкость. Кроме того, жидкий кислород можно хранить под небольшим давлением. Следовательно, стенки сосуда могут быть тонкими.

Однако применение жидкого кислорода на борту корабля сопряжено с некоторыми трудностями. Очень просто подать в атмосферу кабины космического корабля кислород, если он находится в газообразном состоянии, труднее, если он жидкий. Жидкость предварительно нужно превратить в газ, а для этого нагреть. Нагревание кислорода необходимо еще и потому, что его пары могут иметь температуру, близкую к температуре кипения кислорода, т. е. - 183°С. Такой холодный кислород нельзя впускать в кабину, дышать им, конечно, невозможно. Его следует подогреть по крайней мере до 15 - 18°С.

Для газификации жидкого кислорода и нагревания паров потребуются специальные приспособления, что усложнит систему обеспечения кислородом. Нужно еще помнить и о том,что человек в процессе дыхания не только потребляет кислород, находящийся в воздухе, но одновременно выделяет углекислый газ. В час человек выделяет около 20 л углекислого газа. Углекислый газ, как известно, не является отравляющим веществом, однако дышать воздухом, в котором углекислого газа содержится больше 1 - 2%, человеку трудно.

Чтобы воздух кабины космического корабля был пригоден для дыхания, необходимо не только добавлять в него кислород, но и одновременно удалять из него углекислый газ. Для этого удобно было бы иметь на борту космического корабля такое вещество, которое выделяет кислород и в то же время поглощает из воздуха углекислый газ. Такие вещества существуют. Вы знаете, что окись металла - это соединение кислорода с металлом. Ржавчина, например, это окись железа. Окисляются и другие металлы, в том числе и щелочные (натрий, калий).

Щелочные металлы, соединяясь с кислородом, образуют не только окиси,но и так называемые перекиси и надперекиси. В перекисях и надперекисях щелочных металлов кислорода содержится значительно больше, чем в окисях. Формула окиси натрия Na₂O, а надперекиси NaO₂. При действии влаги надперекись натрия разлагается с выделением чистого кислорода и образованием щелочи: 4NaO₂ + 2Н₂О → 4NaOH + 3O₂.

Надперекиси щелочных металлов оказались очень удобными веществами для получения из них кислорода в условиях космического корабля и очистки воздуха кабины от излишков углекислого газа. Ведь щелочь (NaOH), которая выделяется при разложении надперекиси щелочного металла, очень охотно соединяется с углекислым газом. Расчет показывает, что на каждые 20 - 25 л кислорода, выделяющегося при разложении надперекиси натрия, образуется натронная щелочь в количестве, достаточном для связывания 20 л углекислого газа.

Связывание углекислого газа щелочью состоит в том, что между ними происходит химическая реакция: СО₂ + 2NaOH → Na₂CO + Н₂О. В результате реакции образуются углекислый натрий (сода) и вода. Соотношение между кислородом и щелочью, образующимися при разложении надперекисей щелочных металлов, оказалось очень выгодным, так как человек в среднем в час потребляет 25 А кислорода и выделяет за то же время 20 л углекислого газа.

Надперекись щелочных металлов разлагается при взаимодействии с водой. А откуда для этого взять воду? Оказывается, об этом беспокоиться не нужно. Мы уже говорили, что человек при дыхании выделяет не только углекислый газ, но и водяные пары. Влаги, содержащейся в выдыхаемом воздухе, с избытком хватает для разложения необходимого количества надперекиси. Конечно, мы знаем, что потребление кислорода зависит от глубины и частоты дыхания. Вы сидите за столом и спокойно дышите - потребляете одно количество кислорода. А если пробежитесь или физически поработаете, вы дышите глубоко и часто, поэтому и кислорода потребляете больше, чем при спокойном дыхании. Члены экипажа космического корабля будут тоже потреблять неодинаковое количество кислорода в разное время суток. Во время сна и отдыха потребление кислорода минимально, когда же выполняется работа, связанная с движением,- потребление кислорода резко увеличивается.

