Valence and oxidation state. How to determine the oxidation state of an atom of a chemical element The highest oxidation state of atoms

To characterize the state of elements in compounds, the concept of the degree of oxidation has been introduced.

DEFINITION

The number of electrons displaced from an atom of a given element or to an atom of a given element in a compound is called oxidation state.

A positive oxidation state indicates the number of electrons that are displaced from a given atom, and a negative oxidation state indicates the number of electrons that are displaced towards a given atom.

From this definition it follows that in compounds with non-polar bonds, the oxidation state of the elements is zero. Molecules consisting of identical atoms (N 2 , H 2 , Cl 2) can serve as examples of such compounds.

The oxidation state of metals in the elementary state is zero, since the distribution of electron density in them is uniform.

In simple ionic compounds, the oxidation state of their constituent elements is equal to the electric charge, since during the formation of these compounds, an almost complete transfer of electrons from one atom to another occurs: Na +1 I -1, Mg +2 Cl -1 2, Al +3 F - 1 3 , Zr +4 Br -1 4 .

When determining the degree of oxidation of elements in compounds with polar covalent bonds, the values ​​of their electronegativity are compared. Since, during the formation of a chemical bond, electrons are displaced to atoms of more electronegative elements, the latter have a negative oxidation state in compounds.

Highest oxidation state

For elements that exhibit different oxidation states in their compounds, there are concepts of higher (maximum positive) and lower (minimum negative) oxidation states. The highest oxidation state of a chemical element usually numerically coincides with the group number in the Periodic system of D. I. Mendeleev. The exceptions are fluorine (the oxidation state is -1, and the element is located in group VIIA), oxygen (the oxidation state is +2, and the element is located in group VIA), helium, neon, argon (the oxidation state is 0, and the elements are located in group VIII group), as well as elements of the cobalt and nickel subgroups (the oxidation state is +2, and the elements are located in group VIII), for which the highest oxidation state is expressed by a number whose value is lower than the number of the group to which they belong. The elements of the copper subgroup, on the contrary, have a higher oxidation state of more than one, although they belong to group I (the maximum positive oxidation state of copper and silver is +2, gold +3).

Examples of problem solving

EXAMPLE 1

Answer We will alternately determine the degree of sulfur oxidation in each of the proposed transformation schemes, and then choose the correct answer.
  • In hydrogen sulfide, the oxidation state of sulfur is (-2), and in a simple substance - sulfur - 0:

Change in the oxidation state of sulfur: -2 → 0, i.e. sixth answer.

  • In a simple substance - sulfur - the oxidation state of sulfur is 0, and in SO 3 - (+6):

Change in the oxidation state of sulfur: 0 → +6, i.e. fourth answer.

  • In sulfurous acid, the oxidation state of sulfur is (+4), and in a simple substance - sulfur - 0:

1×2 +x+ 3×(-2) =0;

Change in the oxidation state of sulfur: +4 → 0, i.e. third answer.

EXAMPLE 2

Exercise Valency III and oxidation state (-3) nitrogen shows in the compound: a) N 2 H 4; b) NH3; c) NH 4 Cl; d) N 2 O 5
Solution In order to give a correct answer to the question posed, we will alternately determine the valency and oxidation state of nitrogen in the proposed compounds.

a) the valency of hydrogen is always equal to I. The total number of hydrogen valency units is 4 (1 × 4 = 4). Divide the value obtained by the number of nitrogen atoms in the molecule: 4/2 \u003d 2, therefore, the nitrogen valency is II. This answer is incorrect.

b) the valency of hydrogen is always equal to I. The total number of hydrogen valence units is 3 (1 × 3 = 3). We divide the obtained value by the number of nitrogen atoms in the molecule: 3/1 \u003d 2, therefore, the nitrogen valency is III. The oxidation state of nitrogen in ammonia is (-3):

This is the correct answer.

Answer Option (b)

Electronegativity (EO) is the ability of atoms to attract electrons when they bond with other atoms .

Electronegativity depends on the distance between the nucleus and valence electrons, and on how close the valence shell is to completion. The smaller the radius of an atom and the more valence electrons, the higher its EC.

Fluorine is the most electronegative element. Firstly, it has 7 electrons in the valence shell (only 1 electron is missing before an octet) and, secondly, this valence shell (…2s 2 2p 5) is located close to the nucleus.

The least electronegative atoms are alkali and alkaline earth metals. They have large radii and their outer electron shells are far from complete. It is much easier for them to give their valence electrons to another atom (then the pre-outer shell will become complete) than to “gain” electrons.

Electronegativity can be expressed quantitatively and line up the elements in ascending order. The electronegativity scale proposed by the American chemist L. Pauling is most often used.

The difference in the electronegativity of the elements in the compound ( ΔX) will allow us to judge the type of chemical bond. If the value ∆ X= 0 - connection covalent non-polar.

