Параметры расположение корней квадратного трехчлена. Расположение корней квадратного трехчлена

Квадратные уравнения с параметрами

(Методическая разработка для учащихся 9-11 классов)

учитель математики высшей квалификационной категории,

заместитель директора по УВР

Мегион 2013

Предисловие

https://pandia.ru/text/80/021/images/image002.png" height="22 src=">2.Применение теоремы Виета

Научные работы" href="/text/category/nauchnie_raboti/" rel="bookmark">научной работы учащегося. В задачах с параметрами содержится множество приёмов, необходимых не только для математического развития личности, но и и в любом другом научном исследовании. Поэтому решение задач с параметрами и в частности решение квадратных уравнений с параметрами является пропедевтикой научно-исследовательской работы учащихся. На ЕГЭ по математике (часто задания С5), ГИА (задания части 2) и на вступительных экзаменах встречаются, в основном, два типа задач с параметрами. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Как известно, решению задач с параметрами в школе уделяется очень мало внимания. Поэтому решение задач с параметрами всегда вызывает большие трудности у учащихся; трудно рассчитывать на то, что учащиеся, подготовка которых не содержала «параметрическую терапию», смогут в жесткой атмосфере конкурсного экзамена успешно справиться с подобными задачами, следовательно, учащиеся должны специально готовиться к «встрече с параметрами». Многие учащиеся воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать постоянной величиной, но это постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Задачи с параметрами обладают диагностической и прогностической ценностью – с помощью задач с параметрами можно проверить знание основных разделов школьной математики, уровень математического и логического мышления, первоначальные навыки научно-исследовательской деятельности , а главное, перспективные возможности успешного овладения курсом математики данного вуза.

Анализ вариантов ЕГЭ по математике и вступительных экзаменов в различные вузы показывает, что большинство предлагаемых задач с параметрами связано с расположением корней квадратного трехчлена. Будучи основной в школьном курсе математики, квадратичная функция формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей – в основе их решения лежат свойства квадратичной функции. При решении таких задач рекомендуется работать с тремя типами моделей:

1. вербальная модель – словесное описание задачи;

2. геометрическая модель – эскиз графика квадратичной функции;

3. аналитическая модель – система неравенств, при помощи которой описывается геометрическая модель.

Методическое пособие содержит теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек), применение теоремы Виета к решению квадратных уравнений с параметрами. Приведены подробные решения 15 задач с методическими рекомендациями . Назначение данного пособия – помочь выпускнику и учителю математики в подготовке к сдаче ЕГЭ и ГИА по математике, и вступительного экзамена в вуз в виде теста или в традиционной форме.

https://pandia.ru/text/80/021/images/image004.png" width="16" height="32 src="> - лежит правее прямой х = n (условие xb>n);

3. парабола пересекается с прямой х = n в точке, лежащей в верхней полуплоскости при a>0 и в точке, лежащей в нижней полуплоскости при а<0 (условие a∙f(n) >0).

https://pandia.ru/text/80/021/images/image007.png" width="266" height="264">.png" width="311" height="264">.png" width="280" height="240">.png" width="38" height="31 src=">.png" width="263" height="264">.png" width="266" height="264">.png" width="311" height="264">.png" width="280" height="264">.png" width="266" height="264">.png" width="263" height="264">.png" width="280" height="264">.png" width="311" height="264">.png" width="263" height="264">.png" width="266" height="264">.png" width="290" height="264">.png" width="266" height="264">.png" width="290" height="264">.png" width="266" height="264">.png" width="263" height="264">.png" width="266" height="264">.png" width="153" height="43 src=">

Теорема 10. Квадратные уравнения х2 + p1x + q1 = 0 и x2 + p2x + q2 = 0,

дискриминанты которых неотрицательны, имеют по крайней мере один общий корень тогда и только тогда, когда (q2 – q1)2 = (p2 – p1)(p1q2 – q1p2).

Доказательство.