За счет вдыхаемого кислорода в организме происходят те или иные окислительные процессы. В результате протекания этих процессов образуются водяные пары и углекислый газ. Если организм больше потребляет кислорода, значит, он и больше выделяет углекислого газа и паров воды. Следовательно, организм как бы автоматически поддерживает содержание влаги в воздухе в таком количестве, которое необходимо для разложения соответствующего количества надперекиси щелочного металла.


Рис. 12. Схема подпитки атмосферы кабины космического корабля кислородом и очистки от углекислого газа.


Схема очистки воздуха от углекислого газа и подпитки его кислородом показана на рисунке 12. Воздух кабины прогоняется вентилятором через патроны с надперекисью натрия или калия. Из патронов воздух выходит уже обогащенный кислородом и очищенный от углекислого газа.

В кабине устанавливается датчик, контролирующий содержание кислорода в воздухе. Если датчик показывает, что содержание кислорода в воздухе становится слишком малым, на моторы вентиляторов подается сигнал на увеличение числа оборотов, вследствие чего скорость прохождения воздуха через патроны с надперекисью увеличивается, а следовательно, увеличивается и количество влаги (которая находится в воздухе), попадающей в патрон за одно и то же время. Больше влаги - больше образуется кислорода. Если в воздухе кабины содержится кислорода выше нормы, то от датчиков на моторы вентиляторов поступает сигнал на уменьшение числа оборотов.

Сегодня стартовала Всемирная неделя космоса. Проводится она ежегодно с 4 по 10 октября. Ровно 60 лет назад на околоземную орбиту вывели первый рукотворный объект советский «Спутник-1». Он вращался вокруг Земли 92 дня, пока не сгорел в атмосфере. После этого открылась дорога в космос и человеку. Стало понятно, что его нельзя отправлять с билетом в один конец. Как развивались космические технологии, узнал корреспондент телеканала «МИР 24» Владимир Сероухов.

В 1961 году саратовские зенитчики засекли на радаре неопознанный летающий объект. Их заранее предупредили: если они увидят такой падающий с неба контейнер, мешать его полету не стоит. Ведь это первый в истории космический спускаемый аппарат с человеком на борту. Но приземляться в этой капсуле было небезопасно, поэтому на высоте 7 километров катапультировался и спустился на поверхность уже с парашютом.

Капсула корабля «Восток», на сленге инженеров - «Шарик», тоже спустилась на парашюте. Так на Землю вернулись Гагарин, Терешкова и другие первопроходцы космоса. Из-за особенностей конструкции пассажиры испытывали невероятные перегрузки в 8 g. Гораздо легче условия в капсулах «Союз». Их используют более полувека, но в скоро должны заменить новым поколением кораблей - .

«Это кресло командира экипажа и второго пилота. Как раз те места, с которых будет выполняться управление кораблем, контроль всех систем. Кроме этих кресел по бокам будут еще два кресла. Это уже для исследователей», - рассказывает заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

По сравнению с семейством кораблей «Союз», которые все-таки морально устарели, и где в тесноте могли разместиться лишь трое космонавтов, капсула «Федерации» - настоящие апартаменты, 4 метра в диаметре. Сейчас главная задача - понять насколько удобен и функционален будет аппарат для экипажа.

Управление теперь доступно двум членам экипажа. Пульт шагает в ногу со временем - это три сенсорных дисплея, где можно контролировать информацию и быть более автономным на орбите.

«Вот для того, что бы выбрать место посадки, куда мы можем сесть. Мы непосредственно видим карту, трассу полета. Погодные условия они также могут контролировать, если эта информация будет передана с Земли, - отметил заместитель начальника летно-испытательного отдела РКК «Энергия» Олег Кукин.

