The largest number. What is the name of the largest numbers in the world? Meaning in the "great account"

Once I read a tragic story about a Chukchi who was taught to count and write numbers by polar explorers. The magic of numbers impressed him so much that he decided to write down absolutely all the numbers in the world in a row, starting from one, in the notebook donated by the polar explorers. The Chukchi abandons all his affairs, stops communicating even with his own wife, no longer hunts seals and seals, but writes and writes numbers in a notebook .... So a year goes by. In the end, the notebook ends and the Chukchi realizes that he was able to write down only a small part of all the numbers. He weeps bitterly and in despair burns his scribbled notebook in order to start living the simple life of a fisherman again, no longer thinking about the mysterious infinity of numbers...

We will not repeat the feat of this Chukchi and try to find the largest number, since it is enough for any number to just add one to get an even larger number. Let's ask ourselves a similar but different question: which of the numbers that have their own name is the largest?

Obviously, although the numbers themselves are infinite, they do not have very many proper names, since most of them are content with names made up of smaller numbers. So, for example, the numbers 1 and 100 have their own names "one" and "one hundred", and the name of the number 101 is already compound ("one hundred and one"). It is clear that in the final set of numbers that humanity has awarded with its own name, there must be some largest number. But what is it called and what is it equal to? Let's try to figure it out and find, in the end, this is the largest number!

Number

latin cardinal numeral

Russian prefix


"Short" and "long" scale

The history of the modern naming system for large numbers dates back to the middle of the 15th century, when in Italy they began to use the words "million" (literally - a big thousand) for a thousand squared, "bimillion" for a million squared and "trimillion" for a million cubed. We know about this system thanks to the French mathematician Nicolas Chuquet (Nicolas Chuquet, c. 1450 - c. 1500): in his treatise "The Science of Numbers" (Triparty en la science des nombres, 1484), he developed this idea, proposing to further use the Latin cardinal numbers (see table), adding them to the ending "-million". So, Shuke's "bimillion" turned into a billion, "trimillion" into a trillion, and a million to the fourth power became a "quadrillion".

In Schücke's system, the number 10 9 , which was between a million and a billion, did not have its own name and was simply called "a thousand million", similarly, 10 15 was called "a thousand billion", 10 21 - "a thousand trillion", etc. It was not very convenient, and in 1549 the French writer and scientist Jacques Peletier du Mans (1517-1582) proposed to name such "intermediate" numbers using the same Latin prefixes, but the ending "-billion". So, 10 9 became known as "billion", 10 15 - "billiard", 10 21 - "trillion", etc.

The Shuquet-Peletier system gradually became popular and was used throughout Europe. However, in the 17th century, an unexpected problem arose. It turned out that for some reason some scientists began to get confused and call the number 10 9 not “a billion” or “a thousand million”, but “a billion”. Soon this error quickly spread, and a paradoxical situation arose - "billion" became simultaneously a synonym for "billion" (10 9) and "million million" (10 18).

This confusion continued for a long time and led to the fact that in the USA they created their own system for naming large numbers. According to the American system, the names of numbers are built in the same way as in the Schücke system - the Latin prefix and the ending "million". However, these numbers are different. If in the Schuecke system names with the ending "million" received numbers that were powers of a million, then in the American system the ending "-million" received the powers of a thousand. That is, a thousand million (1000 3 \u003d 10 9) began to be called a "billion", 1000 4 (10 12) - "trillion", 1000 5 (10 15) - "quadrillion", etc.

The old system of naming large numbers continued to be used in conservative Great Britain and began to be called "British" all over the world, despite the fact that it was invented by the French Shuquet and Peletier. However, in the 1970s, the UK officially switched to the "American system", which led to the fact that it became somehow strange to call one system American and another British. As a result, the American system is now commonly referred to as the "short scale" and the British or Chuquet-Peletier system as the "long scale".

In order not to get confused, let's sum up the intermediate result:

Number name

Value on the "short scale"

Value on the "long scale"

Billion

billiard

Trillion

trillion

quadrillion

quadrillion

Quintillion

quintillion

Sextillion

Sextillion

Septillion

Septilliard

Octillion

Octilliard

Quintillion

Nonilliard

Decillion

Decilliard


The short naming scale is now used in the United States, United Kingdom, Canada, Ireland, Australia, Brazil and Puerto Rico. Russia, Denmark, Turkey, and Bulgaria also use the short scale, except that the number 109 is not called "billion" but "billion". The long scale continues to be used today in most other countries.

It is curious that in our country the final transition to the short scale took place only in the second half of the 20th century. So, for example, even Yakov Isidorovich Perelman (1882-1942) in his "Entertaining Arithmetic" mentions the parallel existence of two scales in the USSR. The short scale, according to Perelman, was used in everyday life and financial calculations, and the long one was used in scientific books on astronomy and physics. However, now it is wrong to use a long scale in Russia, although the numbers there are large.