When the electronegativity difference is up to 2.0, the bond is called covalent polar, for example: the H-F bond in the HF hydrogen fluoride molecule: Δ X \u003d (3.98 - 2.20) \u003d 1.78

Bonds with an electronegativity difference greater than 2.0 are considered ionic. For example: the Na-Cl bond in the NaCl compound: Δ X \u003d (3.16 - 0.93) \u003d 2.23.

Oxidation state

Oxidation state (CO) is the conditional charge of an atom in a molecule, calculated on the assumption that the molecule consists of ions and is generally electrically neutral.

When an ionic bond is formed, an electron passes from a less electronegative atom to a more electronegative one, the atoms lose their electrical neutrality and turn into ions. there are integer charges. When a covalent polar bond is formed, the electron does not transfer completely, but partially, so partial charges arise (in the figure below, HCl). Let's imagine that the electron passed completely from the hydrogen atom to chlorine, and a whole positive charge +1 appeared on hydrogen, and -1 on chlorine. such conditional charges are called the oxidation state.


This figure shows the oxidation states characteristic of the first 20 elements.
Note. The highest SD is usually equal to the group number in the periodic table. Metals of the main subgroups have one characteristic CO, non-metals, as a rule, have a spread of CO. Therefore, non-metals form a large number of compounds and have more "diverse" properties compared to metals.

Examples of determining the degree of oxidation

Let's determine the oxidation states of chlorine in compounds:

The rules that we have considered do not always allow us to calculate the CO of all elements, as, for example, in a given aminopropane molecule.


Here it is convenient to use the following method:

1) We depict the structural formula of the molecule, the dash is a bond, a pair of electrons.

2) We turn the dash into an arrow directed to a more EO atom. This arrow symbolizes the transition of an electron to an atom. If two identical atoms are connected, we leave the line as it is - there is no transfer of electrons.

3) We count how many electrons "came" and "left".

For example, consider the charge on the first carbon atom. Three arrows are directed towards the atom, which means that 3 electrons have arrived, the charge is -3.

The second carbon atom: hydrogen gave it an electron, and nitrogen took one electron. The charge has not changed, it is equal to zero. Etc.

Valence

Valence(from Latin valēns "having force") - the ability of atoms to form a certain number of chemical bonds with atoms of other elements.

Basically, valency means the ability of atoms to form a certain number of covalent bonds. If an atom has n unpaired electrons and m lone electron pairs, then this atom can form n+m covalent bonds with other atoms, i.e. its valence will be n+m. When evaluating the maximum valency, one should proceed from the electronic configuration of the "excited" state. For example, the maximum valency of an atom of beryllium, boron and nitrogen is 4 (for example, in Be (OH) 4 2-, BF 4 - and NH 4 +), phosphorus - 5 (PCl 5), sulfur - 6 (H 2 SO 4) , chlorine - 7 (Cl 2 O 7).

In some cases, the valence may numerically coincide with the oxidation state, but in no way are they identical to each other. For example, in N 2 and CO molecules, a triple bond is realized (that is, the valence of each atom is 3), but the oxidation state of nitrogen is 0, carbon +2, oxygen -2.



In nitric acid, the oxidation state of nitrogen is +5, while nitrogen cannot have a valency higher than 4, because it has only 4 orbitals at the outer level (and the bond can be considered as overlapping orbitals). And in general, any element of the second period, for the same reason, cannot have a valency greater than 4.

A few more "tricky" questions in which mistakes are often made.