Пусть f1(x) = x2 + p1x + q1, f2(x) = x2 + p2x + q2 и числа х1, х2 являются корнями уравнения f1(x) = 0. Для того чтобы уравнения f1(x) = 0 и f2(x) = 0 имели по крайней мере один общий корень, необходимо и достаточно, чтобы f1(x)∙f2(x) = 0, т. е. чтобы (x12 + p2x1 + q2)(x22 + p2x2 + q2) = 0. Представим последнее равенство в виде

(x12 + p1x1 + q1 + (p2 – p1)x1 + q2 – q1) (x22 + p1x2 + q1 + (p2 – p1)x2 + q2 – q1) = 0.

Поскольку х12 + p1x1 + q1 = 0 и x22 + p1x2 + q1 = 0, отсюда получаем

((p2 – p1)x1 + (q2 – q1))((p2 – p1)x2 + (q2 – q1)) = 0, т. е.

(p2 – p1)2x1x2 + (q2 – q1)(p2 – p1)(x1 + x2) + (q2 – q1)2 = 0.

По теореме Виета x1 +x2 = - p1 и x1x2 =q1; следовательно,

(p2 – p1)2q1 – (q2 – q1)(p2 - p1)p1 + (q2 – q1)2 = 0, или

(q2 – q1)2 = (p2 - p1)((q2 – q1)p1 - (p2 - p1)q1) = (p2 – p1)(q2p1 – q1p1 – p2q1 + p1q1) =

(p2 – p1)(q2p1 – p2q1), что и требовалось доказать.

https://pandia.ru/text/80/021/images/image040.png" width="116" height="65 src=">

Квадратное уравнение ax 2 + bx + c = 0

1) имеет два действительных положительных корня тогда и только тогда, когда одновременно выполняются условия:

;

2) имеет два действительных отрицательных корня тогда и только тогда, когда одновременно выполняются условия:

;

3) имеет два действительных корня разных знаков тогда и только тогда, когда одновременно выполняются условия:

;

4) имеет два действительных корня одного знака, если

Замечание 1. Если коэффициент при х 2 содержит параметр, необходимо разбирать случай, когда он обращается в нуль.

Замечание 2. Если дискриминант квадратного уравнения является полным квадратом, то вначале удобней найти явные выражения для его корней.

Замечание 3. Если уравнение, содержащее несколько неизвестных, является квадратным относительно одной из них, то часто ключом к решению задачи служит исследование его дискриминанта.

Приведем схему исследования задач, связанных с расположением корней квадратного трехчлена f (x ) = ax 2 + bx + c :

1.Исследование случая а = о (если первый коэффициент зависит от параметров).

2.Нахождение дискриминанта D в случае а≠0.

3.Если D - полный квадрат некоторого выражения, то нахождение корней х1, х2 и подчинение условиям задачи.

4..png" width="13" height="22 src=">3. Примеры решения задач для подготовки к ГИА и ЕГЭ по математике

Пример 1. Решите уравнение (a - 2)x 2 – 2ax + 2a – 3 = 0.

Решение. Рассмотрим два случая: а = 2 и а ≠ 2. в первом случае исходное уравнение принимает вид - 4х + 1 = 0..png" width="255" height="58 src=">

При а = 1 или а = 6 дискриминант равен нулю и квадратное уравнение имеет один корень: , т. е. при а = 1 получаем корень , а при а = 6 – корень .

При 1 < a < 6 дискриминант положителен и квадратное уравнение имеет два корня: https://pandia.ru/text/80/021/images/image053.png" width="163" height="24 src=">уравнение не имеет корней; при а = 1 уравнение имеет один корень х = -1; при уравнение имеет два корня ; при а = 2 уравнение имеет единственный корень ; при а = 6 уравнение имеет единственный корень .

Пример 2. При каком значении параметра а уравнение (а - 2)х 2 + (4 – 2а )х + 3 = 0 имеет единственный корень?

Решение . Если а = 2, то уравнение превращается в линейное∙х + 3 = 0; которое не имеет корней.

