Диоксиновая интоксикация. Диоксин

Но, каждый должен знать: симптомы, первая помощь, чего нельзя делать в быту и употреблять, чтобы не получить отравление диоксином.

Друзья блогеры, вермиколлеги и просто гости, доброе время суток!

Каждый из нас должен знать :

  1. Чего нельзя употреблять , чтобы не получить отравление диоксином.
  2. Что готовить и чем приправлять, чтобы снизить содержание диоксина , полученного ранее.
  3. Как исхитриться на улице, чтобы не сделать убийственный вдох дыма отравленного диоксином.
  4. В конце статьи можете узнать и последствия попадания диоксинов в организм — необратимых и часто смертельных .

Симптомы отравления

Диоксины проникают в организм через пищеварительный тракт либо дыхательным путем.

Токсический эффект проявляется спустя длительное время с начала поступления яда в организм.

Признаки отравления диоксином:

  • резкое снижение аппетита,
  • вплоть до полного отказа от приема пищи;
  • истощение; выраженная мышечная слабость;
  • специфические угри;
  • отеки лица, а в дальнейшем и всего тела.

Как и Вы - мы любим селёдочку, но только голландскую и шведскую, отловленную в Норвегии, поскольку отечественная может обернуться для нас тяжёлыми последствиями, если не будем разборчивы при её выборе.

Посещение бассейнов где для дезинфекции воды применение хлор также приводит к накоплению диоксинов в нашем организме.

Чего не употреблять, чтобы не получить отравление диоксином

Все продукты выращенные в открытом грунте в регионах с неблагоприятной техногенной обстановкой .

  1. В районах расположения химических и металлургических предприятий.
  2. Вблизи целлюлозно-бумажных комбинатов.
  3. Рядом с мусороперерабатывающими заводами.
  4. Дым от фейерверков.
  5. В садах и огородах где когда-либо жгли любую синтетику.

За 15 минут прогулки, только в одном квартале, прилегающем к центральной улице в курортном городе Минеральные Вод- насчитал пять активных источников отравления диоксином, раздуваемых ветром.
В том числе рядом со школой № 6 и больницей.

Период полураспада диоксинов в почве 30 лет, меньше чем в Чернобыле, но зато везде вокруг нас.

Обойдите вокруг хотя бы один квартал в своём городе и наверняка увидите на улицах - если не дымящие, то пылящие диоксинами кострища или мусорные ящики с остатками расплавленной синтетики.

Катастрофическую техногенную среду вокруг себя создаём мы сами из-за своей дремучей экологической безграмотности.

Резюме - если не учитывать направление ветра, то по улица Мин-Вод можно гулять только в противогазе и химкомплекте.

Что готовить и чем приправлять, чтобы снизить содержание диоксина, полученного ранее

Очищающие ингредиенты в рецептах наших блюд.

К примеру на один из дней.

На завтрак.

  • Пшённая каша - 200 гр.
  • Свои сухофрукты - 50 гр.
  • Мёд - 1 ч. л.
  • Гранат - 1 ст. л.
  • Кизил - 1 ч. л.
  • Чишки - 2-3 шт.

На обед.

  • Закуска из отварной свеклы с чесноком - 30-50 гр.
  • Тыквенный суп с чесноком - 250-300 гр.

Полдник - что-нибудь одно.

  • Яблоко - 100 гр.
  • Мандарин - 100 гр.

На ужин.
Вареники с земляникой.
За час до сна.
Ряженка - 100 гр.

Как исхитриться на улице, чтобы не сделать убийственнвй вдох дыма отравленного диоксином

Выбираю такой путь, чтобы ветер относил не в мою сторону сверх ядовитый сладковато-приторный запах горящей синтетики.

Или задерживаю дыхание, проходя мимо курящегося диоксином мусорного контейнера - подобного этому, а таковых в городе сотни.


Источниками диоксинового дыма зачастую оказываются :

  1. Мусорные контейнеры и урны с тлеющим в них синтетической от брошенного окурка;
  2. Горящие костры на улицах в Мин Водах;
  3. Раздуваемые ветром потухшие кострища с ядовитым пеплом с диоксинами;
  4. Даже мангалы рядом с кафе и шашлычными.

Все мы не прочь, хотя бы изредка во дворе своей усадьбы, на даче побаловать семейство ароматным шашлычком по собственному рецепту на горящих в мангале углях или в кафе.
Но если же в подлежащем преданию огню есть хоть малейшая доля какой-либо синтетики, то ОСТАНОВИТЕСЬ!!!


Прежде чем поднести спичку к чему-либо задумайтесь - не лучше ли отдать эту химию не сжигая на пользу « ».
Для чего плотно набейте всю синтетику в сетчатый мешок и положите его в или на большой глубине храните .
И надеюсь сделать это, нам поможет эта информация, как легко и быстро можно порезать картон для верми септика.

А вот теперь можете учить последствия попадания диоксинов в организм — необратимых и часто смертельных

Даже cжигание в специальных печах при температуре выше +1 000°C, не дает полной уверенности в том, что опасные вещества полностью уничтожаются, в связи с чем следует рассмотреть вопрос о предотвращении выделения в атмосферу загрязняющих микрочастиц, для чего необходима установка дорогостоящих фильтров дымовых газов.
Мы стараемся вообще ничего не жечь , а закладываем всё в ящики, как этот картон.

Наибольшей экологической безопасности при сжигании любых бытовых отходов, можно достигнуть используя реакторы высокотемпературного пиролиза с внешним обогревом .

Особое беспокойство вызывают очень стойкие органические соединения - диоксины , которые, возможно, образуются в процессе сжигания мусора и могут привести к серьёзным последствиям для окружающей среды местности, находящейся в непосредственной близости от места сжигания.

