Порядок выполнения работы. Дифракционный спектр

Лабораторная работа № 9

Определение длины световой волны

С помощью дифракционной решетки

Цель работы: измерение длины световой волны для красной и фиолетовой границ спектра при помощи дифракционной решетки с известным периодом.

Оборудование: дифракционная решетка; прибор для определения длины световой волны (рисунок), который состоит из: 1) держателя, куда устанавливается дифракционная решетка, 2) линейки, прикрепленной к держателю, 3) черного экрана с узкой вертикальной щелью, расположенного на линейке; лампа накаливания; штатив.

Вывод расчетных формул

Если смотреть на лампу накаливания сквозь решетку и щель в черном экране, то на экране можно наблюдать по обе стороны от щели дифракционные спектры 1, 2, 3-го и т.д. порядков.

Положение дифракционного максимума 1-го порядка для дифракционной решетки с периодом d определяется условием:

где – длина световой волны, k – порядок спектра, – угол, при котором наблюдается максимум.

Для дифракционного максимума 1-го порядка, из-за малости угла , . Вследствие этого длина волны данного максимума () определяется по формуле

где – расстояние от дифракционной решетки до экрана, – расстояние от центра щели на экране до соответствующего дифракционного максимума.

В работе источником света служит узкая щель в экране прибора для измерения длины световой волны.

Порядок выполнения работы

1. Включите лампу и расположите ее за экраном со щелью.

2. Установите экран на расстоянии – 50 см от дифракционной решетки. Измерьте не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

3. Посмотрите на щель в экране через дифракционную решетку, добейтесь изменением взаимного положения экрана и лампы наилучших условий видимости спектра. Спектры должны располагаться параллельно шкале на экране.

4. Измерьте расстояния от центра щели на экране до красного , и фиолетового краев спектра. Эти расстояния измерьте не менее 5.раз справа и слева от щели на экране. Результаты занесите в таблицу.



5. Рассчитайте средние значения:

Данные занесите в таблицу.

6. Рассчитайте период решетки, запишите его значение в таблицу.

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решетки до экрана вычислите , под которым наблюдается соответствующая полоса спектра:

8. Вычислите длину волны соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l :

11. Рассчитайте относительную и абсолютную погрешности измерений длин волн:

Полученные значения запишите в таблицу 1.

Таблица 1

№ п/п Измерено Вычислено
L , м , м , м , м , м , м , м d , м , м , м , % , м
Среднее

Ответьте на вопросы:

1. Объясните принцип действия дифракционной решетки.

2. В каком порядке следуют основные цвета в дифракционном спектре?

3. Как изменится характер дифракционного спектра, если использовать дифракционную решетку с периодом, в 2 раза большим, чем в вашем опыте? в 2 раза меньшим?

ЛЕКЦИЯ 21 ДИФРАКЦИЯ СВЕТА

ЛЕКЦИЯ 21 ДИФРАКЦИЯ СВЕТА

1. Дифракция света. Принцип Гюйгенса-Френеля.

2. Дифракция света на щели в параллельных лучах.

3. Дифракционная решетка.

4. Дифракционный спектр.

5. Характеристики дифракционной решетки как спектрального прибора.

6. Рентгеноструктурный анализ.

7. Дифракция света на круглом отверстии. Разрешающая способность диафрагмы.

8. Основные понятия и формулы.

9. Задачи.

В узком, но наиболее употребительном смысле, дифракция света - это огибание лучами света границы непрозрачных тел, проникновение света в область геометрической тени. В явлениях, связанных с дифракцией, имеет место существенное отклонение поведения света от законов геометрической оптики. (Дифракция проявляется не только для света.)

Дифракция - волновое явление, которое наиболее отчетливо проявляется в том случае, когда размеры препятствия соизмеримы (одного порядка) с длиной волны света. С малостью длин видимого света связано достаточно позднее обнаружение дифракции света (16-17 вв.).

21.1. Дифракция света. Принцип Гюйгенса-Френеля

Дифракцией света называется комплекс явлений, которые обусловлены его волновой природой и наблюдаются при распространении света в среде с резкими неоднородностями.

Качественное объяснение дифракции дает принцип Гюйгенса, который устанавливает способ построения фронта волны в момент времени t + Δt если известно его положение в момент времени t.

1. Согласно принципу Гюйгенса, каждая точка волнового фронта является центром когерентных вторичных волн. Огибающая этих волн дает положение фронта волны в следующий момент времени.

Поясним применение принципа Гюйгенса на следующем примере. Пусть на преграду с отверстием падает плоская волна, фронт которой параллелен преграде (рис. 21.1).

Рис. 21.1. Пояснение принципа Гюйгенса

Каждая точка волнового фронта, выделяемого отверстием, служит центром вторичных сферических волн. На рисунке видно, что огибающая этих волн проникает в область геометрической тени, границы которой помечены штриховой линией.