Если а ≠ 2, то уравнение – квадратное и имеет единственный корень при нулевом дискриминанте D .

D = 0 при а 1 = 2 и a 2 = 5. Значение а = 2 исключается, так как противоречит условию, что исходное уравнение – квадратное.

Ответ : а = 5.

4.

(а - 1)х 2 + (2а + 3)х + а + 2 = 0 имеет корни одного знака?

Решение. Так как по условию задачи рассмотренное уравнение – квадратное, значит, а ≠ 1. очевидно, условие задачи предполагает также существование корней квадратного уравнения, что означает неотрицателность дискриминанта

D = (2a + 3)2 – 4(a - 1)(a + 2) = 8a + 17.

Так как по условию корни должны быть одинаковых знаков, то х 1∙х 2 > 0, т. е..png" width="149" height="21 src=">.С учетом условий D ≥ 0 и а ≠ 1 получим https://pandia.ru/text/80/021/images/image060.png" width="191" height="52 src=">.

Пример 3. Найти все значения а, для которых уравнение х2 – 2(а – 1)х + (2а + 1) = 0 имеет два положительных корня.

Решение. Из теоремы Виета для того чтобы оба корня х1 и х2 данного уравнения были положительными, необходимо и достаточно, чтобы дискриминант квадратного трехчлена х2 – 2(а – 1)х + (2а + 1) был неотрицательным, а произведение х1∙х2 и сумма х1 + х2 были положительными. Получаем, что все а, удовлетворяющие системе

И только они, являются решениями поставленной задачи. Э та система равносильна системе

Решением которой, а следовательно, и самой задачи являются все числа из промежутка

Задача № 3 .

При каких значениях параметра kкорни уравнения (k-2)х 2 -2kх+2k-3=0

принадлежат интервалу (0;1)?

Решение.

При k≠2 искомые значения параметра должны удовлетворять системе неравенств

ГдеD= 4k 2 -4(k-2)(2k-3) = -4(k 2 -7k+6), f(0) = 2k-3? F(1) = k-5, x в = k/(k-2).

Данная система не имеет решений.

При k = 2 заданное уравнение имеет вид -4х+1 = 0, его единственный корень

х = ¼, который принадлежит интервалу (0;1).

Задача №4 .

При каких значениях а оба корня уравнения х 2 -2ах+а 2 -а = 0 расположены на отрезке?

Искомые значения должны удовлетворять системе неравенств

где D= 4а 2 -4(а 2 -а) = 4а, f(2) = a 2 -5a+4, f(6) = a 2 -13a+36, х в = а.

Единственным решением системы является значение, а = 4.

4. Самостоятельная работа (контрольно - обучающая).

Учащиеся работают в группах, выполняют один и тот же вариант, так как материал очень сложный и не всем может быть по силам.

№1. При каких значениях параметра а оба корня уравнения х 2 -2ах+а 2 - 1 =0 принадлежит интервалу (-2;4)?

№2. Найдите все значения k, при которых один корень уравнения

(k-5)x 2 -2kx+k-4=0 меньше1, а другой корень больше 2.

№3. При каких значениях а число 1 находится между корнями квадратного трехчлена х 2 + (а+1)х - а 2 ?

По окончании времени демонстрируются ответы. Осуществляется самопроверка самостоятельной работы.

5. Итог урока. Закончить предложение.

«Сегодня на уроке…».

«Мне запомнилось …».

«Хотелось бы отметить …».

Учитель анализирует весь ход урока и его основные моменты, оценивает деятельность каждого ученика на уроке.

6. Домашнее задание

(из сборника заданий для подготовки к ГИА в 9 классе авт. Л. В. Кузнецова)

МОУ «Средняя общеобразовательная школа №15»

г. Мичуринска Тамбовской области

Урок по алгебре в 9классе

«Расположение корней квадратного трехчлена в зависимости от значений параметра»

Разработала

учитель математики 1 категории

Бортникова М.Б.