Select a rubric Books Mathematics Physics Control and management of access Fire safety Useful Equipment suppliers Measuring instruments (KIP) Humidity measurement - suppliers in the Russian Federation. Pressure measurement. Cost measurement. Flowmeters. Temperature measurement Level measurement. Level gauges. Trenchless technologies Sewer systems. Suppliers of pumps in the Russian Federation. Pump repair. Pipeline accessories. Butterfly valves (disk valves). Check valves. Control armature. Mesh filters, mud collectors, magneto-mechanical filters. Ball Valves. Pipes and elements of pipelines. Seals for threads, flanges, etc. Electric motors, electric drives… Manual Alphabets, denominations, units, codes… Alphabets, incl. Greek and Latin. Symbols. Codes. Alpha, beta, gamma, delta, epsilon… Denominations of electrical networks. Unit conversion Decibel. Dream. Background. Units of what? Units of measurement for pressure and vacuum. Converting pressure and vacuum units. Length units. Translation of length units (linear size, distances). Volume units. Conversion of volume units. Density units. Conversion of density units. Area units. Conversion of area units. Units of measurement of hardness. Conversion of hardness units. Temperature units. Conversion of temperature units in the Kelvin / Celsius / Fahrenheit / Rankine / Delisle / Newton / Reamure scales Units of measurement of angles ("angular dimensions"). Convert units of angular velocity and angular acceleration. Standard measurement errors Gases are different as working media. Nitrogen N2 (refrigerant R728) Ammonia (refrigerant R717). Antifreeze. Hydrogen H^2 (refrigerant R702) Water vapor. Air (Atmosphere) Natural gas - natural gas. Biogas is sewer gas. Liquefied gas. NGL. LNG. Propane-butane. Oxygen O2 (refrigerant R732) Oils and lubricants Methane CH4 (refrigerant R50) Water properties. Carbon monoxide CO. carbon monoxide. Carbon dioxide CO2. (Refrigerant R744). Chlorine Cl2 Hydrogen chloride HCl, aka hydrochloric acid. Refrigerants (refrigerants). Refrigerant (Refrigerant) R11 - Fluorotrichloromethane (CFCI3) Refrigerant (Refrigerant) R12 - Difluorodichloromethane (CF2CCl2) Refrigerant (Refrigerant) R125 - Pentafluoroethane (CF2HCF3). Refrigerant (Refrigerant) R134a - 1,1,1,2-Tetrafluoroethane (CF3CFH2). Refrigerant (Refrigerant) R22 - Difluorochloromethane (CF2ClH) Refrigerant (Refrigerant) R32 - Difluoromethane (CH2F2). Refrigerant (Refrigerant) R407C - R-32 (23%) / R-125 (25%) / R-134a (52%) / Percent by mass. other Materials - thermal properties Abrasives - grit, fineness, grinding equipment. Soil, earth, sand and other rocks. Indicators of loosening, shrinkage and density of soils and rocks. Shrinkage and loosening, loads. Slope angles. Heights of ledges, dumps. Wood. Lumber. Timber. Logs. Firewood… Ceramics. Adhesives and glue joints Ice and snow (water ice) Metals Aluminum and aluminum alloys Copper, bronze and brass Bronze Brass Copper (and classification of copper alloys) Nickel and alloys Compliance with alloy grades Steels and alloys Reference tables of weights of rolled metal products and pipes. +/-5% Pipe weight. metal weight. Mechanical properties of steels. Cast Iron Minerals. Asbestos. Food products and food raw materials. Properties, etc. Link to another section of the project. Rubbers, plastics, elastomers, polymers. Detailed description of Elastomers PU, TPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE modified), Strength of materials. Sopromat. Construction Materials. Physical, mechanical and thermal properties. Concrete. Concrete solution. Solution. Construction fittings. Steel and others. Tables of applicability of materials. Chemical resistance. Temperature applicability. Corrosion resistance. Sealing materials - joint sealants. PTFE (fluoroplast-4) and derivative materials. FUM tape. Anaerobic adhesives Non-drying (non-hardening) sealants. Silicone sealants (organosilicon). Graphite, asbestos, paronites and derived materials Paronite. Thermally expanded graphite (TRG, TMG), compositions. Properties. Application. Production. Flax sanitary Seals of rubber elastomers Insulators and heat-insulating materials. (link to the project section) Engineering techniques and concepts Explosion protection. Environmental protection. Corrosion. Climatic modifications (Material Compatibility Tables) Classes of pressure, temperature, tightness Drop (loss) of pressure. — Engineering concept. Fire protection. Fires. Theory of automatic control (regulation). TAU Mathematical Handbook Arithmetic, Geometric progressions and sums of some numerical series. Geometric figures. Properties, formulas: perimeters, areas, volumes, lengths. Triangles, Rectangles, etc. Degrees to radians. flat figures. Properties, sides, angles, signs, perimeters, equalities, similarities, chords, sectors, areas, etc. Areas of irregular figures, volumes of irregular bodies. The average value of the signal. Formulas and methods for calculating the area. Graphs. Construction of graphs. Reading charts. Integral and differential calculus. Tabular derivatives and integrals. Derivative table. Table of integrals. Table of primitives. Find derivative. Find the integral. Diffury. Complex numbers. imaginary unit. Linear algebra. (Vectors, matrices) Mathematics for the little ones. Kindergarten - 7th grade. Mathematical logic. Solution of equations. Quadratic and biquadratic equations. Formulas. Methods. Solution of differential equations Examples of solutions to ordinary differential equations of order higher than the first. Examples of solutions to the simplest = analytically solvable ordinary differential equations of the first order. Coordinate systems. Rectangular Cartesian, polar, cylindrical and spherical. Two-dimensional and three-dimensional. Number systems. Numbers and digits (real, complex, ....). Tables of number systems. Power series of Taylor, Maclaurin (=McLaren) and periodic Fourier series. Decomposition of functions into series. Tables of logarithms and basic formulas Tables of numerical values ​​Tables of Bradys. Probability theory and statistics Trigonometric functions, formulas and graphs. sin, cos, tg, ctg….Values ​​of trigonometric functions. Formulas for reducing trigonometric functions. Trigonometric identities. Numerical methods Equipment - standards, dimensions Household appliances, home equipment. Drainage and drainage systems. Capacities, tanks, reservoirs, tanks. Instrumentation and control Instrumentation and automation. Temperature measurement. Conveyors, belt conveyors. Containers (link) Laboratory equipment. Pumps and pumping stations Pumps for liquids and pulps. Engineering jargon. Dictionary. Screening. Filtration. Separation of particles through grids and sieves. Approximate strength of