But back to finding the largest number. After a decillion, the names of numbers are obtained by combining prefixes. This is how numbers such as undecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion, novemdecillion, etc. are obtained. However, these names are no longer of interest to us, since we agreed to find the largest number with its own non-composite name.

If we turn to Latin grammar, we will find that the Romans had only three non-compound names for numbers greater than ten: viginti - "twenty", centum - "one hundred" and mille - "thousand". For numbers greater than "thousand", the Romans did not have their own names. For example, the Romans called a million (1,000,000) "decies centena milia", that is, "ten times a hundred thousand". According to Schuecke's rule, these three remaining Latin numerals give us such names for numbers as "vigintillion", "centillion" and "milleillion".


So, we found out that on the "short scale" the maximum number that has its own name and is not a composite of smaller numbers is "million" (10 3003). If a “long scale” of naming numbers were adopted in Russia, then the largest number with its own name would be “million” (10 6003).

However, there are names for even larger numbers.

Numbers outside the system

Some numbers have their own name, without any connection with the naming system using Latin prefixes. And there are many such numbers. You can, for example, remember the number e, the number "pi", a dozen, the number of the beast, etc. However, since we are now interested in large numbers, we will consider only those numbers with their own non-compound name that are more than a million.

Until the 17th century, Russia used its own system for naming numbers. Tens of thousands were called "darks," hundreds of thousands were called "legions," millions were called "leodres," tens of millions were called "ravens," and hundreds of millions were called "decks." This account up to hundreds of millions was called the “small account”, and in some manuscripts the authors also considered the “great account”, in which the same names were used for large numbers, but with a different meaning. So, "darkness" meant not ten thousand, but a thousand thousand (10 6), "legion" - the darkness of those (10 12); "leodr" - legion of legions (10 24), "raven" - leodr of leodres (10 48). For some reason, the “deck” in the great Slavic count was not called the “raven of ravens” (10 96), but only ten “ravens”, that is, 10 49 (see table).

Number name

Meaning in "small count"

Meaning in the "great account"

Designation

Raven (Raven)


The number 10100 also has its own name and was invented by a nine-year-old boy. And it was like that. In 1938, the American mathematician Edward Kasner (Edward Kasner, 1878-1955) was walking in the park with his two nephews and discussing large numbers with them. During the conversation, we talked about a number with one hundred zeros, which did not have its own name. One of his nephews, nine-year-old Milton Sirott, suggested calling this number "googol". In 1940, Edward Kasner, together with James Newman, wrote the non-fiction book Mathematics and the Imagination, where he taught mathematics lovers about the googol number. Google became even more widely known in the late 1990s, thanks to the Google search engine named after it.

The name for an even larger number than googol arose in 1950 thanks to the father of computer science, Claude Shannon (Claude Elwood Shannon, 1916-2001). In his article "Programming a Computer to Play Chess", he tried to estimate the number of possible variants of a chess game. According to him, each game lasts an average of 40 moves, and on each move the player chooses an average of 30 options, which corresponds to 900 40 (approximately equal to 10 118) game options. This work became widely known, and this number became known as the "Shannon number".

In the famous Buddhist treatise Jaina Sutra, dating back to 100 BC, the number "asankheya" is found equal to 10 140. It is believed that this number is equal to the number of cosmic cycles required to gain nirvana.

Nine-year-old Milton Sirotta entered the history of mathematics not only by inventing the number googol, but also by suggesting another number at the same time - “googolplex”, which is equal to 10 to the power of “googol”, that is, one with a googol of zeros.

Two more numbers larger than the googolplex were proposed by the South African mathematician Stanley Skewes (1899-1988) when proving the Riemann hypothesis. The first number, which later came to be called "Skeuse's first number", is equal to e to the extent e to the extent e to the power of 79, that is e e e 79 = 10 10 8.85.10 33 . However, the "second Skewes number" is even larger and is 10 10 10 1000 .

Obviously, the more degrees in the number of degrees, the more difficult it is to write down numbers and understand their meaning when reading. Moreover, it is possible to come up with such numbers (and they, by the way, have already been invented), when the degrees of degrees simply do not fit on the page. Yes, what a page! They won't even fit in a book the size of the entire universe! In this case, the question arises how to write down such numbers. The problem is, fortunately, resolvable, and mathematicians have developed several principles for writing such numbers. True, each mathematician who asked this problem came up with his own way of writing, which led to the existence of several unrelated ways to write large numbers - these are the notations of Knuth, Conway, Steinhaus, etc. We will now deal with some of them.

Other notations

In 1938, the same year that nine-year-old Milton Sirotta came up with the googol and googolplex numbers, Hugo Dionizy Steinhaus, 1887-1972, a book about entertaining mathematics, The Mathematical Kaleidoscope, was published in Poland. This book became very popular, went through many editions and was translated into many languages, including English and Russian. In it, Steinhaus, discussing large numbers, offers a simple way to write them using three geometric shapes - a triangle, a square and a circle:

"n in a triangle" means " n n»,
« n square" means " n in n triangles",
« n in a circle" means " n in n squares."