Диоксины - тривиальное название полихлорпроизводных дибензо -1,4-диоксина.

Название происходит от сокращённого названия тетрахлорпроизводного - 2,3,7,8-тетрахлордибензо -1,4-диоксина; соединения с другими заместителями - галогенидами - также относятся к диоксинам.

Диоксины - являются кумулятивными ядами и относятся к группе опасных ксенобиотиков.

Диоксины - это глобальные экотоксиканты, обладающие мощным мутагенным, иммунодепрессантным, канцерогенным, тератогенным и эмбриотоксическим действием.
Они слабо расщепляются и накапливаются, как в организме человека, так и в биосфере планеты, включая воздух, воду, пищу.
Величина летальной дозы для этих веществ достигает 10−6 г на 1 кг живого веса, что существенно меньше аналогичной величины для некоторых боевых отравляющих веществ, например, для зомана, зарина и табуна (порядка 10−3 г/кг).

Механизм действия диоксинов.

  1. Диоксины, подавляя иммунитет и интенсивно воздействуя на процессы деления и специализации клеток, провоцируют развитие онкологических заболеваний .
  2. Вторгаются диоксины и в сложную отлаженную работу эндокринных желез.
  3. Вмешиваются в репродуктивную функцию, резко замедляя половое созревание и нередко приводя к женскому и мужскому бесплодию .
  4. Они вызывают глубокие нарушения практически во всех обменных процессах, подавляют и ломают работу иммунной системы, приводя к состоянию так называемого «химического СПИД’а ».
  5. Недавние исследования подтвердили, что диоксины вызывают уродства и проблемное развитие у детей.

Пути проникновения диоксинов нам организм:

      • 90 процентов - с водой и пищей через желудочно-кишечный тракт,
      • остальные 10 процентов - с воздухом и пылью через лёгкие и кожу.
      • циркулируют в крови , откладываясь в жировой ткани и липидах всех без исключения клеток организма.
      • Через плаценту и с грудным молоком они передаются плоду и ребенку.

Катастрофа в Севезо плачевный пример отравления диоксинами
Взрыв 11 июля 1976 года в итальянском городе Севезо на химическом заводе швейцарской фирмы ICMESA выбросил в атмосферу облако диоксина. Облако повисло над промышленным пригородом, а затем яд стал оседать на дома и сады.
У тысяч людей начались приступы тошноты, ослабло зрение, развивалась болезнь глаз, при которой очертания предметов казались расплывчатыми и зыбкими.
Трагические последствия случившегося начали проявляться через 3-4 дня.
К 14 июля амбулатории Севезо переполнили заболевшие люди.
Среди них было много детей, страдающих от сыпи и гноящихся нарывов.
Они жаловались на боли в спине, слабость и тупые головные боли.
Пациенты рассказывали докторам, что животные и птицы в их дворах и садах начали внезапно умирать.
Причина токсичности диоксинов заключается в способности этих веществ точно вписываться в рецепторы живых организмов и подавлять или изменять их жизненные функции.

Острая токсичность
Доза, раздражающая кожу - 0,0003 миллиграмма на килограмм веса
Период их полураспада в окружающей среде приблизительно 10 лет.
Попадая в организм человека или животных, накапливаются в жировой ткани и очень медленно разлагаются и выводятся из организма (период полураспада в организме человека составляет от 7-11 лет).
Диоксины также образуются как нежелательные примеси в результате различных химических реакций при высоких температурах и в присутствии хлора.

Основные причины эмиссии диоксинов в биосферу

      1. Использование любых высокотемпературных технологий
      2. Хлорирование и переработка хлорорганических веществ
      3. Сжигание отходов производства.
      4. Наличие в уничтожаемом мусоре повсеместно распространённого поливинилхлорида и других полимеров, различных соединений хлора способствует образованию в дымовых газах диоксинов.
      5. До температуры 900 °C на диоксины не действует термическая обработка.

В часовой велосипедной прогулке по Хаапсалу коснулся вопроса костров и надзора над ними.

Даже перед тем, как подложить дрова в камин мы тщательно проверяем,

а не прилип ли где-нибудь кусочек полиэтилена?

А Вы?

From: Чугунова Галина
To: Viktor Dulin
Sent: Friday, March 14, 2014 6:34 PM
Subject: Моё мнение о статье
Спасибо, Виктор, что напомнили всем о необходимости заботиться друг о друге и о своих близких!
В наших садовых хозяйствах нередко находится кто-то «умный» и начинает сжигать по весне и по осени все подряд.
Его не останавливает ничье мнение: «сам хозяин у себя на участке и все тут!»
Наверное, нужны поправки в уста о том, что нельзя сжигать химические отходы, но как их применить, если в общем саду всего несколько человек, и они заняты своими неотложными делами?
Вопросов много, надо бы шире размещать Ваши публикации, но как это реализовать, если те, кто вредит себе и окружающим, никогда не будут всего этого читать?
Будьте здоровы! Успехов в новом сезоне!
С уважением, Галина.