ropes, cables, cords, ropes made of various plastics. Rubber products. Joints and attachments. Diameters conditional, nominal, Du, DN, NPS and NB. Metric and inch diameters. SDR. Keys and keyways. Communication standards. Signals in automation systems (I&C) Analog input and output signals of instruments, sensors, flow meters and automation devices. connection interfaces. Communication protocols (communications) Telephony. Pipeline accessories. Cranes, valves, gate valves…. Building lengths. Flanges and threads. Standards. Connecting dimensions. threads. Designations, dimensions, use, types ... (reference link) Connections ("hygienic", "aseptic") pipelines in the food, dairy and pharmaceutical industries. Pipes, pipelines. Pipe diameters and other characteristics. Choice of pipeline diameter. Flow rates. Expenses. Strength. Selection tables, Pressure drop. Copper pipes. Pipe diameters and other characteristics. Polyvinyl chloride pipes (PVC). Pipe diameters and other characteristics. Pipes are polyethylene. Pipe diameters and other characteristics. Pipes polyethylene PND. Pipe diameters and other characteristics. Steel pipes (including stainless steel). Pipe diameters and other characteristics. The pipe is steel. The pipe is stainless. Stainless steel pipes. Pipe diameters and other characteristics. The pipe is stainless. Carbon steel pipes. Pipe diameters and other characteristics. The pipe is steel. Fitting. Flanges according to GOST, DIN (EN 1092-1) and ANSI (ASME). Flange connection. Flange connections. Flange connection. Elements of pipelines. Electric lamps Electrical connectors and wires (cables) Electric motors. Electric motors. Electrical switching devices. (Link to section) Standards for the personal life of engineers Geography for engineers. Distances, routes, maps….. Engineers in everyday life. Family, children, recreation, clothing and housing. Children of engineers. Engineers in offices. Engineers and other people. Socialization of engineers. Curiosities. Resting engineers. This shocked us. Engineers and food. Recipes, utility. Tricks for restaurants. International trade for engineers. We learn to think in a huckster way. Transport and travel. Private cars, bicycles…. Physics and chemistry of man. Economics for engineers. Bormotologiya financiers - human language. Technological concepts and drawings Paper writing, drawing, office and envelopes. Standard photo sizes. Ventilation and air conditioning. Water supply and sewerage Hot water supply (DHW). Drinking water supply Waste water. Cold water supply Galvanic industry Refrigeration Steam lines / systems. Condensate lines / systems. Steam lines. Condensate pipelines. Food industry Supply of natural gas Welding metals Symbols and designations of equipment on drawings and diagrams. Symbolic graphic representations in projects of heating, ventilation, air conditioning and heat and cold supply, according to ANSI / ASHRAE Standard 134-2005. Sterilization of equipment and materials Heat supply Electronic industry Power supply Physical reference Alphabets. Accepted designations. Basic physical constants. Humidity is absolute, relative and specific. Air humidity. Psychrometric tables. Ramzin diagrams. Time Viscosity, Reynolds number (Re). Viscosity units. Gases. Properties of gases. Individual gas constants. Pressure and Vacuum Vacuum Length, distance, linear dimension Sound. Ultrasound. Sound absorption coefficients (link to another section) Climate. climate data. natural data. SNiP 23-01-99. Building climatology. (Statistics of climatic data) SNIP 23-01-99. Table 3 - Average monthly and annual air temperature, ° С. Former USSR. SNIP 23-01-99 Table 1. Climatic parameters of the cold period of the year. RF. SNIP 23-01-99 Table 2. Climatic parameters of the warm season. Former USSR. SNIP 23-01-99 Table 2. Climatic parameters of the warm season. RF. SNIP 23-01-99 Table 3. Average monthly and annual air temperature, °С. RF. SNiP 23-01-99. Table 5a* - Average monthly and annual partial pressure of water vapor, hPa = 10^2 Pa. RF. SNiP 23-01-99. Table 1. Climatic parameters of the cold season. Former USSR. Density. Weight. Specific gravity. Bulk density. Surface tension. Solubility. Solubility of gases and solids. Light and color. Reflection, absorption and refraction coefficients Color alphabet:) - Designations (codings) of color (colors). Properties of cryogenic materials and media. Tables. Friction coefficients for various materials. Thermal quantities, including temperatures of boiling, melting, flame, etc…… for more information, see: Adiabatic coefficients (indicators). Convection and full heat exchange. Coefficients of thermal linear expansion, thermal volumetric expansion. Temperatures, boiling, melting, other… Conversion of temperature units. Flammability. softening temperature. Boiling points Melting points Thermal conductivity. Thermal conductivity coefficients. Thermodynamics. Specific heat of vaporization (condensation). Enthalpy of vaporization. Specific heat of combustion (calorific value). The need for oxygen. Electric and magnetic quantities Electric dipole moments. The dielectric constant. Electrical constant. Lengths of electromagnetic waves (a reference book of another section) Magnetic field strengths Concepts and formulas for electricity and magnetism. Electrostatics. Piezoelectric modules. Electrical strength of materials Electrical current Electrical resistance and conductivity. Electronic potentials Chemical reference book "Chemical alphabet (dictionary)" - names, abbreviations, prefixes, designations of substances and compounds. Aqueous solutions and mixtures for metal processing. Aqueous solutions for the application and removal of metal coatings Aqueous solutions for removing carbon deposits (tar deposits, carbon deposits from internal combustion engines ...) Aqueous solutions for passivation. Aqueous solutions for etching - removing oxides from the surface Aqueous solutions for phosphating Aqueous solutions and mixtures for chemical oxidation and coloring of metals. Aqueous solutions and mixtures for chemical polishing Degreasing aqueous solutions and organic solvents pH. pH tables. Burning and explosions. Oxidation and reduction. Classes, categories, designations of danger (toxicity) of chemical substances Periodic system of chemical elements of DI Mendeleev. Mendeleev table. Density of organic solvents (g/cm3) depending on temperature. 0-100 °C. Properties of solutions. Dissociation constants, acidity, basicity. Solubility. Mixes. Thermal constants of substances. Enthalpy. entropy. Gibbs energy… (link to the chemical reference book of the project) Electrical engineering Regulators Uninterrupted power supply systems. Dispatch and control systems Structured cabling systems Data centers