Мичуринск - наукоград 201 6 год

Урок рассчитан на 2 часа.

Дорогие ребята! Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.

Цели урока: 1. Расширить представление о квадратных уравнениях 2.Научить находить все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям. 3. Развивать интерес к предмету.

Ход урока:

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним основные уравнения:
aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

    Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1 , (a – 2) х = a 2 4.

    Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например.

    a уравнение 4 х 2 4 aх + 1 = 0 имеет единственный корень?

    Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2) х 2 2 aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2 aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2 aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4
a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 <
а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств потребует от вас новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: у =
х 2 – 2 ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.

      Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <
      х о < 5.

      Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2 ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Примеры решения задач

3. Исследование расположения корней квадратного трехчлена в зависимости от искомых значений параметра а.

Задача № 2.

При каких значениях параметра а корни квадратного уравнения

х 2 – 4х – (а – 1)(а – 5) = 0 больше единицы?

Решение.

Рассмотрим функцию: у = х 2 – 4х – (а – 1)(а – 5)

Графиком функции является парабола. Ветви параболы направлены вверх.

Схематично изобразим параболу (геометрическую модель задачи).

Теперь от построенной геометрической модели перейдем к аналитической, т.е. опишем эту геометрическую модель адекватной ей системой условий.

    Имеются точки пересечения (или точка касания) параболы с осью х, следовательно, Д≥0, т.е. 16+4(а-1)(а-5)≥0.

    Замечаем, что вершина параболы расположена в правой полуплоскости относительно прямой х=1, т.е. ее абсцисса больше 1, т.е. 2>1 (выполняется при всех значениях параметра а).

    Замечаем, что у(1)>0, т.е. 1 – 4 – (а – 1)(а – 5)>0

В результате приходим к системе неравенств.

;

Ответ: 2<а<4.

Задача № 3.

Х 2 + ах – 2 = 0 больше единицы?

Решение.

Рассмотрим функцию: у = -х 2 + ах – 2

Графиком функции является парабола. Ветви параболы направлены вниз. Изобразим геометрическую модель рассматриваемой задачи.


У(1)

Составим систему неравенств.

, решений нет

Ответ. Таких значений параметра а нет.

Условия задачи № 2 и № 3, в которых корни квадратного трехчлена больше некоторого числа при искомых значениях параметра а, сформулируем следующим образом.

Общий случай № 1.

При каких значениях параметра а корни квадратного трехчлена

f (х) = ах 2 + вх + с больше некоторого числа к, т.е. к<х 1 ≤х 2 .

Изобразим геометрическую модель данной задачи и запишем соответствующую систему неравенств.

Таблица 1. Модель – схема.

Задача № 4.

При каких значениях параметра а корни квадратного уравнения

Х 2 +(а+1)х–2а(а–1) = 0 меньше единицы?

Решение.

Рассмотрим функцию: у = х 2 +(а+1)х–2а(а–1)

Графиком функции является парабола. Ветви параболы направлены вверх. По условию задачи корни меньше 1, следовательно, парабола пересекает ось х (или касается оси х левее прямой х=1).

Схематично изобразим параболу (геометрическая модель задачи).

у(1)

От геометрической модели перейдем к аналитической.

    Так как имеются точки пересечения параболы с осью ох, то Д≥0.

    Вершина параболы находится левее прямой х=1, т.е. ее абсцисса х 0 <1.

    Замечаем, что у(1)>0, т.е. 1+(а+1)-2а(а-1)>0.

Приходим к системе неравенств.

;

Ответ: -0,5<а<2.

Общий случай № 2.

При каких значениях параметра а оба корня трехчлена f (х) = ах 2 + вх + с будут меньше некоторого числа к: х 1 ≤х 2 <к.

Геометрическая модель и соответствующая система неравенств представлена в таблице. Необходимо учитывать тот факт, что существуют задачи, где первый коэффициент квадратного трехчлена зависит от параметра а. И тогда ветви параболы могут быть направлены как вверх, так и вниз, в зависимости от значений параметра а. Этот факт будем учитывать при создании общей схемы.