Принцип Гюйгенса ничего не говорит об интенсивности вторичных волн. Этот недостаток был устранен Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн и их амплитудах. Дополненный таким образом принцип Гюйгенса получил название принципа Гюйгенса-Френеля.

2. Согласно принципу Гюйгенса-Фре- неля величина световых колебаний в некоторой точке О есть результат интерференции в этой точке когерентных вторичных волн, испускаемых всеми элементами волновой поверхности. Амплитуда каждой вторичной волны пропорциональна площади элемента dS, обратно пропорциональна расстоянию r до точки О и убывает при возрастании угла α между нормалью n к элементу dS и направлением на точку О (рис. 21.2).

Рис. 21.2. Испускание вторичных волн элементами волновой поверхности

21.2. Дифракция на щели в параллельных лучах

Вычисления, связанные с применением принципа Гюйгенса- Френеля, в общем случае представляют собой сложную математическую задачу. Однако в ряде случаев, обладающих высокой степенью симметрии, нахождение амплитуды результирующих колебаний может быть выполнено алгебраическим или геометрическим суммированием. Продемонстрируем это путем расчета дифракции света на щели.

Пусть на узкую щель (АВ) в непрозрачной преграде падает плоская монохроматическая световая волна, направление распространения которой перпендикулярно поверхности щели (рис. 21.3, а). За щелью (параллельно ее плоскости) поместим собирающую линзу, в фокальной плоскости которой расположим экран Э. Все вторичные волны, испускаемые с поверхности щели в направлении, параллельном оптической оси линзы (α = 0), приходят в фокус линзы в одинаковой фазе. Поэтому в центре экрана (O) имеет место максимум интерференции для волн любой длины. Его называют максимумом нулевого порядка.

Для того чтобы выяснить характер интерференции вторичных волн, испущенных в других направлениях, разобьем поверхность щели на n одинаковых зон (их называют зонами Френеля) и рассмотрим то направление, для которого выполняется условие:

где b - ширина щели, а λ - длина световой волны.

Лучи вторичных световых волн, идущие в этом направлении, пересекутся в точке О".

Рис. 21.3. Дифракция на одной щели: а - ход лучей; б - распределение интенсивности света (f - фокусное расстояние линзы)

Произведение bsina равно разности хода (δ) между лучами, идущими от краев щели. Тогда разность хода лучей, идущих от соседних зон Френеля, равна λ/2 (см. формулу 21.1). Такие лучи при интерференции взаимно уничтожаются, так как они имеют одинаковые амплитуды и противоположные фазы. Рассмотрим два случая.

1) n = 2k - четное число. В этом случае происходит попарное гашение лучей от всех зон Френеля и в точке О" наблюдается минимум интерференционной картины.

Минимум интенсивности при дифракции на щели наблюдается для направлений лучей вторичных волн, удовлетворяющих условию

Целое число k называется порядком минимума.

2) n = 2k - 1 - нечетное число. В этом случае излучение одной зоны Френеля останется непогашенным и в точке О" будет наблюдаться максимум интерференционной картины.

Максимум интенсивности при дифракции на щели наблюдается для направлений лучей вторичных волн, удовлетворяющих условию:

Целое число k называется порядком максимума. Напомним, что для направления α = 0 имеет место максимум нулевого порядка.

Из формулы (21.3) следует, что при увеличении длины световой волны угол, под которым наблюдается максимум порядка k > 0, возрастает. Это означает, что для одного и того же k ближе всего к центру экрана располагается фиолетовая полоса, а дальше всего - красная.

На рисунке 21.3, б показано распределение интенсивности света на экране в зависимости от расстояния до его центра. Основная часть световой энергии сосредоточена в центральном максимуме. При увеличении порядка максимума его интенсивность быстро уменьшается. Расчеты показывают, что I 0:I 1:I 2 = 1:0,047:0,017.

Если щель освещена белым светом, то на экране центральный максимум будет белым (он общий для всех длин волн). Побочные максимумы будут состоять из цветных полос.

Явление, подобное дифракции на щели, можно наблюдать на лезвии бритвы.

21.3. Дифракционная решетка

При дифракции на щели интенсивности максимумов порядка k > 0 столь незначительны, что не могут быть использованы для решения практических задач. Поэтому в качестве спектрального прибора используется дифракционная решетка, которая представляет собой систему параллельных равноотстоящих щелей. Дифракционную решетку можно получить нанесением непрозрачных штрихов (царапин) на плоскопараллельную стеклянную пластину (рис. 21.4). Пространство между штрихами (щели) пропускает свет.