Table. Degrees of oxidation of chemical elements.

Table. Degrees of oxidation of chemical elements.

Oxidation state is the conditional charge of the atoms of a chemical element in a compound, calculated from the assumption that all bonds are of the ionic type. The oxidation states can have a positive, negative or zero value, therefore the algebraic sum of the oxidation states of elements in a molecule, taking into account the number of their atoms, is 0, and in an ion - the charge of the ion.
  1. The oxidation states of metals in compounds are always positive.
  2. The highest oxidation state corresponds to the group number of the periodic system where this element is located (the exception is: Au+3(I group), Cu+2(II), from group VIII, the oxidation state +8 can only be in osmium Os and ruthenium Ru.
  3. The oxidation states of non-metals depend on which atom it is connected to:
    • if with a metal atom, then the oxidation state is negative;
    • if with a non-metal atom, then the oxidation state can be both positive and negative. It depends on the electronegativity of the atoms of the elements.
  4. The highest negative oxidation state of non-metals can be determined by subtracting from 8 the number of the group in which this element is located, i.e. the highest positive oxidation state is equal to the number of electrons on the outer layer, which corresponds to the group number.
  5. The oxidation states of simple substances are 0, regardless of whether it is a metal or a non-metal.
Table: Elements with constant oxidation states.

Table. The oxidation states of chemical elements in alphabetical order.

Element Name Oxidation state
7 N -III, 0, +I, II, III, IV, V
89 ace
13 Al

Aluminum

95 Am

Americium

0, + II , III, IV

18 Ar
85 At -I, 0, +I, V
56 Ba
4 Be

Beryllium

97 bk
5 B -III, 0, +III
107 bh
35 Br -I, 0, +I, V, VII
23 V

0, + II , III, IV, V

83 Bi
1 H -I, 0, +I
74 W

Tungsten

64 Gd

Gadolinium

31 Ga
72 hf
2 He
32 Ge

Germanium

67 Ho
66 Dy

Dysprosium

105 Db
63 Eu
26 Fe
79 Au
49 In
77 Ir
39 Y
70 Yb

Ytterbium

53 I -I, 0, +I, V, VII
48 CD
19 TO
98 cf

Californium

20 Ca
54 Xe

0, + II , IV, VI, VIII

8 O

Oxygen

-II, I, 0, +II
27 co
36 Kr
14 Si -IV, 0, +11, IV
96 cm
57 La
3 Li
103 lr

Laurence

71 Lu
12 mg
25 Mn

Manganese

0, +II, IV, VI, VIII

29 Cu
109 Mt

Meitnerius

101 md

Mendelevium

42 Mo

Molybdenum

33 As -III, 0, +III, V
11 Na
60 Nd
10 Ne
93 Np

Neptunium

0, +III, IV, VI, VII

28 Ni
41 Nb
102 no
50 sn
76 Os

0, +IV, VI, VIII

46 Pd

Palladium

91 Pa.

Protactinium

61 Pm

Promethium

84 Ro
59 Rg

Praseodymium

78 Pt
94 PU

Plutonium

0, +III, IV, V, VI

88 Ra
37 Rb
75 Re
104 RF

Rutherfordium

45 Rh
86 Rn

0, + II , IV, VI, VIII

44 Ru

0, +II, IV, VI, VIII

80 hg
16 S -II, 0, +IV, VI
47 Ag
51 Sb
21 sc
34 Se -II, 0,+IV, VI
106 Sg

Seaborgium

62 sm
38 Sr

Strontium

82 Pb
81 Tl
73 Ta
52 Te -II, 0, +IV, VI
65 Tb
43 Tc

Technetium

22 Ti

0, + II , III, IV

90 Th
69 Tm
6 C -IV, I, 0, + II, IV
92 U
100 fm
15 P -III, 0, +I, III, V
87 Fr
9 F -I, 0
108 hs
17 Cl
24 Cr

0, + II , III , VI

55 Cs
58 Ce
30 Zn
40 Zr

Zirconium

99 ES

Einsteinium

68 Er

Table. The oxidation states of chemical elements by number.