To: Чугунова Галина
Cc: Eifo
Sent: Saturday, March 15, 2014 4:42 AM
Subject: Re: Моё мнение о статье:
Галина Исаевна, огромное спасибо за отзыв!
Реализовать очень просто – чтобы шире и быстрее распространялись наши публикации всего-то нужно нажать на кнопки социальных сетей и другие — под каждой нашей статьёй, и каждым из посетителей этих страничек.
И наша общая боль – по загубливаемой природе и нас самих, коснётся всех с кем мы общаемся в Интернете.
Разделяю Ваше мнение насчёт «умных», а если думаете, что в Эстонии нет таковых, то глубоко ошибаетесь и мой ответ это ответный крик души.
Извините за совпадение имён в тексте ниже, но это живой и совсем недавний прискорбный факт.
Вот и наш сосед -«умник» – на десяток лет старше нас, большой любитель жечь всё подряд в бочке за изгородью участка.
А ветер-то у нас в основном западный и даже когда в бочке ничего не горит микрочастицы диоксинов несёт в основном на его участок, который он непрерывно косит и два раза в год буквально наизнанку выворачивает грядки культиватором сантиметров на 30-40 в глубину и это длится больше 10 лет.
Так вот, в сентябре 2013-го похоронил жену, умершую от рака.
Она бедняга, над теми чёрными, в прямом и переносном смысле, грядками, пропитанными насквозь диоксинами, на коленках проводила целые дни, голыми руками выщипывая каждую травинку.
Под сетчатой изгородь с сорняками «умник» борется опрыскивая «Раундапом», над капустой, тоже колдует с пульвелизатором и какой-то в нём зловонной дрянью, разводимой из ампул.
С компьютером, интернетом наши старшие соседи не дружат, а вот про про «химические» советы Октябрины («Ноябриевны» — как я шучу, когда говорим о её передачах с БМП) из ТВ-ящика, в дачных разговорах с нами все соседи упоминают частенько и следуют её рекомендациям, а не нашему примеру.
Против частых и многих «химческих» по ЦТВ-передач с нашими единичными и только для Эстонии «Ангелы Земли» не попрёшь.
Теперь при встрече с моей подругой, сосед-«умник» Николай горюет и льёт слёзы по своей Галечке, которую сам и угробил, а со мной делится своим наблюдением – вот мол, как природа всё чувствует – не взошла ни одна морковочка, что посеяла весной Галенька.
Мы никогда не ругаемся ни с кем из соседей и сколько раз, я его и не только его, умолял ничего не жечь – просто отдавать нам, если уж так жалко денег за вывоз мусора, и не брызгать гербицидами хотя бы вдоль нашей изгороди, а когда он снова что-то палит и ветер в нашу сторону, мы спешно всё бросаем и уезжали с дачи, и он это прекрасно знает и всё равно бочка, которую видно за его верми ложем, не пустует.
Выход один, сделать последнее китайское предупреждение с угрозой «настучать» в инспекцию по охране за окружающей средой, а там реагируют мгновенно и

Д иоксин - синтетический яд. Он образуется при температурах от 250 до 800°С как побочный продукт многих технологических процессов, использующих хлор и углерод. Наибольшее количество диоксинов выбрасывают металлургические и бумажные предприятия, многие химические заводы, фабрики по выпуску пестицидов и все установки для сжигания отходов.

Опасен не только своей высокой токсичностью, но и способностью чрезвычайно долго сохраняться в окружающей среде, эффективно переноситься по цепям питания и тем самым длительно воздействовать на живые организмы. Кроме того, даже в относительно безвредных количествах диоксин сильно повышает активность специфических ферментов печени, которые разлагают некоторые вещества синтетического и природного происхождения; при этом в качестве побочного продукта распада выделяются опасные яды. При невысокой концентрации организм успевает выводить их без вреда для себя. Но даже небольшие дозы диоксина резко увеличивают выброс ядовитых веществ. Это может привести к отравлению относительно безвредными соединениями, которые в небольшой концентрации всегда присутствуют в пище, воде и воздухе, - пестицидами, бытовыми химическими соединениями и даже лекарствами.

Данные последних лет показали, что основная опасность диоксинов заключается не столько в острой токсичности, сколько в кумулятивности действия и отдаленных последствиях хронического отравления малыми дозами.

Они аккумулируются в тканях (в основном жировых) живых организмов, накапливаясь и поднимаясь вверх по цепи питания. На самом верху этой цепи находится человек, и около 90 % диоксинов поступает к нему с животной пищей. Стоит однажды попасть диоксину в организм человека и он остается там навсегда и начинает свое долговременное вредное воздействие.

Причина токсичности диоксинов заключается в способности этих веществ точно вписываться в рецепторы живых организмов и подавлять или изменять их жизненные функции.

Около 90–95% диоксинов поступает в организм человека при потреблении загрязненной пищи (в основном животной) и воды через желудочно-кишечный тракт, остальные 5–10% - с воздухом и пылью через лёгкие и кожу. Попадая в организм, эти вещества циркулируют в крови, откладываются в жировой ткани и липидах без исключения всех клеток организма.

Диоксины плохо растворяются в воде и немного лучше в органических растворителях, поэтому эти вещества чрезвычайно химически стойкими соединениями. Диоксины практически не разлагаются в окружающей среде десятки, а то и сотни лет, оставаясь неизменными под влиянием физических, химических и биологических факторов среды.

Отчет Управления по охране окружающей среды США за 1998 год показывает, что взрослые американцы, которые получают диоксины только с пищей, главным образом с мясом, рыбой и молочными продуктами, уже несут в себе в среднем дозу диоксина, близкую к критической (вызывающей заболевания). Она оценивается в 13 нанограммов диоксинов на килограмм веса тела (нг/кг; нанограмм - миллиардная доля грамма; нг/кг - одна весовая часть на триллион). Казалось бы, 13 нг/кг - совершенно мизерная величина, и в абсолютном значении так оно и есть. Однако по сравнению с количествами, вызывающими серьезные нарушения в организме, 13 нг/кг - серьезная угроза здоровью. При этом 5% американцев 2,5 миллиона человек) несут в себе диоксиновую нагрузку, вдвое превышающую среднюю.

В организме теплокровных диоксины первоначально попадают в жировые ткани, а затем перераспределяются, накапливаясь преимущественно в печени, меньше - в тимусе (железе внутренней секреции) и других органах, и выводятся с большим трудом.