Штрихи наносятся на поверхность решетки алмазным резцом. Их плотность достигает 2000 штрихов на миллиметр. При этом ширина решетки может быть до 300 мм. Общее число щелей решетки обозначается N.

Расстояние d между центрами или краями соседних щелей называют постоянной (периодом) дифракционной решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей.

Ход лучей в дифракционной решетке представлен на рис. 21.5.

Пусть на решетку падает плоская монохроматическая световая волна, направление распространения которой перпендикулярно плоскости решетки. Тогда поверхности щелей принадлежат одной волновой поверхности и являются источниками когерентных вторичных волн. Рассмотрим вторичные волны, направление распространения которых удовлетворяет условию

После прохождения линзы лучи этих волн пересекутся в точке О".

Произведение dsina равно разности хода (δ) между лучами, идущими от краев соседних щелей. При выполнении условия (21.4) вторичные волны приходят в точку О" в одинаковой фазе и на экране возникает максимум интерференционной картины. Максимумы, удовлетворяющие условию (21.4), называются главными максимумами порядка k. Само условие (21.4) называют основной формулой дифракционной решетки.

Главные максимумы при дифракции на решетке наблюдаются для направлений лучей вторичных волн, удовлетворяющих условию: dsin α = ± κ λ; k = 0,1,2,...

Рис. 21.4. Сечение дифракционной решетки (а) и ее условное обозначение (б)

Рис. 21.5. Дифракция света на дифракционной решетке

По ряду причин, которые здесь не рассматриваются, между главными максимумами располагаются (N - 2) добавочных максимумов. При большом числе щелей их интенсивность ничтожно мала и все пространство между главными максимумами выглядит темным.

Условие (21.4), определяющее положения всех главных максимумов, не учитывает дифракцию на отдельной щели. Может получиться так, что для некоторого направления будут одновременно выполняться условие максимума для решетки (21.4) и условие минимума для щели (21.2). В этом случае соответствующий главный максимум не возникает (формально он есть, но его интенсивность равна нулю).

Чем больше число щелей в дифракционной решетке (N), тем большее количество световой энергии проходит через решетку, тем более интенсивными и более острыми будут максимумы. На рисунке 21.6 представлены графики распределения интенсивностей, полученные от решеток с разным числом щелей (N). Периоды (d) и ширина щелей (b) у всех решеток одинаковы.

Рис. 21.6. Распределение интенсивностей при разных значениях N

21.4. Дифракционный спектр

Из основной формулы дифракционной решетки (21.4) видно, что угол дифракции α, под которым образуются главные максимумы, зависит от длины волны падающего света. Поэтому максимумы интенсивности, соответствующие различным длинам волн, получаются в различных местах экрана. Это и позволяет использовать решетку как спектральный прибор.

Дифракционный спектр - спектр, полученный с помощью дифракционной решетки.

При падении на дифракционную решетку белого света все максимумы, кроме центрального, разложатся в спектр. Положение максимума порядка k для света с длиной волны λ определяется формулой:

Чем больше длина волны (λ), тем дальше от центра отстоит k-й максимум. Поэтому фиолетовая область каждого главного максимума будет обращена к центру дифракционной картины, а красная - наружу. Заметим, что при разложении белого света призмой сильнее отклоняются фиолетовые лучи.

Записывая основную формулу решетки (21.4), мы указали, что k - целое число. Насколько велико оно может быть? Ответ на этот вопрос дает неравенство |sinα| < 1. Из формулы (21.5) найдем

где L - ширина решетки, а N - число штрихов.

Например, для решетки с плотностью 500 штрихов на мм d = 1/500 мм = 2х10 -6 м. Для зеленого света с λ = 520 нм = 520х10 -9 м получим k < 2х10 -6 /(520 х10 -9) < 3,8. Таким образом, для такой решетки (весьма средней) порядок наблюдаемого максимума не превышает 3.

21.5. Характеристики дифракционной решетки как спектрального прибора

Основная формула дифракционной решетки (21.4) позволяет определить длину волны света, измеряя угол α, соответствующий положению k-го максимума. Таким образом, дифракционная решетка позволяет получать и анализировать спектры сложного света.

Спектральные характеристики решетки

Угловая дисперсия - величина, равная отношению изменения угла, под которым наблюдается дифракционный максимум, к изменению длины волны:

где k - порядок максимума, α - угол, под которым он наблюдается.

Угловая дисперсия тем выше, чем больше порядок k спектра и чем меньше период решетки (d).

Разрешающая способность (разрешающая сила) дифракционной решетки - величина, характеризующая ее способность давать

где k - порядок максимума, а N - число штрихов решетки.

Из формулы видно, что близкие линии, которые сливаются в спектре первого порядка, могут восприниматься отдельно в спектрах второго или третьего порядков.