Таблица № 2.

f(k)

Аналитическая модель

(система условий).

Аналитическая модель

(система условий).

Задача № 5.

При каких значениях параметра а 2 -2ах+а=0 принадлежат интервалу (0;3)?

Решение.

Рассмотрим квадратный трехчлен у(х) = х 2 -2ах+а.

Графиком является парабола. Ветви параболы направлены вверх.

На рисунке представлена геометрическая модель рассматриваемой задачи.

У

У(0)

У(3)

0 х 1 х 0 х 1 3 х

От построенной геометрической модели перейдем к аналитической, т.е. опишем ее системой неравенств.

    Имеются точки пересечения параболы с осью х (или точка касания), следовательно, Д≥0.

    Вершина параболы находится между прямыми х=0 и х=3, т.е. абсцисса параболы х 0 принадлежит промежутку (0;3).

    Замечаем, что у(0)>0, а также у(3)>0.

Приходим к системе.

;

Ответ: а

Общий случай № 3.

При каких значениях параметра а корни квадратного трехчлена принадлежат интервалу (k ; m ), т.е. k <х 1 ≤х 2 < m

Таблица № 3. Модель – схема.

f (x )

f (k )

f (m )

k х 1 х 0 х 2 m x

f(x)

0 k x 1 x 0 x 2 m

f(k)

f(m)

Аналитическая модель задачи

Аналитическая модель задачи

ЗАДАЧА № 6.

При каких значениях параметра а только меньший корень квадратного уравнения х 2 +2ах+а=0 принадлежит интервалу Х(0;3).

Решение.

2 -2ах+а

Графиком является парабола. Ветви параболы направлены вверх. Пусть х 1 меньший корень квадратного трехчлена. По условию задачи х 1 принадлежит промежутку (0;3). Изобразим геометрическую модель задачи, отвечающую условиям задачи.

Y (x )

Y (0)

0 x 1 3 x 0 x 2 x

Y (3)

Перейдем к системе неравенств.

1) Замечаем, что у(0)>0 и у(3)<0. Так как ветви параболы направлены вверх и у(3)<0, то автоматически Д>0. Следовательно, это условие записывать в систему неравенств не нужно.

Итак, получаем следующую систему неравенств:

Ответ: а >1,8.

Общий случай № 4.

При каких значениях параметра а меньший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. k <х 1 < m <х 2 .

Таблица № 4 . Модель – схема.

f(k)

k x 1 0 m x 2

f(m)

F(x)

f(m)

k x 1 m x 2 x

f(k)

Аналитическая модель

Аналитическая модель

ЗАДАЧА № 7.

При каких значениях параметра а только больший корень квадратного уравнения х 2 +4х-(а+1)(а+5)=0 принадлежит промежутку [-1;0).

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 +4х-(а+1)(а+5).

Графиком является парабола. Ветви направлены вверх.

Изобразим геометрическую модель задачи. Пусть х 2 – больший корень уравнения. По условию задачи только больший корень принадлежит промежутку.


y (х)

y (0)

x 1 -1 х 2 0 х

y (-1)

Замечаем, что у(0)>0, а у(-1)<0. Кроме этого ветви параболы направлены вверх, значит, при этих условиях Д>0.

Составим систему неравенств и решим ее.

Ответ:

Общий случай № 5.

При каких значениях параметра а больший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. х 1 < k <х 2 < m .

Таблица № 5. Модель – схема.

f(x)

f(m)

0 x 1 k x 2 m x

f(k)

f(x)

f(k)

x 1 0 k x 2 m

f(m)

Аналитическая модель

Аналитическая модель

З АДАЧА № 8.

При каких значениях параметра а отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+а-11

Графиком является парабола.

Геометрическая модель данной задачи представлена на рисунке.

Y (x )

X 1 -1 0 3 x 2 x

Y (-1)

Y (3)

При этих условиях Д>0, так как ветви параболы направлены вверх.