Действие диоксинов на человека обусловлено их влиянием на рецепторы клеток, ответственных за работу гормональных систем. При этом возникают эндокринные и гормональные расстройства, изменяется содержание половых гормонов, гормонов щитовидной и поджелудочной желёз, что увеличивает риск развития сахарного диабета, нарушаются процессы полового созревания и развития плода. Дети отстают в развитии, их обучение затрудняется, у молодых людей появляются заболевания, свойственные старческому возрасту. В целом повышается вероятность бесплодия, самопроизвольного прерывания беременности, врождённых пороков и прочих аномалий. Изменяется также иммунный ответ, а значит, увеличивается восприимчивость организма к инфекциям, возрастает частота аллергических реакций, онкологических заболеваний.

При остром отравлении диоксином наблюдаются потеря аппетита, слабость, хроническая усталость, депрессия, катастрофическая потеря веса. Летальный исход может наступить через несколько дней и даже несколько десятков дней, в зависимости от дозы яда и скорости его поступления в организм. Правда, все это происходит при диоксиновой нагрузке от 96 до 3000 нг/кг - в 7 раз более высокой, чем у среднего жителя США. В крови рабочих-мужчин, подвергшихся влиянию диоксина, обнаружено уменьшение уровня тестостерона и других половых гормонов. Особенно тревожно то, что эти люди имели диоксиновую нагрузку, лишь в 1,3 раза превышающую среднюю.

Последствия попадания диоксина в организм. Молекулярный механизм воздействия диоксина. Легко растворяясь в жирах, диоксин беспрепятственно проникает в клетки сквозь цитоплазматическую мембрану. Там он накапливается в липидах либо связывается с различными молекулярными структурами клетки. Образовавшиеся комплексы внедряются в цепочки ДНК, активизируя тем самым целый каскад реакций, приводящих к нарушению обмена веществ, работы нервной системы, вызывая гормональные расстройства, изменения кожных покровов, ожирение. К наиболее тяжелым последствиям приводит активация гена цитохрома Р4501А1, фермента, косвенно способствующего генетическим мутациям клеток и развитию рака. Из-за высокой стабильности молекулы диоксина процесс активации генов может продолжаться очень длительное время, нанося непоправимый вред организму.

Диоксин попадает в организм по преимуществу с пищей. 95–97% диоксина мы получаем из мяса, рыбы, яиц и молочных продуктов. Особенно сильно диоксин накапливается в рыбе. Это связано с тем, что ТХДД - гидрофобное вещество, оно «боится» воды. Попав в водную среду, диоксин всячески стремится ее покинуть - например, проникая в организмы обитателей водоемов. В итоге содержание диоксина в рыбе может в сотни тысяч раз превышать его содержание в окружающей среде. Жители Швеции и Финляндии 63% диоксинов и 42% фуранов получают через рыбные продукты.

Не обладая генотоксическим действием, диоксины не поражают генетический материал клеток организмов непосредственно. Тем не менее, они особенно эффективно поражают именно генофонд аэробных популяций, поскольку именно они разрушают общий механизм защиты генофонда от воздействия внешней среды. Условия среды могут резко усилить мутагенное, эмбриотоксичное и тератогенное действие.

Еще одно воздействие генетического плана заключается в том, что диоксины разрушают механизм адаптации аэробных организмов к внешней среде. Как следствие, возрастает их чувствительность к различного рода стрессам и к многочисленным химическим веществам, являющимся постоянными спутниками организмов в современной цивилизации. Последний аспект практически является двусторонним: синергисты диоксинов усиливают их собственное токсическое действие, а диоксины, в свою очередь, провоцируют токсичность ряда нетоксичных веществ. Социальное следствие этой и предшествующих особенностей диоксиновых интоксикаций - последовательное и малоконтролируемое ухудшение генетического здоровья пораженных популяций.

Для токсического действия диоксинов характерен длительный период скрытого действия. Кроме того, признаки диоксиновой интоксикации очень многообразны и в значительной степени определяются, на первый взгляд, их совокупностью, а также отягощенной предрасположенностью организма к тому или иному заболеванию.

Полностью избежать контакта с диоксинами вероятнее всего не удастся никому. Общая загрязненность окружающей среды и продуктов питания не оставляет никому такого шанса. Однако уменьшить поступление ядовитых веществ в организм все же возможно. Соблюдая определённую «гигиену» есть надежда получить меньшие дозы диоксина.

Прежде всего, следует стараться снизить риск попадания диоксина в организм. Для этого нужно вести здоровый образ жизни, питаться органической, преимущественно растительной (растения накапливают меньше диоксинов, чем животные и рыба), экологически чистой - выращенной на чистых почвах, пищей. Жирные сорта рыбы особенно опасны, часто содержат в жире большое количество токсичных соединений. Также это связано с антропогенным загрязнением окружающей среды, а, следовательно, даже дорогая красная рыба может быть составом диоксинов.

Можно полностью перейти преимущественно на растительную пищу - в ней диоксинов намного меньше, потому что в растениях почти нет жиров. Не разлагают диоксин и другие способы приготовления мяса - жарка, запекание в духовке, не помогут в этом и пароварки, микроволновые печи, скороварки.

По той же причине не стоит покупать евро продукты, поступающие на российский рынок, куда может быть добавлен жир, яйца и даже молоко - это майонез, макароны, бульонные кубики, готовые супы, торты, мороженое, и т.п.

Пить необходимо только очищенную воду, ни в коем случае не пить кипяченую хлорированную воду (диоксины могут образовываться при кипячении хлорированной воды). При кипячении хлорированной воды, органические соединения вступают в реакцию с хлором (в мегаполисах в водопроводной воде обнаруживают более 240 соединений) и образует хлорорганические соединения, такие, как трихлорметан и диоксин (при попадании фенола в воду образуется диоксин ). Во многих странах уже отказались от обеззараживания воды хлорированием.