21.6. Рентгеноструктурный анализ

Основная формула дифракционной решетки может быть использована не только для определения длины волны, но и для решения обратной задачи - нахождения постоянной дифракционной решетки по известной длине волны.

В качестве дифракционной решетки можно взять структурную решетку кристалла. Если на простую кристаллическую решетку направить поток рентгеновских лучей под некоторым углом θ (рис. 21.7), то они будут дифрагировать, так как расстояние между рассеивающими центрами (атомами) в кристалле соответствует

длине волны рентгеновского излучения. Если на некотором расстоянии от кристалла поместить фотопластинку, то она зарегистрирует интерференцию отраженных лучей.

где d - межплоскостное расстояние в кристалле, θ - угол между плоскостью

Рис. 21.7. Дифракция рентгеновских лучей на простой кристаллической решетке; точками указано расположение атомов

кристалла и падающим рентгеновским лучом (угол скольжения), λ - длина волны рентгеновского излучения. Соотношение (21.11) называется условием Брэгга-Вульфа.

Если известна длина волны рентгеновского излучения и измерен угол θ, отвечающий условию (21.11), то можно определить межплоскостное (межатомное) расстояние d. На этом основан рентгеноструктурный анализ.

Рентгеноструктурный анализ - метод определения структуры вещества путем исследования закономерностей дифракции рентгеновского излучения на изучаемых образцах.

Рентгеновские дифракционные картины очень сложны, так как кристалл представляет собой трехмерный объект и рентгеновские лучи могут дифрагировать на различных плоскостях под разными углами. Если вещество представляет собой монокристалл, то дифракционная картина представляет собой чередование темных (засвеченных) и светлых (незасвеченных) пятен (рис. 21.8, а).

В том случае когда вещество представляет собой смесь большого числа очень маленьких кристалликов (как в металле или порошке), возникает серия колец (рис. 21.8, б). Каждое кольцо соответствует дифракционному максимуму определенного порядка k, при этом рентгенограмма образуется в виде окружностей (рис. 21.8, б).

Рис. 21.8. Рентгенограмма для монокристалла (а), рентгенограмма для поликристалла (б)

Рентгеноструктурный анализ используют и для исследования структур биологических систем. Например, этим методом была установлена структура ДНК.

21.7. Дифракция света на круглом отверстии. Разрешающая способность диафрагмы

В заключение рассмотрим вопрос о дифракции света на круглом отверстии, который представляет большой практический интерес. Такими отверстиями являются, например, зрачок глаза и объектив микроскопа. Пусть на линзу падает свет от точечного источника. Линза является отверстием, которое пропускает только часть световой волны. Вследствие дифракции на экране, расположенном за линзой, возникнет дифракционная картина, показанная на рис. 21.9, а.

Как и для щели, интенсивности побочных максимумов малы. Центральный максимум в виде светлого кружка (дифракционное пятно) и является изображением светящейся точки.

Диаметр дифракционного пятна определяется формулой:

где f - фокусное расстояние линзы, а d - ее диаметр.

Если на отверстие (диафрагму) падает свет от двух точечных источников, то в зависимости от углового расстояния между ними (β) их дифракционные пятна могут восприниматься раздельно (рис. 21.9, б) или сливаться (рис. 21.9, в).

Приведем без вывода формулу, которая обеспечивает раздельное изображение близких точечных источников на экране (разрешающая способность диафрагмы):

где λ - длина волны падающего света, d - диаметр отверстия (диафрагмы), β - угловое расстояние между источниками.

Рис. 21.9. Дифракция на круглом отверстии от двух точечных источников

21.8. Основные понятия и формулы

Окончание таблицы

21.9. Задачи

1. Длина волны света, падающего на щель перпендикулярно ее плоскости, укладывается в ширине щели 6 раз. Под каким углом будет виден 3 дифракционный минимум?

2. Определить период решетки шириной L = 2,5 см, имеющей N = 12500 штрихов. Ответ записать в микрометрах.

Решение

d = L/N = 25 000 мкм/12 500 = 2 мкм. Ответ: d = 2 мкм.

3. Чему равна постоянная дифракционной решетки, если в спектре 2-го порядка красная линия (700 нм) видна под углом 30°?

4. Дифракционная решетка содержит N = 600 штрихов на L = 1 мм. Найти наибольший порядок спектра для света с длиной волны λ = 600 нм.

5. Оранжевый свет с длиной волны 600 нм и зеленый свет с длиной волны 540 нм проходят через дифракционную решетку, имеющую 4000 штрихов на сантиметр. Чему равно угловое расстояние между оранжевым и зеленым максимумами: а) первого порядка; б) третьего порядка?

Δα = α ор - α з = 13,88° - 12,47° = 1,41°.