«Федерация» рассчитана для полетов на Луну, это около четырех суток пути в одну сторону. Все это время космонавты должны находиться в позе эмбриона. В спасательных креслах, или ложементах удивительно удобно. Каждое - ювелирная работа.

«Измерение всех антропометрических данных начинается с измерения массы», - указал начальник сектора медицинского отдела НПП «Звезда» Виктор Синигин.

Вот оно - космическое ателье, предприятие «Звезда». Здесь для космонавтов делают индивидуальные скафандры и ложементы. Людям легче 50 килограммов путь на борт заказан, как и тем, кто тяжелее 95. Рост тоже должен быть средним, чтобы уместиться в салоне корабля. Поэтому и мерки снимают в позе эмбриона.

Так отливали кресло для японского космонавта Коичи Ваката. Получили отпечаток таза, спины и головы. В условиях невесомости рост любого космонавта может увеличиться на пару сантиметров, так что ложемент делают с запасом. Он должен быть не просто комфортным, но и безопасным в случае жесткой посадки.

«Сама идея моделирования в том, что бы уберечь внутренние органы. Почки, печень они капсулированные. Если дать им возможность расшириться они могут порваться, как полиэтиленовый пакет с водой, упавший на пол», - пояснил Синигин.

Всего таким способом сделали 700 ложементов не только для россиян, но и для японцев, итальянцев и даже коллег из Штатов, которые работали на станциях «Мир» и МКС.

«Американцы на своем «Шаттле» везли наши ложементы и скафандры, которые мы для них делали, и другое спасательное снаряжение. Оставляли это все на станции, на случай аварийного покидания станции, но уже на нашем корабле», - рассказал ведущий инженер испытательного отдела НПП «Звезда» Владимир Масленников.

Космический корабль напоминает подводную лодку: здесь и там экипаж вынужден жить в герметической ка­бине, полностью изолированной от внешней среды. Со­став, давление, температура и влажность воздуха внутри кабины будут регулироваться специальным аппаратом. Но преимуществом космического корабля по сравнению с подводной лодкой явится меньшая разница между дав­лением внутри кабины и снаружи. А чем меньше эта раз­ница, тем тоньше могут быть стенки корпуса.

Для отопления и освещения кабины корабля можно использовать солнечные лучи. Обшивка корабля, подобно земной атмосфере, задерживает пронизывающие меж­планетное пространство ультрафиолетовые лучи Солнца, которые в больших количествах вредны для человече­ского организма. Для лучшей защиты при столкнрвениях с метеорными телами обшивку корабля целесообразно делать многослойной.

Конструкция космического корабля зависит от его назначения. Корабль для посадки на Луну окажется во многом не похож на корабль, предназначенный для по­лёта вокруг неё; корабль для полёта на Марс должен быть построен иначе, чем корабль, отправляющийся на Венеру; ракетный корабль на термохимическом топливе будет су­щественно отличаться от атомного корабля.

Космический корабль на термохимическом топливе, предназначенный для перелёта на искусственный спутник, будет представлять собой многоступенчатую ракету раз­мерами с дирижабль. При старте такая ракета должна весить несколько сот тонн, а её полезный груз примерно в сто раз меньше. Плотно примыкающие друг к другу ступени будут заключены в обтекаемый корпус для лучшего преодоления сопротивления воздуха при полёте в атмосфере. Сравнительно небольшая кабина для экипажа и кабина для остального полезного груза раз­местятся, повидимому, в носовой части корабля. Так как экипажу придётся провести на борту такого корабля лишь непродолжительное время (меньше часа), отпадёт необ­ходимость в сложном оборудовании, которым будут осна­щены межпланетные корабли, предназначенные для длительного полёта. Управление полётом и все измерения будут осуществляться автоматически.

Отработавшие ступени ракеты можно будет спускать обратно на Землю либо на парашюте, либо с помощью выдвижных крыльев, превращающих ступень в планёр.