Ответ: а

Общий случай № 6.

При каких значениях параметра а корни квадратного трехчлена находятся вне заданного интервала (k ; m ), т.е. х 1 < k < m <х 2 .

х 2 -(2а+1)х+4-а=0 лежат по разные стороны числа от числа 3?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+4-а.

Графиком является парабола, ветви направлены вверх (первый коэффициент равен 1). Изобразим геометрическую модель задачи.


X 1 3 x 2 x

Y (3)

Перейдем от геометрической модели к аналитической.

  1. Замечаем, что у(3)<0, а ветви параболы направлены вверх. При этих условиях Д>0 автоматически. +вх+с меньше некоторого числа к: х 1 ≤ х 2

    3. При каких значениях параметра а корни квадратного трехчлена ах 2 +вх+с принадлежат интервалу (к,т) к<х 1 ≤х 2

    4. При каких значениях параметра а только меньший корень квадратного трехчлена ах 2 +вх+с принадлежит заданному интервалу (к,т),т.е.к<х 1 <т<х 2

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Корни квадратного уравнения х 2 -4х-(а-1)(а-5)=0, больше чем 1.

    Ответ: 2<а<4

    Корни квадратного уравнения х 2 +(а+1)х-2а(а-1)=0, меньше чем 1.

    Ответ:

    -0,5<а<2

    Корни квадратного уравнения х 2 -2ах+а=0, принадлежат интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    Только меньший корень уравнения х 2 -2ах+а=0, принадлежит интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Только больший корень уравнения х 2 +4х-(а+1)(а+5)=0, принадлежит промежутку [-1;0).

    Ответ:(-5;-4]U[-2;-1)

    Отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0.

    Ответ:-1 <а<3

    Корни квадратного уравнения х 2 -2(а+1)х+4-а=0, лежат по разные стороны от числа 3.

    Ответ( 10 / 7 ;∞)

    Спасибо за урок ребята!



При каком значении параметра a один корень уравнения

больше 1, а другой меньше 1?

Рассмотрим функцию -


Цель работы:

  • Исследование всевозможных особенностей расположения корней квадратного трехчлена относительно заданной точки и относительно заданного отрезка на основе свойств квадратичной функции и графических интерпретаций.
  • Применение изученных свойств при решении нестандартных задач с параметром.

Задачи:

  • Изучить различные приемы решения задач на основе исследования расположения корней квадратного трехчлена графическим методом.
  • Обосновать всевозможные особенности расположения корней квадратного трехчлена, разработать теоретические рекомендации для решения нестандартных задач с параметром.
  • Овладеть рядом технических и интеллектуальных математических умений, научится их использовать при решении задач.

Гипотеза:

Использование графического метода в нетрадиционных задачах с параметром упрощает математические выкладки и является рациональным способом решения.


тогда и только тогда:

1. Оба корня меньше числа А,

2. Корни лежат по разные стороны от числа А,

тогда и только тогда:

  • тогда и только тогда:

тогда и только тогда:

3. Оба корня больше числа А, то есть


Найти все значения параметра а, для которых один корень уравнения

больше 1, а другой меньше 1.


При каких значениях параметра уравнение

имеет два различных корня одного знака?

-6

-2

3

a


1. Оба корня лежат между точками A и B , то есть

тогда и только тогда:

2. Корни лежат по разные стороны от отрезка

тогда и только тогда:

3. Один корень лежит вне отрезка, а другой на нем, то есть

тогда и только тогда:


Исследуйте уравнение

на количество корней в зависимости от параметра.

уравнение не имеет решений.

имеет одно решение.


Исследуйте уравнение

на количество корней в

зависимости от параметра.


Если один корень лежит на отрезке, а другой слева от него.

Если один корень лежит на отрезке, а другой справа от него.

первоначальное уравнение будет иметь два различных корня.

при которых

уравнение имеет три различных корня.

Ответ: при

при которых

первоначальное уравнение будет иметь два

различных корня.

уравнение имеет четыре различных корня.