Element Name Oxidation state
1 H -I, 0, +I
2 He
3 Li
4 Be

Beryllium

5 B -III, 0, +III
6 C -IV, I, 0, + II, IV
7 N -III, 0, +I, II, III, IV, V
8 O

Oxygen

-II, I, 0, +II
9 F -I, 0
10 Ne
11 Na
12 mg
13 Al

Aluminum

14 Si -IV, 0, +11, IV
15 P -III, 0, +I, III, V
16 S -II, 0, +IV, VI
17 Cl -I, 0, +I, III, IV, V, VI, VII
18 Ar
19 TO
20 Ca
21 sc
22 Ti

0, + II , III, IV

23 V

0, + II , III, IV, V

24 Cr

0, + II , III , VI

25 Mn

Manganese

0, +II, IV, VI, VIII

26 Fe
27 co
28 Ni
29 Cu
30 Zn
31 Ga
32 Ge

Germanium

33 As -III, 0, +III, V
34 Se -II, 0,+IV, VI
35 Br -I, 0, +I, V, VII
36 Kr
37 Rb
38 Sr

Strontium

39 Y
40 Zr

Zirconium

41 Nb
42 Mo

Molybdenum

43 Tc

Technetium

44 Ru

0, +II, IV, VI, VIII

45 Rh
46 Pd

Palladium

47 Ag
48 CD
49 In
50 sn
51 Sb
52 Te -II, 0, +IV, VI
53 I -I, 0, +I, V, VII
54 Xe

0, + II , IV, VI, VIII

55 Cs
56 Ba
57 La
58 Ce
59 Rg

Praseodymium

60 Nd
61 Pm

Promethium

62 sm
63 Eu
64 Gd

Gadolinium

65 Tb
66 Dy

Dysprosium

67 Ho
68 Er
69 Tm
70 Yb

Ytterbium

71 Lu
72 hf
73 Ta
74 W

Tungsten

75 Re
76 Os

0, +IV, VI, VIII

77 Ir
78 Pt
79 Au
80 hg
81 Tl
82 Pb
83 Bi
84 Ro
85 At -I, 0, +I, V
86 Rn

0, + II , IV, VI, VIII

87 Fr
88 Ra
89 ace
90 Th
91 Pa.

Protactinium

92 U
93 Np

Neptunium

0, +III, IV, VI, VII

94 PU

Plutonium

0, +III, IV, V, VI

95 Am

Americium

0, + II , III, IV

96 cm
97 bk
98 cf

Californium

99 ES

Einsteinium

100 fm
101 md

Mendelevium

102 no
103 lr

Laurence

104 RF

Rutherfordium

105 Db
106 Sg

Seaborgium

107 bh
108 hs
109 Mt

Meitnerius

Article rating:

In chemical processes, the main role is played by atoms and molecules, the properties of which determine the outcome of chemical reactions. One of the important characteristics of an atom is the oxidation number, which simplifies the method of taking into account the transfer of electrons in a particle. How to determine the oxidation state or the formal charge of a particle and what rules do you need to know for this?

Any chemical reaction is due to the interaction of atoms of various substances. The reaction process and its result depend on the characteristics of the smallest particles.

The term oxidation (oxidation) in chemistry means a reaction during which a group of atoms or one of them lose electrons or gain, in the case of acquisition, the reaction is called "reduction".

The oxidation state is a quantity that is measured quantitatively and characterizes the redistributed electrons during the reaction. Those. in the process of oxidation, the electrons in the atom decrease or increase, being redistributed among other interacting particles, and the level of oxidation shows exactly how they are reorganized. This concept is closely related to the electronegativity of particles - their ability to attract and repel free ions from themselves.

Determining the level of oxidation depends on the characteristics and properties of a particular substance, so the calculation procedure cannot be unambiguously called easy or complex, but its results help to conventionally record the processes of redox reactions. It should be understood that the obtained result of calculations is the result of taking into account the transfer of electrons and has no physical meaning, and is not the true charge of the nucleus.

It is important to know! Inorganic chemistry often uses the term valency instead of the oxidation state of elements, this is not a mistake, but it should be borne in mind that the second concept is more universal.

The concepts and rules for calculating the movement of electrons are the basis for classifying chemicals (nomenclature), describing their properties and compiling communication formulas. But most often this concept is used to describe and work with redox reactions.

Rules for determining the degree of oxidation

How to find out the degree of oxidation? When working with redox reactions, it is important to know that the formal charge of a particle will always be equal to the magnitude of the electron, expressed in numerical value. This feature is connected with the assumption that the electron pairs that form a bond are always completely shifted towards more negative particles. It should be understood that we are talking about ionic bonds, and in the case of a reaction at , electrons will be divided equally between identical particles.