Рассмотрим ещё один вариант космического корабля (см. рис. 8, в центре, на стр. 24-25). Корабль отправится с искусственного спутника в полёт вокруг Луны для продолжительного обследования её поверхности без по­садки. Выполнив задание, он вернётся прямо на Землю. Как видим, этот корабль состоит в основном из двух спаренных ракет с тремя парами цилиндрических баков, наполненных горючим и окислителем, и двух космических планёров с выдвижными крыльями, предназначенных для спуска на поверхность Земли. Корабль не нуждается в обтекаемой обшивке, так как старт производится за пределами атмосферы.

Такой корабль будет полностью построен и испытан на Земле, а затем переброшен на межпланетную стан­цию в разобранном виде. Отдельными партиями туда до­ставят топливо, снаряжение, запасы продовольствия и кислорода для дыхания.

После того как корабль соберут на межпланетной станции, он отправится дальше в мировое пространство.

Горючее и окислитель будут поступать в двигатель из центральных цилиндрических баков, которые представ­ляют собой основные кабины космического корабля, вре­менно залитые топливом. Они опорожняются спустя не­сколько минут с момента взлёта. Временно экипаж располагается в менее удобной кабине планёра.

Достаточно открыть небольшой кран, соединяющий баки с безвоздушным пространством, чтобы остатки топ­лива мгновенно улетучились. Затем баки-кабины на­полняются воздухом, и экипаж переходит в них из пла­нёра; здесь астронавты проведут всё остальное время полёта.

Подлетев к Луне, корабль превращается в её искус­ственный спутник. Для этого используются горючее и окислитель, находящиеся в задних боковых баках. После использования топлива баки отцепляются. Когда на -

Ступит время возвращения н включат двигатель. Топливо для этой цели хранится в передних боковых баках. Пе­ред погружением в земную атмосферу экипаж пересажи­вается в космические пла­нёры, которые отцепляются от остальной части корабля, продолжающей кружить во­круг Земли. Планёр входит в атмосферу Земли и, манев­рируя выдвижными крылья­ми, снижается.

При полёте с выключен­ным двигателем люди и пред­меты на корабле будут неве­сомы. Это представляет боль­шие неудобства. Конструкто­рам, возможно, придётся со­здать на борту корабля ис­кусственную тяжесть.

Корабль, изображённый на рис. 8, построен как раз по этому принципу. Две его составные части, взлетающие как одно целое, затем отде­ляются друг от друга, оста­ваясь, однако, связанными тросами, и при помощи небольших ракетных двига­телей приводятся в круго­вое движение вокруг обще­го центра тяжести (рис. 6). После того как будет до­стигнута требуемая скорость вращения, двигатели вы­ключаются и движение продолжается по инерции. Возникающая при этом центробежная сила, со­гласно идее Циолковского, должна заменить путешестве

Космический аппарат, используемый для полетов по околоземной орбите, в том числе под управлением человека.

Все космические корабли можно разделить на два класса: пилотируемые и запускаемые в режиме управления с поверхности Земли.

В начале 20-х гг. XX в. К. Э. Циолковский в очередной раз предсказывает будущее освоение космического пространства землянами. В его работе «Космический корабль» встречается упоминание о так называемых небесных кораблях, основное предназначение которых - реализация полетов человека в космос.
Первые космические корабли серии «Восток» создавались под чутким руководством генерального конструктора ОКБ-1 (ныне ракетно-космическая корпорация «Энергия») С. П. Королева. Первый пилотируемый космический корабль «Восток» смог доставить в космическое пространство человека 12 апреля 1961 г. Этим космонавтом был Ю. А. Гагарин.

Основными задачами, поставленными в эксперименте, были:

1) изучение воздействия условий орбитального полета на человека, в том числе и на его работоспособность;

2) проверка принципов конструирования космических кораблей;

3) отработка конструкций и систем в реальных условиях.