6. Найти наибольший порядок спектра для желтой линии натрия λ = 589 нм, если постоянная решетки равна d = 2 мкм.

Решение

Приведем d и λ к одинаковым единицам: d = 2 мкм = 2000 нм. По формуле (21.6) найдем k < d/λ = 2000/ 589 = 3,4. Ответ: k = 3.

7. Дифракционную решетку с числом щелей N = 10 000 используют для исследования спектра света в области 600 нм. Найти минимальную разность длин волн, которую можно обнаружить такой решеткой при наблюдении максимумов второго порядка.

ОПРЕДЕЛЕНИЕ

Дифракционным спектром называют распределение интенсивности на экране, которое получается в результате дифракции.

При этом основная часть световой энергии сосредоточена в центральном максимуме.

Если в качестве рассматриваемого прибора, при помощи которого осуществляется дифракция, взять дифракционную решётку, то из формулы:

(где d - постоянная решетки; - угол дифракции; - длина волны света; . - целое число), следует, что угол под которым возникают главные максимумы связан с длиной волны падающего на решетку света (свет на решетку падает нормально). Это означает, что максимумы интенсивности, которые дает свет разной длины волны, возникают в разных местах пространства наблюдения, что дает возможность применять дифракционную решетку как спектральный прибор.

Если на дифракционную решетку падает белый свет, то все максимумы за исключением центрального максимума, раскладываются в спектр. Из формулы (1) следует, что положение максимума го порядка можно определить как:

Из выражения (2) следует, что с увеличением длины волны, расстояние от центрального максимума до максимума с номером m увеличивается. Получается, что фиолетовая часть каждого главного максимума будет обращена к центру картины дифракции, а красная область наружу. Следует вспомнить, что при спектральном разложении белого света фиолетовые лучи отклоняются сильнее, чем красные.

Дифракционную решетку применяют как простой спектральный прибор, с помощью которого можно определять длину волны. Если известен период решетки, то нахождение длины волны света сведется к измерению угла, который соответствует направлению на избранную линию порядка спектра. Обычно используют спектры первого или второго порядков.

Следует отметить, что дифракционные спектры высоких порядков накладываются друг на друга. Так, при разложении белого света спектры второго и третьего порядков уже частично перекрываются.

Дифракционное и дисперсное разложение в спектр

При помощи дифракции, как и дисперсии можно разложить луч света на составляющие. Однако есть принципиальные отличия в этих физических явлениях. Так, дифракционный спектр - это результат огибания светом препятствий, например затемненных зон у дифракционной решетки. Такой спектр равномерно распространяется во всех направлениях. Фиолетовая часть спектра обращена к центру. Спектр при дисперсии можно получать при пропускании света сквозь призму. Спектр получается растянутым в фиолетовом направлении и сжатым в красном. Фиолетовая часть спектра занимает большую ширину, чем красная. Красные лучи при спектральном разложении отклоняются меньше, чем фиолетовые, значит, красная часть спектра ближе к центру.

Максимальный порядок спектра при дифракции

Используя формулу (2) и принимая во внимание то, что не может быть больше единицы, получим, что:

Примеры решения задач

ПРИМЕР 1

Задание На дифракционную решетку падает перпендикулярно ее плоскости свет с длиной волны равной =600 нм, период решетки равен м. Каков наибольший порядок спектра? Чему равно число максимумов в данном случае?
Решение Основой для решения задачи служит формула максимумов, которые получают при дифракции на решетке в заданных условиях:

Максимальное значение m получится при

Проведем вычисления, если =600 нм=м:

Количество максимумов (n) будет равно:

Ответ =3;

ПРИМЕР 2

Задание На дифракционную решетку, перпендикулярно ее плоскости падает монохроматический пучок света, имеющий длину волны . На расстоянии L от решетки находится экран, на нем с помощью линзы формируют спектральную дифракционную картину. Получают, что первый главный максимум дифракции расположен на расстоянии x от центрального (рис.1). Какова постоянная дифракционной решетки (d)?
Решение Сделаем рисунок.

xк 1

ук 2

где k 1 = 0,± 1,± 2,± 3,... иk 2 = 0,± 1,± 2, 3....

Пусть волна падает на двумерную решетку наклонно (т.е. углы α 0 иβ 0

отличны от π 2 ). Тогда условия возникновения главных максимумов примут вид:

Общий характер дифракционной картины, в этом случае, останется прежним, изменятся лишь масштабы по осям Х иY , наблюдаемой дифракционной картины.

Если решетки d 1 иd 2 взаимно не перпендикулярны, а составляют ка-

кой-либо угол между собой, положение максимумов будет зависеть от угла между штрихами решеток. Однако, нарушение строгой периодичности щелей (хаотическое их распределение) приводит к существенному изменению общей картины: наблюдаются симметричные размытые интерференционные кольца. Интенсивность наблюдаемых колец пропорциональна не квадрату числа щелей, а числу щелей. Таким образом, по расположению максимумов можно судить о величине периодовd 1 иd 2 и взаимной ори-

ентации решеток.