The oxidation number can have both positive and negative values. The thing is that during the reaction, the atom must become neutral, and for this you need to either attach a certain number of electrons to the ion, if it is positive, or take them away if it is negative. To designate this concept, when writing formulas, an Arabic numeral with the corresponding sign is usually written above the designation of the element. For example, or etc.

You should know that the formal charge of metals will always be positive, and in most cases, you can use the periodic table to determine it. There are a number of features that must be taken into account in order to determine the indicators correctly.

Degree of oxidation:

Having remembered these features, it will be quite simple to determine the oxidation number of elements, regardless of the complexity and number of atomic levels.

Useful video: determining the degree of oxidation

The periodic table of Mendeleev contains almost all the necessary information for working with chemical elements. For example, schoolchildren use only it to describe chemical reactions. So, in order to determine the maximum positive and negative values ​​of the oxidation number, it is necessary to check the designation of the chemical element in the table:

  1. The maximum positive is the number of the group in which the element is located.
  2. The maximum negative oxidation state is the difference between the maximum positive limit and the number 8.

Thus, it is enough to simply find out the extreme boundaries of the formal charge of an element. Such an action can be performed using calculations based on the periodic table.

It is important to know! One element can have several different oxidation indices at the same time.

There are two main ways to determine the level of oxidation, examples of which are presented below. The first of these is a method that requires knowledge and skills to apply the laws of chemistry. How to arrange oxidation states using this method?

The rule for determining oxidation states

For this you need:

  1. Determine whether a given substance is elemental and whether it is out of bond. If yes, then its oxidation number will be equal to 0, regardless of the composition of the substance (individual atoms or multilevel atomic compounds).
  2. Determine whether the substance in question consists of ions. If yes, then the degree of oxidation will be equal to their charge.
  3. If the substance in question is a metal, then look at the indicators of other substances in the formula and calculate the metal readings by arithmetic.
  4. If the entire compound has one charge (in fact, this is the sum of all the particles of the elements presented), then it is enough to determine the indicators of simple substances, then subtract them from the total amount and get the metal data.
  5. If the relationship is neutral, then the total must be zero.

For example, consider combining with an aluminum ion whose total charge is zero. The rules of chemistry confirm the fact that the Cl ion has an oxidation number of -1, and in this case there are three of them in the compound. So the Al ion must be +3 for the entire compound to be neutral.

This method is quite good, since the correctness of the solution can always be checked by adding all the oxidation levels together.

The second method can be applied without knowledge of chemical laws:

  1. Find particle data for which there are no strict rules and the exact number of their electrons is unknown (possible by elimination).
  2. Find out the indicators of all other particles and then from the total amount by subtracting find the desired particle.

Let us consider the second method using the Na2SO4 substance as an example, in which the sulfur atom S is not defined, it is only known that it is nonzero.

To find what all oxidation states are equal to:

  1. Find known elements, keeping traditional rules and exceptions in mind.
  2. Na ion = +1 and each oxygen = -2.
  3. Multiply the number of particles of each substance by their electrons and get the oxidation states of all atoms except one.
  4. Na2SO4 consists of 2 sodium and 4 oxygen, when multiplied it turns out: 2 X +1 \u003d 2 is the oxidizing number of all sodium particles and 4 X -2 \u003d -8 - oxygen.
  5. Add the results 2+(-8) = -6 - this is the total charge of the compound without a sulfur particle.
  6. Express the chemical notation as an equation: sum of known data + unknown number = total charge.
  7. Na2SO4 is represented as follows: -6 + S = 0, S = 0 + 6, S = 6.

Thus, to use the second method, it is enough to know the simple laws of arithmetic.

In chemistry, the terms "oxidation" and "reduction" mean reactions in which an atom or a group of atoms lose or, respectively, gain electrons. The oxidation state is a numerical value attributed to one or more atoms that characterizes the number of redistributed electrons and shows how these electrons are distributed between atoms during the reaction. Determining this quantity can be both a simple and quite complex procedure, depending on the atoms and the molecules consisting of them. Moreover, the atoms of some elements can have several oxidation states. Fortunately, there are simple unambiguous rules for determining the degree of oxidation, for the confident use of which it is enough to know the basics of chemistry and algebra.

Steps

Part 1

Determination of the degree of oxidation according to the laws of chemistry

    Determine if the substance in question is elemental. The oxidation state of atoms outside a chemical compound is zero. This rule is true both for substances formed from individual free atoms, and for those that consist of two or polyatomic molecules of one element.

    • For example, Al(s) and Cl 2 have an oxidation state of 0 because both are in a chemically uncombined elemental state.
    • Please note that the allotropic form of sulfur S 8, or octasulfur, despite its atypical structure, is also characterized by a zero oxidation state.
  1. Determine if the substance in question consists of ions. The oxidation state of ions is equal to their charge. This is true both for free ions and for those that are part of chemical compounds.