Общая масса корабля составляла 4,7 т, диаметр - 2,4 м, длина - 4,4 м. Среди бортовых систем, которыми был оснащен корабль, можно выделить следующие: системы управления (автоматический и ручной режимы); система автоматической ориентации на Солнце и ручной - на Землю; система жизнеобеспечения; система терморегулирования; система приземления.

В дальнейшем наработки, полученные при реализации программы космических кораблей «Восток», позволили создать намного более совершенные . На сегодняшний день «армада» космических кораблей очень наглядно представлена американским многоразовым транспортным космическим кораблем «Шаттл», или Space Shuttle.

Нельзя не упомянуть про советскую разработку, которая в настоящее время не используется, но могла бы составить серьезную конкуренцию американскому кораблю.

«Буран» - так называлась программа Советского Союза по созданию многоразовой космической системы. Работы по программе «Буран» начались в связи с необходимостью создания многоразовой космической системы как средства сдерживания потенциального противника в связи с началом американского проекта в январе 1971 г.

Для реализации проекта было создано НПО «Молния». В кратчайшие сроки в 1984 г. при поддержке более тысячи предприятий со всего Советского Союза был создан первый полномасштабный экземпляр со следующими техническими характеристиками: его длина составила более 36 м при размахе крыльев в 24 м; стартовая масса - более 100 т при массе полезного груза до
30 т.

«Буран» имел в носовом отсеке герметичную кабину, которая могла вместить около десяти человек и большую часть аппаратуры для обеспечения полета на орбите, спуска и посадки. Корабль был оснащен двумя группами двигателей в конце хвостового отсека и в передней части корпуса для маневрирования, впервые была использована объединенная двигательная установка, которая включала топливные баки окислителя и горючего, термостатирования наддува, забора жидкости в невесомости, аппаратуру системы управления и пр.

Первый и единственный полет космический корабль «Буран» совершил 15 ноября 1988 г. в беспилотном, полностью автоматическом режиме (для справки: «Шаттл» до сих пор совершает посадку только на ручном управлении). К сожалению, полет корабля совпал с тяжелыми временами, которые начались в стране, и в связи с окончанием «холодной войны» и отсутствием достаточных средств программа «Буран» была закрыта.

Начало серии американских космических кораблей типа «Шаттл» было положено в 1972 г., хотя ему предшествовал проект многоразового двухступенчатого летательного аппарата, каждая ступень которого была похожа на реактивный .

Первая ступень выполняла функцию ускорителя, которая после выхода на орбиту заканчивала свою часть задачи и возвращалась на Землю с экипажем, а вторая - являлась орбитальным кораблем и после выполнения программы также возвращалась на место старта. Это было время гонки вооружений, и создание корабля такого типа считалось главным звеном в этой гонке.

Для запуска корабля американцы используют ускоритель и собственный двигатель корабля, топливо для которого размещено во внешнем топливном баке. Отработавшие ускорители после приземления на используются повторно, с ограниченным количеством стартов. Конструктивно корабль серии «Шаттл» состоит из нескольких основных элементов: воздушно-космический самолет «Орбитер», ракетные ускорители многоразового пользования и топливный бак (одноразовый).

Первый полет космического корабля из-за большого количества недоработок и конструктивных изменений состоялся лишь в 1981 г. В период с апреля 1981 по июль 1982 г. была проведена серия орбитальных летных испытаний корабля «Колумбия» во всех режимах полета. К сожалению, в серии полетов кораблей серии «Шаттл» не обошлось без трагедий.

В 1986 г. во время 25-го по счету запуска корабля «Челленджер» произошел взрыв топливного бака из-за несовершенства конструкции аппарата, в результате которого погибли все семь членов экипажа. Лишь в 1988 г., после внесения ряда изменений в программу полетов, был осуществлен запуск космического корабля «Дискавери». На смену «Челленджеру» в эксплуатацию был введен новый корабль «Эндевор», который осуществляет свои рейсы с 1992 г.