14. Дифракционная решетка как спектральный прибор

Дифракционные решетки создают эффект резкого разделения и усиления интенсивности света в области максимумов, что делает их незаменимыми оптическими приборами. Они позволяют получать ярко выраженную дифракционную картину.

Положение дифракционных максимумов зависит от длины волны света λ (из формулы (11.2а) следует sinϕ max λ ). Поэтому при пропускании че-

рез решётку белого света, все максимумы кроме центрального разложатся в спектр, фиолетовый конец которого направлен к центру дифракционной картины, а красный наружу. Таким образом, дифракционная решётка представляет собой спектральный прибор.

При освещении щели белым светом, центральный максимум наблюдается в виде белой полоски (потому, что при ϕ = 0 разность хода равна нулю для всехλ ) - он общий для всех длин волн. Боковые максимумы ра-

дужно окрашены фиолетовым краем к центру дифракционной картины (поскольку λ фиол <λ красн ), в отличие от дисперсии в призме.

Таким образом, картина дифракции Фраунгофера белого света на щели будет представлять собой центральную светлую полоску и ряд минимумов и максимумов, расположенных по обе стороны от неё в направлении перпендикулярном направлению щели.

В центре дифракционной картины лежит узкий максимум нулевого порядка; у него окрашены только края. По обе стороны от центрального максимума расположены два спектра 1-го порядка, затем два 2-го порядка и т.д. Начиная со второго порядка, происходит частичное перекрытие спектров 2-го и 3-го порядков, 3-го и 4-го порядков и т.д. Поэтому дифракционная решетка может быть использована как спектральный прибор для разложения света в спектр и измерения длин волн.

Поскольку в условии главных максимумов (11.2а) sin ϕ ≤ 1, то максимальное число главных максимумов, даваемое дифракционной решеткой:

≤ d

Угловая ширина центрального (нулевого) главного максимума на рис. 11.2 и рис. 14.2 определяется формулой

третьего

Рис. 14.3. Дифракционный спектр люминесцентной лампы (показана только правая половина спектра)

Основными характеристиками любого спектрального прибора являются

угловая дисперсия, разрешающая способность и область дисперсии,рас-

смотрим их.

Чтобы найти угловую дисперсию дифракционной решётки, продифференцируем левую часть условие главного максимума по углу ϕ , а правую поλ . Опуская знак минус в левой части, получим:

d cos ϕ dϕ = m dλ

D = d ϕ

d cosϕ

D ≈ m

Из полученного выражения следует, что угловая дисперсия обратно пропорциональна периоду решётки d . Чем выше порядок спектраm , тем больше дисперсия.

где δ l - линейное расстояние на экране или на фотопластинке между спектральными линиями, отличающимися по длине волны наδλ . Из рис. 4.14 видно, что при небольших значениях углахϕ можно положитьδ l = f ′ δϕ ,

где f ′ - фокусное расстояние линзы, собирающей дифрагирующие луч на экране.

Следовательно, линейная дисперсия связана с угловой дисперсией D соотношением

Dлин = f′ D

Или приняв во внимание (14.5)

2. Разрешающая способность

По определению разрешающей способностью называется величина

R = δλ λ (14.8)

где δλ - наименьшая разность длин волн спектральных линий, при которой эти линии воспринимаются еще раздельно, т. е. разрешаются. Величинаδλ = λ 2 −λ 1 не может быть по ряду причин определена точно, а лишь ориен-

тировочно (условно). Такой условный критерий был предложен Рэлеем. Согласно критерию Рэлея, спектральные линии с разными длинами

волн, но одинаковой интенсивности, считаются разрешёнными, если главный максимум одной спектральной линии совпадает с первым минимумом другой (рис. 16).

Найдем разрешающую силу дифракционной решетки. Положение середины m -го максимума для длины волныλ 1 определяется условием:

d sin ϕ max= m λ 1

Края m максимума для длины волны

расположены под углами,

удовлетворяющими соотношению:

d sinϕ min

Середина максимума для длины волны (λ + δλ ) наложится на край мак-

симума для длины волны в том случае, если:

m (λ+ δλ) =m +

m δλ =

Решая это соотношение относительно λ δλ , находим

R = mN

В этом случае между двумя максимумами возникает провал, составляющий около 20% от интенсивности в максимумах, и линии еще воспринимаются раздельно

Это и есть искомая формула для разрешающей способности дифракционной решётки. данная формула дает верхний предел разрешающей способности. Она справедлива при выполнении следующих условий:

1. Интенсивность обоих максимумов должна быть одинаковой.