Можно очищать воду фильтрами для очистки воды, но менять в нем картриджи нужно часто, чтобы вместо очищенной воды не получить массу бактерий из загрязненного фильтра. На сегодня существует такой современный материал - активированные углеродные волокна, превосходящие по качеству очистки активированный уголь. Волокна способны поглощать ионы тяжелых металлов и подавлять жизнедеятельность бактерий.

Также шунгит не хуже активированного угля обладает способностью очищать воду от многих органических веществ - в том числе тяжелых металлов

Благодаря организованной особым образом кристаллической решетке, в основе которой лежит углерод, шунгит имеет способность очищать воду и насыщать ее специфическим минеральным составом, предавая ей уникальные целебные качества.

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

История человечества знает множество случаев появления в биосфере больших количеств потенциально опасных веществ. Воздействие этих ксенобиотиков (так, напомним, называют вещества, неприемлемые для живых организмов) иногда было причиной трагических последствий, примером которых может служить история с инсектицидом ДДТ. Еще большую печальную известность приобрел диоксин. Долгое время название этого вещества ассоциировалось с Южным Вьетнамом и итальянским городом Севезо, жители которых сполна ощутили насколько смертоносно данное соединение. Но со временем география диоксинов расширилась до размеров всей планеты.

Диоксин, вернее – 2,3,7,8-тетрахлордибензо-пара-диоксин – представляет собой соединение, содержащее два бензольных кольца, в которых по два атома водорода замещено на хлор. Кольца соединены двумя мостиками из атомов кислорода:


Столь простая и изящная формула принадлежит самому токсичному из всех небелковых ядов, действие которого сильнее цианидов, стрихнина, кураре, зомана, зарина, табуна, VX-газа. Только биологические токсины превышают диоксин по токсичности.

Токсичность диоксина и некоторых ядов

Вещество Животное Минимальная летальная доза, микромоль/кг
Ботулинический токсин мышь 3,3.10 -17
Дифтерийный токсин мышь 4,2.10 -12
Диоксин морская свинка 3,1.10 -9
Кураре мышь 7,2.10 -7
Стрихнин мышь 1,5.10 -6
Диизопропилфторфосфат мышь 1,6.10 -5
Цианид натрия мышь 3,1.10 -4

____________________________________________
K1 Таблица взята из статьи:
А.В. Фокин, А.Ф. Коломиец Диоксин - проблема научная или социальная? - журнал Природа № 3, 1985 г. и, вероятно, содержит опечатку: судя по порядку величины единица измерения должна быть не микромоль/кг, а моль/кг.

Но диоксин является всего лишь одним из представителей большого класса соединений, которые представляют совсем не меньшую опасность. Удалите из молекулы один атом кислорода – и образуется почти столь же токсичный


тетрахлордибензофуран. Удаление обоих атомов кислорода лишь частично уменьшит опасность. Количество и положение атомов хлора в бензольном ядре совсем не обязательно должно совпадать с таковыми для 2,3,7,8-тетрахлордибензо-пара-диоксина:


Атомы хлора могут быть полностью или частично замещены на бром:


Не так просто подсчитать, сколько высокотоксичных соединений можно получить, используя такие простые перестановки атомов. На данный момент известны тысячи представителей диоксинов и их число продолжает расти.

Таким образом, под диоксинами следует подразумевать не какое-то конкретное вещество, а несколько десятков семейств, включающих трициклические кислородсодержащие ксенобиотики, а также семейство бифенилов, не содержащих атомы кислорода. Это все 75 полихлорированных дибензодиоксинов, 135 полихлорированных дибензофуранов, 210 веществ из броморганических семейств и несколько тысяч смешанных хлорбромсодержащих. Нельзя забывать и об изомерии. Классический диоксин, с которого мы начали,- это лишь один (и самый токсичный) из 22 возможных изомеров Cl 4 -дибензо-пара-диоксинов.

Молекула диоксина имеет форму прямоугольника размерами 3х10 Å. Это позволяет ей удивительно точно вписываться в рецепторы живых организмов. Диоксин - один из самых коварных ядов, известных человечеству. В отличие от обычных ядов, токсичность которых связана с подавлением ими определенных функций организма, диоксин и подобные ему ксенобиотики поражают организм благодаря способности сильно повышать (индуцировать) активность ряда окислительных железосодержащих ферментов (монооксигеназ), что приводит к нарушению обмена многих жизненно важных веществ и подавлению функций ряда систем организма.

Диоксин опасен по двум причинам. Во-первых, являясь наиболее сильным синтетическим ядом, он отличается высокой стабильностью, долго сохраняется в окружающей среде, эффективно переносится по цепям питания и таким образом длительное время воздействует на живые организмы. Во-вторых, даже в относительно безвредных для организма количествах диоксин сильно повышает активность узкоспецифичных монооксигеназ печени, которые превращают многие вещества синтетического и природного происхождения в опасные для организма яды. Поэтому уже небольшие количества диоксина создают опасность поражения живых организмов имеющимися в природе обычно безвредными ксенобиотиками.

Откуда вообще взялся диоксин? Массовое производство хлорфенолов и гербицидов началось в тридцатые-сороковые годы в США и Германии.

Но первое упоминание о диоксинах датировано лишь 1957 годом. Почему? Потому что они - продукт незапланированный, побочный. Назвать какого-то одного первооткрывателя диоксинов трудно. К их открытию привел многолетний опыт человеческих трагедий и сопоставлений по аналогии. Если бы от диоксинов не было столько вреда, может, их и открывать бы никогда не пришлось.