    • For example, the oxidation state of the Cl ion is -1.
    • The oxidation state of the Cl ion in the chemical compound NaCl is also -1. Since the Na ion, by definition, has a charge of +1, we conclude that the charge of the Cl ion is -1, and thus its oxidation state is -1.
  2. Note that metal ions can have several oxidation states. Atoms of many metallic elements can be ionized to different extents. For example, the charge of ions of a metal such as iron (Fe) is +2 or +3. The charge of metal ions (and their degree of oxidation) can be determined by the charges of ions of other elements with which this metal is part of a chemical compound; in the text, this charge is indicated by Roman numerals: for example, iron (III) has an oxidation state of +3.

    • As an example, consider a compound containing an aluminum ion. The total charge of the AlCl 3 compound is zero. Since we know that Cl - ions have a charge of -1, and the compound contains 3 such ions, for the total neutrality of the substance in question, the Al ion must have a charge of +3. Thus, in this case, the oxidation state of aluminum is +3.
  3. The oxidation state of oxygen is -2 (with some exceptions). In almost all cases, oxygen atoms have an oxidation state of -2. There are several exceptions to this rule:

    • If oxygen is in the elemental state (O 2 ), its oxidation state is 0, as is the case for other elemental substances.
    • If oxygen is included peroxides, its oxidation state is -1. Peroxides are a group of compounds containing a single oxygen-oxygen bond (ie the peroxide anion O 2 -2). For example, in the composition of the H 2 O 2 molecule (hydrogen peroxide), oxygen has a charge and an oxidation state of -1.
    • In combination with fluorine, oxygen has an oxidation state of +2, see the rule for fluorine below.
  4. Hydrogen has an oxidation state of +1, with a few exceptions. As with oxygen, there are also exceptions. As a rule, the oxidation state of hydrogen is +1 (unless it is in the elemental state H 2). However, in compounds called hydrides, the oxidation state of hydrogen is -1.

    • For example, in H 2 O, the oxidation state of hydrogen is +1, since the oxygen atom has a charge of -2, and two +1 charges are needed for overall neutrality. However, in the composition of sodium hydride, the oxidation state of hydrogen is already -1, since the Na ion carries a charge of +1, and for total electroneutrality, the charge of the hydrogen atom (and thus its oxidation state) must be -1.
  5. Fluorine Always has an oxidation state of -1. As already noted, the degree of oxidation of some elements (metal ions, oxygen atoms in peroxides, and so on) can vary depending on a number of factors. The oxidation state of fluorine, however, is invariably -1. This is explained by the fact that this element has the highest electronegativity - in other words, fluorine atoms are the least willing to part with their own electrons and most actively attract other people's electrons. Thus, their charge remains unchanged.

  6. The sum of the oxidation states in a compound is equal to its charge. The oxidation states of all the atoms that make up a chemical compound, in total, should give the charge of this compound. For example, if a compound is neutral, the sum of the oxidation states of all its atoms must be zero; if the compound is a polyatomic ion with a charge of -1, the sum of the oxidation states is -1, and so on.

    • This is a good method of checking - if the sum of the oxidation states does not equal the total charge of the compound, then you are wrong somewhere.

    Part 2

    Determining the oxidation state without using the laws of chemistry
    1. Find atoms that do not have strict rules regarding oxidation state. In relation to some elements, there are no firmly established rules for finding the degree of oxidation. If an atom does not fall under any of the rules listed above, and you do not know its charge (for example, the atom is part of a complex, and its charge is not indicated), you can determine the oxidation state of such an atom by elimination. First, determine the charge of all other atoms of the compound, and then from the known total charge of the compound, calculate the oxidation state of this atom.

      • For example, in the Na 2 SO 4 compound, the charge of the sulfur atom (S) is unknown - we only know that it is not zero, since sulfur is not in the elementary state. This compound serves as a good example to illustrate the algebraic method of determining the oxidation state.
    2. Find the oxidation states of the rest of the elements in the compound. Using the rules described above, determine the oxidation states of the remaining atoms of the compound. Don't forget about the exceptions to the rule in the case of O, H, and so on.

      • For Na 2 SO 4 , using our rules, we find that the charge (and hence the oxidation state) of the Na ion is +1, and for each of the oxygen atoms it is -2.
    3. In compounds, the sum of all oxidation states must equal the charge. For example, if the compound is a diatomic ion, the sum of the oxidation states of the atoms must be equal to the total ionic charge.
    4. It is very useful to be able to use the periodic table of Mendeleev and know where the metallic and non-metallic elements are located in it.
    5. The oxidation state of atoms in the elementary form is always zero. The oxidation state of a single ion is equal to its charge. Elements of group 1A of the periodic table, such as hydrogen, lithium, sodium, in elemental form have an oxidation state of +1; the oxidation state of group 2A metals, such as magnesium and calcium, in its elemental form is +2. Oxygen and hydrogen, depending on the type of chemical bond, can have 2 different oxidation states.