2. Расширение линий должно быть обусловлено только дифракцией.

3. Необходимо, чтобы падающий на решётку свет имел ширину когерентности, превышающую размер решетки. Только в этом случае все N штрихов решётки будут «работать» согласованно (когерентно), и мы достигнем желаемого результата.

Для повышения разрешающей способности спектральных приборов можно, как показывает формула (15.27), либо увеличивать числоN когерентных пучков, либо повышать порядок интерференцииm .

Первое используется в дифракционных решетках (число N доходит до 200 000), второе - в интерференционных спектральных приборах (например, в интерферометре Фабри-Перо числоN интерферирующих волн невелико, порядка нескольких десятков, а порядки интерференцииm 106 и более).

3. Область дисперсии

∆λ - это ширина спектрального интервала, при которой еще нет перекрытия спектров соседних порядков. Если спектры соседних порядков перекрываются, то спектральный аппарат становится непригодным для исследования соответствующего участка спектра. длинноволновый конец спектраm -го порядка совпадает с коротковолновым концом спектра(m + 1) -го порядка, еслиm (λ+ ∆λ ) = (m + 1) λ , откуда следует, чтооб-

Значит, область дисперсии ∆λ обратно пропорциональна порядку спектраm . При работе со спектрами низких порядков (обычно второго или третьего) дифракционная решетка пригодна для исследования излучения, занимающего достаточно широкий спектральный интервал. В этом главное преимущество дифракционных решеток перед интерференционными спектральными приборами, например, интерферометром Фабри - Перо, у которого из-за высоких порядковm область дисперсии очень мала.

Еще о дифракционных решётках. Дифракционная решётка является одним из важнейших спектральных приборов, которому наука обязана многими фундаментальными открытиями. Спектр - это по существу код, который будучи расшифрован с помощью того или иного математического аппарата дает возможность получить ценнейшую информацию о свойствах атомов и внутриатомных процессов. Для адекватного решения этой задачи спектр должен быть неискажённым и чётко различимым - в этом суть той сложнейшей научно-технической проблемы, которую пришлось решить, чтобы наконец добиться получения высококачественных дифракционных решёток. Технология изготовления дифракционных решеток в настоящее время доведена до высокой степени совершенства. Первые высококачественные отражательные решётки были созданы в конце прошлого столетия Роулендом (США). О технической сложности решаемой проблемы говорит хотя бы уже такой факт, что необходимая для этой цели делительная машина создавалась в течение 20 лет! Его дело продолжили Андерсен, Вуд и другие знаменитые экспериментаторы.

Современные полностью автоматизированные делительные машины позволяют с помощью алмазного резца изготовлять решётки с почти стро-

го эквидистантным расположением штрихов. Трудно даже представить, что алмазный резец при этом прочерчивает десятки километров, практически не изменяя свой профиль, - а это принципиально важно. Размеры уникальных решеток достигают 40х40 см! (Такие решетки используют в основном в астрофизике.) В зависимости от области спектра решётки имеют различное число штрихов на 1 мм: от нескольких штрихов, начиная с инфракрасной области, до 3600 - для ультрафиолетовой. В видимой области спектра 600 - 1200 штрих/мм. Ясно, что обращение с гравированной поверхностью таких решёток требует предельной осторожности.

Вследствие высокой стоимости оригинальных гравированных решёток получили распространение реплики, т. е. отпечатки гравированных решеток на специальных пластмассах, покрытых тонким отражательным слоем. По качеству реплики почти не уступают оригиналам. В 1970-х годах был разработан новый, голографический метод изготовления дифракционных решёток. В этом методе плоская подложка со светочувствительным слоем освещается двумя плоскими наклонными пучками когерентных лазерных излучений с определенной длиной волны. В области пересечения пучков образуется стационарная интерференционная картина с синусоидальным распределением интенсивности. После соответствующей обработки светочувствительного слоя получается качественная дифракционная решетка.

Отметим в заключение, что, кроме прозрачных и отражательных решёток, существуют ещё и фазовые. Они влияют не на амплитуду световой волны, а вносят периодические изменения в её фазу. По этой причине их и называют фазовыми. Примером фазовой решетки может служить пластмассовая кювета с прозрачной жидкостью, в которой возбуждена плоская стоячая ультразвуковая волна. Это приводит к периодическому изменению плотности жидкости, а значит ее показателя преломления и оптической разности хода. Такая структура меняет не амплитуду проходящего поперек волны света, а только фазу. Фазовые решетки также находят многочисленные практические применения.