В начале 30-х годов фирмой "Дау Кемикал" (США) был разработан способ получения полихлорфенолов из полихлорбензолов щелочным гидролизом при высокой температуре под давлением и показано, что эти препараты, получившие название дауцидов, являются эффективными средствами для консервации древесины.

Уже в 1936 г. появились сообщения о массовых заболеваниях среди рабочих шт. Миссисипи, занятых консервацией древесины с помощью этих агентов. Большинство из них страдали тяжелым кожным заболеванием. В 1937 г. были описаны случаи аналогичных заболеваний среди рабочих завода в Мидланде (шт. Мичиган, США), занятых в производстве дауцидов. Расследование причин поражения в этих и многих подобных случаях привело к заключению, что хлоракногенный фактор присутствует только в технических дауцидах, а чистые полихлорфенолы подобным действием не обладают.

Расширение масштабов поражения полихлорфенолами в дальнейшем было обусловлено их использованием в военных целях. Во время второй мировой войны в США были получены первые гербицидные препараты гормоноподобного действия на основе 2,4-дихлор- и 2,4,5-трихлорфеноксиуксусных кислот (2,4-Д и 2,4,5-Т). Эти препараты разрабатывались для поражения растительности Японии и были приняты на вооружение армией США вскоре после войны. Одновременно эти кислоты, их соли и эфиры стали использоваться для химической прополки сорняков в посевах злаковых культур, а смеси эфиров 2,4-Д и 2,4,5-Т - для уничтожения нежелательной древесной и кустарниковой растительности. Это позволило военно-промышленным кругам США создать крупнотоннажные производства 2,4-дихлор-, 2,4,5-трихлорфенолов, а на их основе кислот 2,4-Д и 2,4,5-Т.

Изучение свойств 2,4-Д и ее производных явилось мощным импульсом к становлению современной химии гербицидов. Совсем по-иному развивались события, связанные с расширением масштабов производства и применения 2,4,5-Т.

В 1949 стало извесно о массовом заболевании, проявляющемся в виде множества покрывающих кожу незаживающих фурункулов, которое имело место после взрыва на заводе «Nitro» в американском штате Виржиния. На предприятии производился 2,4,5-трихлорфенол. Пострадали тогда двести с лишним человек, и примерно у половины из них обнаружили симптомы какой-то новой болезни. Впрочем, сразу же вспомнили, что известна эта болезнь еще с конца прошлого века и даже название имеет - хлоракне (тогда немецкие врачи сочли ее чисто кожной и причину усмотрели единственно в действии хлора). 32 человека тогда же скончались. Более половины оставшихся в живых не смогли излечиться вплоть до последних лет.

В 50-е годы появились сообщения о частых поражениях техническими 2,4,5-Т и трихлорфенолом. 1953 год. Авария на заводе фирмы «BASF» в ФРГ. И снова у 55 пострадавших - хлоракне. 1956 год. Взрыв на заводе фирмы «Rone Poulenc» во Франции. И снова та же странная болезнь, возбудитель которой неизвестен, но теперь хоть все поняли, что это точно не хлор...

Между тем тогда в ФРГ и США над проблемой хлоракне работало несколько групп ученых. Г. Гофман (ФРГ) выделил в чистом виде хлоракногенный фактор технического трихлорфенола, изучил его свойства, физиологическую активность и приписал ему строение тетрахлордибензофурана. Синтезированный образец этого соединения действительно оказывал на животных такое же действие, как и технический трихлорфенол.

В это же время К. Шульц (ФРГ), специалист в области кожных заболеваний, обратил внимание на то, что симптоматика поражения его клиента, работающего с хлорированными дибензо-пара-диоксинами, идентична симптоматике поражения техническим трихлорфенолом. Проведенные им исследования показали, что хлоракногенным фактором технического трихлорфенола действительно является 2,3,7,8-тетрахлордибензо-пара-диоксин (диоксин) - неизбежный побочный продукт щелочной переработки симметричного тетрахлорбензола. Позже сведения К. Шульца получили подтверждение в работах других ученых.

Высокая токсичность диоксина была установлена в 1957 г. и в США. Это произошло после несчастного случая с американским химиком Дж. Дитрихом, который, занимаясь синтезом диоксина и его аналогов, получил сильное поражение, напоминающее поражение техническим трихлорфенолом, и был госпитализирован на длительный срок. Этот факт, как и многие другие инциденты на производствах трихлорфенола, был скрыт от общественности, а синтезированные американским химиком галогенированные дибензо-п-диоксины изъяты для изучения военным ведомством.

Далее-то открытия следуют по нарастающей. Удается, например, установить, что причиной азиатских болезней Юшо и Ю-Ченг (названы они в память соответственно японского и тайваньского поселков, жители которых пострадали в 60-70-е годы от жестокого отравления) послужил собрат классического диоксина - тетрахлордибензофуран, формула которого уже изображена выше. Общее число пострадавших при этих двух катастрофах составило примерно четыре тысячи человек.

К этому времени, несмотря на высокую токсичность, 2,4,5-трихлорфенол проник во многие сферы производства. Его натриевая и цинковая соли, а также продукт переработки - гексахлорофен стали широко применяться в качестве биоцидных препаратов в технике, сельском хозяйстве, текстильной и бумажной промышленности, в медицине и т.д. На основе этого фенола приготавливались инсектициды, препараты для нужд ветеринарии, технические жидкости различного назначения. Однако наиболее широкое применение 2,4,5-трихлорфенол нашел в производстве 2,4,5-Т и других гербицидов, предназначенных не только для мирных, но и для военных целей. В результате к 1960 г. производство трихлорфенола достигло внушительного уровня - многих тысяч тонн в год.




Биоцидные и гербицидные препараты, получаемые из трихлорфенола.


Схема образования диоксина при щелочном гидролизе тетрахлорбензола. Эту реакцию обычно проводят в растворе метанола (СН 3 ОН) под давлением при температуре выше 165°С. Образующийся при этом трихлорфенолят натрия всегда частично превращается в предиоксин, а затем в диоксин. С повышением температуры до 210°С скорость этой побочной реакции резко возрастает, а в более жестких условиях основным продуктом реакции становится диоксин. В этом случае процесс неконтролируем и в производственных условиях завершается взрывом.

Но диоксин является причиной куда более серьезных болезней чем хлоракне. Это начали понимать только после американо-вьетнамской войны. За период с 1961 по 1970 годы американская армия под предлогом борьбы с партизанами распылила на территории Южного Вьетнама 57 тысяч тонн дефолианта «Agent Orange» для уничтожения растительности. Подобные операции пришлось прекратить из-за многочисленных сообщений о раковых и других заболеваниях участников событий, в том числе и военнослужащих США и Австралии, о рождении у них детей-уродов.

Интересно, что сам по себе этот препарат с таким красивым названием (видите, красота опять обманчива) не может вызвать ничего подобного. Но из-за несовершенства его производства упомянутые 57 тысяч тонн дефолианта содержали 170 кг (0,0003 процента!) диоксина, который и наделал столько бед.

Гербицидные рецептуры армии США, содержащие диоксин

Рецептура К о м п о н е н т ы
Оранж I R=C 4 H 9 * R=C 4 H 9
Оранж II R=C 4 H 9 R=C 8 H 17
Пурпурная R=C 4 H 9 R=C 4 H 9 i-C 4 H 9
Розовая R=C 4 H 9 R=C 4 H 9
Зеленая --- R=C 4 H 9
Диноксол R=CH 2 CH 2 OC 4 H 9 R=CH 2 CH 2 OC 4 H 9
Триноксол --- R=CH 2 CH 2 OC 4 H 9

*Процентное содержание данного компонента в рецептуре

Для сравнения отметим, что массовое отравление в итальянском городе Севезо вызвали какие-то несколько килограммов диоксина. При ликвидации последствий этой катастрофы с большой территории пришлось удалять поверхностный слой почвы.

Тем временем в нашей печати, как в научной, так и массовой, до 1985 года диоксинам вообще не было посвящено ни одной публикации. В пятитомной «Краткой химической энциклопедии» (1961 г.) равно как и в изданном значительно позднее «Химическом энциклопедическом словаре» даже слова такого нет! Более того, листая старые подшивки санитарных журналов и сборников, можно найти сообщения о том, что в Уфе с 1964 по 1970 годы работал цех по производству того самого гербицида, который американцы называют «Agent Orange». И 128 человек из 165 обслуживающего персонала заболели неизвестной болезнью, по симптомам совпадающей с хлоракне. Данные эти (без географической привязки) перекочевали в зарубежную печать. А из отечественной прессы они странным (или не очень странным) образом исчезли. Кстати, тот цех реконструировали, потом закрыли. Но что стало с отходами производства - о том молчание. Вы скажете: в те времена иначе и не бывало. Но не повторяем ли мы сегодня ошибки прошлого? Вспомните недавние события в Уфе. Фенолы попали в хлорируемую воду - вот и создались прекрасные условия для образования диоксинов. К тому же они могли сопутствовать фенолам из-за несовершенства технологии производства последних.

ЧТО ИЗВЕСТНО О СВОЙСТВАХ ДИОКСИНА

Строение, физические и химические свойства. Молекула диоксина плоская и отличается высокой симметрией. Распределение электронной плотности в ней таково, что максимум находится в зоне атомов кислорода и хлора, а минимум в центрах бензольных колец. Эти особенности строения и электронного состояния и обусловливают наблюдаемые экстремальные свойства молекулы диоксина.

Диоксин - кристаллическое вещество с высокой температурой плавления (305°С) и очень низкой летучестью, плохо растворяющееся в воде (2x10 -8 % при 25°С) и лучше - в органических растворителях. Он отличается высокой термической стабильностью: его разложение отмечается лишь при нагревании выше 750°С, а эффективно осуществляется при 1000°С.

Диоксин - химически инертное вещество. Кислотами и щелочами он не разлагается даже при кипячении. В характерные для ароматических соединений реакции хлорирования и сульфирования он вступает только в очень жестких условиях и в присутствии катализаторов. Замещение атомов хлора молекулы диоксина на другие атомы или группы атомов осуществляется лишь в условиях свободнорадикальных реакций. Некоторые из этих превращений, например взаимодействие с натрий-нафталином и восстановительное дехлорирование при ультрафиолетовом облучении, используются для уничтожения небольших количеств диоксина. При окислении в безводных условиях диоксин легко отдает один электрон и превращается в стабильный катион-радикал, который, однако, легко восстанавливается водой в диоксин с выделением очень активного катион-радикала НО + . Характерной для диоксина является его способность к образованию прочных комплексов с многими природными и синтетическими полициклическими соединениями.

Токсические свойства. Диоксин - тотальный яд, поскольку даже в относительно малых дозах (концентрациях) он поражает практически все формы живой материи - от бактерий до теплокровных. Токсичность диоксина в случае простейших организмов обусловлена, по-видимому, нарушением функций металлоферментов, с которыми он образует прочные комплексы. Значительно сложнее происходит поражение диоксином высших организмов, особенно теплокровных. В организме теплокровных диоксин первоначально попадает в жировые ткани, а затем перераспределяется, накапливаясь преимущественно в печени, затем в тимусе и других органах. Его разрушение в организме незначительно: он выводится в основном неизменным, в виде комплексов неустановленной пока природы. Период полувыведения колеблется от нескольких десятков дней (мышь) до года и более (приматы) и обычно возрастает при медленном поступлении в организм. С повышением удерживаемости в организме и избирательного накопления в печени чувствительность особей к диоксину возрастает.