Одномерная решетка вибраторов. Аналогично дифракционной ре-

шётке ведет себя в радиодиапазоне система из N параллельных друг другу вибраторов-антенн. Если они действуют синфазно, то нулевой (основной) максимум излучения направлен нормально к решетке в ее экваториальной плоскости. И здесь возникает интересная в практическом отношении возможность. Если создать режим, при котором колебания каждой следующей антенны будут, например, отставать по фазе от колебаний предыдущей на одну и ту же величину, то нулевой максимум не будет совпадать с нормалью к решетке. Изменяя же фазу во времени по определенному закону, мы получаем систему, у которой направление главного максимума будет изменяться в пространстве. Таким образом, мы приходим к возможности радиолокационного обзора местности с помощью неподвижной системы антенн.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1. ЛАБОРАТОРНАЯ РАБОТА № 3. 3(а). ДИФРАКЦИЯ МОНОХРОМАТИЧЕСКОГО СВЕТА НА ДИФРАКЦИОННОЙ РЕШЁТКЕ

Цель работы : Изучение дифракции монохроматического света на дифракционной решётке. Определение постоянной дифракционной решётки.

Оборудование : оптическая скамья, монохроматор SPM-2, лампа накаливания, дифракционная решётка в держателе, линзы – 1 шт., линейка.

Порядок выполнения работы

Перед началом работы необходимо ознакомиться с теорией дифракции и описанием монохроматора SPM-2 вПриложении 1.

Схема экспериментальной установки показана на рис. 1

x mφ

Рис.1. Схема наблюдения дифракции монохроматического света на дифракционной решётке.

1 – лампа накаливания; 2 – линза; 3 – входная щель монохроматора SPM-2; 4 – выходная щель монохроматора; 5 – плоскость измерительной линейки;

6 – дифракционная решётка; 7 – глаз наблюдателя; x m - расстояние между центра-

ми нулевого и m -го максимума;L - расстояние плоскости щели до плоскости дифракционной решётки;ϕ - угол дифракции.

Задание 1

Определение постоянной дифракционной решётки

1. Проверить соответствие собранной схемы настоящему описанию. 2* . Включите монохроматор SPM-2 и вращением рукоятки 27 установи-

те необходимую длину волны по матовому экрану монохроматора, например, 0,55 мкм, что соответствует жёлтому цвету.

Внимание! Пункты, помеченные звёздочкой, выполняет преподаватель или лаборант.

4* . Включите источник света - лампу накаливания и перемещением линзы перпендикулярно оптической оси при помощи рукоятки на держателе линзы добейтесь яркого освещения входной щели монохроматора SPM-2.

3. Перед выходной щелью монохроматора установите дифракционную решетку на расстоянии L = 20÷ 30 см. от щели измерьте это расстояние, занесите в таблицу и далее не изменяйте его.

4. Наблюдая через дифракционную решётку дифракционную картину на фоне линейки, измерьте расстояния между центром максимума нулевого порядка и дифракционными максимумами первого x 1 , второгоx 2 и

третьего x 3 порядков для трёх длин волн, и данные занесите в таблицу.

Длины волн задаются преподавателем. Обычно задаются наиболее интенсивные цвета света – красный, жёлтый и зелёный.

Таблица 1.

λ , мкм.x 1 , мм.x 2 , мм.x 3 , мм.L , м.

λ 2

λ 3

6. По формуле

d = m

где m = 0,± 1,± 2,± 3.......- порядок максимума, рассчитайте постоянную решёткиd , найдите среднее значениеd и по формуле Стьюдента рассчи-

тай погрешность измерений.

7. Запишите результат в формате:

d = d± ∆ d

Задание 2.

Расчёт максимального порядка дифракционного спектра, угловой дисперсии и разрешающей способности дифракционной решётки

1. Оцените теоретическое значение максимально возможного числа главных максимумов, даваемое дифракционной решёткой с измеренной постоянной решётки для выбранной длины волны и сравните с экспериментально наблюдаемой дифракционной картиной.

Наибольший порядок спектра дифракционной решётки можно найти из условия главного максимум

Из формулы (2) видно, что максимальный порядок дифракции m для заданныхd иλ определяется значением переменной величины sinϕ . Наибольшее значение sinϕ = 1, следовательно:

где δϕ угловое расстояние между спектральными линиями, отличающимися по длине волны наδλ = λ 1 −λ 2 . Дисперсию можно определить из ус-

ловия главного максимума

d sinϕ = m λ .

Чтобы найти угловую дисперсию дифракционной решётки, продифференцируем левую часть условие главного максимума по углу ϕ , а правую по

λ . Опуская знак минус в левой части, получимd cosϕ d ϕ = m d λ

D = d ϕ

d cosϕ

При малых углах дифракции cosϕ ≈ 1, поэтому можно положить

D ≈ m

Из полученного выражения следует, что угловая дисперсия обратно пропорциональна периоду решётки d . Чем выше порядок спектраm , тем