При остром отравлении животных наблюдаются признаки общетоксического действия диоксина: потеря аппетита, физическая и половая слабость, хроническая усталость, депрессия и катастрофическая потеря веса. К летальному исходу он приводит через несколько дней и даже через несколько десятков дней, в зависимости от дозы яда и скорости его поступления в организм.

В нелетальных дозах диоксин вызывает тяжелые специфические заболевания. У высокочувствительных особей первоначально появляется заболевание кожи - хлоракне (поражение сальных желез, сопровождающееся дерматитами и образованием долго незаживающих язв), причем у людей хлоракне может проявляться снова и снова даже через многие годы после излечения. Более сильное поражение диоксином приводит к нарушению обмена порфиринов - важных предшественников гемоглобина и простетических групп железосодержащих ферментов (цитохромов). Порфирия - так называется это заболевание - проявляется в повышенной фоточувствительности кожи: она становится хрупкой, покрывается многочисленными микропузырьками. При хроническом отравлении диоксином развиваются также различные заболевания, связанные с поражениями печени, иммунных систем и центральной нервной системы.

Все эти заболевания проявляются на фоне резкой активации диоксином (в десятки и сотни раз) важного железосодержащего фермента - цитохрома Р-448. Особенно сильно активируется этот фермент в плаценте и в плоде, в связи с чем диоксин даже в ничтожных количествах подавляет жизнеспособность, нарушает процессы формирования и развития нового организма, иными словами, оказывает эмбриотоксическое и тератогенное действие. В ничтожных концентрациях диоксин вызывает генетические изменения в клетках пораженных особей и повышает частоту возникновения опухолей, т.е. обладает мутагенным и канцерогенным действием.

Токсичность диоксина при одноразовом введении

Вид ЛД * 50 , мг/кг
Морская свинка 0,001
Крыса 0,050
Мышь 0,112
Кошка 0,115
Собака 0,3
Куры 0,5
Куриный эмбрион 0,0005
Гуппи 0,1 ppm**
Echerichia coli 2-4 ppm**
Salmonella tiphimurium 2-3 ppm**

*ЛД 50 - обозначение, принятое в токсикологии для дозы, вызывающей в 50% летальный исход.
**Летальная концентрация.

Поведение в окружающей среде. В биосфере диоксин быстро поглощается растениями, сорбируется почвой и различными материалами, где практически не изменяется под влиянием физических, химических и биологических факторов среды. Благодаря способности к образованию комплексов, он прочно связывается с органическими веществами почвы, купируется в остатках погибших почвенных микроорганизмов и омертвевших частях растений. Период полураспада диоксина в природе превышает 10 лет. Таким образом, различные объекты окружающей среды являются надежными хранилищами этого яда.

Дальнейшее поведение диоксина в окружающей среде определяется свойствами объектов, с которыми он связывается. Его вертикальная и горизонтальная миграции в почвах возможны только для ряда тропических районов, где в почвах преобладают водорастворимые органические вещества. В почвах остальных типов, содержащих нерастворимые в воде органические вещества, он прочно связывается в верхних слоях и постепенно накапливается в остатках погибших организмов.

Из почв диоксин выводится преимущественно механическим путем. Отличающиеся низкой плотностью комплексы диоксина с органическими веществами, а также содержащие его остатки погибших организмов выдуваются с поверхности почвы ветром, вымываются дождевыми потоками и в итоге устремляются в низменности и акватории, создавая новые очаги заражения (места скопления дождевой воды, озера, донные отложения рек, каналов, прибрежной зоны морей и океанов).

Проведенные недавно анализы почв некоторых районов Южного Вьетнама указывают на сравнительно небольшое содержание диоксина в поверхностных слоях и на его появление в концентрации до 30 частей на триллион (30 ppt) в глубинных частях почвы. Это свидетельствует о том, что физический и механический перенос в условиях тропиков способствует эффективному рассеянию яда в природе. Однако это не единственный путь миграции диоксина в биосфере. Существует еще перенос этого яда по цепям питания, который способствует его постоянному накоплению в районах максимального потребления зараженных им продуктов питания, т.е. концентрированию в густонаселенных районах.

По мнению вьетнамского ученого и хирурга профессора Тон Тхат Тунга, эффективный биоперенос диоксина в природе способствует постоянному его накоплению теплокровными, причем степень накопления диоксина теплокровными возрастает с увеличением содержания яда в окружающей среде. Это заключение явилось результатом многолетнего изучения последствий прошедшей химической войны для обширных контингентов десятимиллионного населения Вьетнама, проживавших и (или) проживающих в районах применения так называемых "безвредных для человека и окружающей среды" гербицидов.

Составил В.Н. Витер.

Использованы материалы журналов Природа, Химия и жизнь, а также Википедии.

Диоксины и фураны - это термины, которыми обозначают полихлорированные дибензо-р-диоксины и полихлорированные дибензофураны. Поскольку 2,3,7,8-тетрахлордибензо-р-диоксин (ТХДД) представляет собой наиболее полно изученный и наиболее токсичный из 75 изомеров диоксина, термин ТХДД применяется для всех диоксинов на взаимозаменяемой основе.

Некоторые ветераны вьетнамской войны потенциально подвергались воздействию диоксинов, которые применялись в военных целях в составе дефолианта "Agent Orange" [смеси 2,4,5-трихлорфеноксиуксусной кислоты (2,4,5-Т) и 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) с добавкой ТХДД].

Наиболее крупномасштабные загрязнения диоксином происходили между 1962 и 1970 гг., когда 12 млн галлонов "Agent Orange" - дефолианта, содержащего наиболее токсичный диоксин, разбрызгивали над южными и центральными районами Вьетнама }