Explaining this way of writing, Steinhaus comes up with the number "mega" equal to 2 in a circle and shows that it is equal to 256 in a "square" or 256 in 256 triangles. To calculate it, you need to raise 256 to the power of 256, raise the resulting number 3.2.10 616 to the power of 3.2.10 616, then raise the resulting number to the power of the resulting number, and so on to raise to the power of 256 times. For example, the calculator in MS Windows cannot calculate due to overflow 256 even in two triangles. Approximately this huge number is 10 10 2.10 619 .

Having determined the number "mega", Steinhaus invites readers to independently evaluate another number - "medzon", equal to 3 in a circle. In another edition of the book, Steinhaus instead of the medzone proposes to estimate an even larger number - “megiston”, equal to 10 in a circle. Following Steinhaus, I will also recommend that readers take a break from this text for a while and try to write these numbers themselves using ordinary powers in order to feel their gigantic magnitude.

However, there are names for about higher numbers. So, the Canadian mathematician Leo Moser (Leo Moser, 1921-1970) finalized the Steinhaus notation, which was limited by the fact that if it were necessary to write down numbers much larger than a megiston, then difficulties and inconveniences would arise, since one would have to draw many circles one inside another. Moser suggested drawing not circles after squares, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons, so that numbers could be written without drawing complex patterns. Moser notation looks like this:

« n triangle" = n n = n;
« n in a square" = n = « n in n triangles" = nn;
« n in a pentagon" = n = « n in n squares" = nn;
« n in k+ 1-gon" = n[k+1] = " n in n k-gons" = n[k]n.

Thus, according to Moser's notation, the Steinhausian "mega" is written as 2, "medzon" as 3, and "megiston" as 10. In addition, Leo Moser suggested calling a polygon with a number of sides equal to mega - "megagon". And he proposed the number "2 in megagon", that is, 2. This number became known as the Moser number or simply as "moser".

But even "moser" is not the largest number. So, the largest number ever used in a mathematical proof is "Graham's number". This number was first used by the American mathematician Ronald Graham in 1977 when proving one estimate in Ramsey theory, namely when calculating the dimensions of certain n-dimensional bichromatic hypercubes. Graham's number gained fame only after the story about it in Martin Gardner's 1989 book "From Penrose Mosaics to Secure Ciphers".

To explain how large the Graham number is, one has to explain another way of writing large numbers, introduced by Donald Knuth in 1976. American professor Donald Knuth came up with the concept of superdegree, which he proposed to write with arrows pointing up:

I think that everything is clear, so let's get back to Graham's number. Ronald Graham proposed the so-called G-numbers:

Here is the number G 64 and is called the Graham number (it is often denoted simply as G). This number is the largest known number in the world used in a mathematical proof, and is even listed in the Guinness Book of Records.

And finally

Having written this article, I can not resist the temptation and come up with my own number. Let this number be called stasplex» and will be equal to the number G 100 . Memorize it, and when your children ask what is the largest number in the world, tell them that this number is called stasplex.

Partner news

The world of science is simply amazing with its knowledge. However, even the most brilliant person in the world will not be able to comprehend them all. But you need to strive for it. That is why in this article I want to figure out what it is, the largest number.

About systems

First of all, it must be said that there are two systems for naming numbers in the world: American and English. Depending on this, the same number can be called differently, although they have the same meaning. And at the very beginning it is necessary to deal with these nuances in order to avoid uncertainty and confusion.

American system

It will be interesting that this system is used not only in America and Canada, but also in Russia. In addition, it has its own scientific name: the system of naming numbers with a short scale. How are large numbers called in this system? Well, the secret is pretty simple. At the very beginning, there will be a Latin ordinal number, after which the well-known suffix “-million” will simply be added. The following fact will be interesting: in translation from Latin, the number "million" can be translated as "thousands". The following numbers belong to the American system: a trillion is 10 12, a quintillion is 10 18, an octillion is 10 27, etc. It will also be easy to figure out how many zeros are written in the number. To do this, you need to know a simple formula: 3 * x + 3 (where "x" in the formula is a Latin numeral).

English system

However, despite the simplicity of the American system, the English system is still more common in the world, which is a system for naming numbers with a long scale. Since 1948, it has been used in countries such as France, Great Britain, Spain, as well as in countries - former colonies of England and Spain. The construction of numbers here is also quite simple: the suffix “-million” is added to the Latin designation. Further, if the number is 1000 times larger, the suffix "-billion" is already added. How can you find out the number of zeros hidden in a number?

  1. If the number ends in "-million", you will need the formula 6 * x + 3 ("x" is a Latin numeral).
  2. If the number ends in "-billion", you will need the formula 6 * x + 6 (where "x", again, is a Latin numeral).

Examples

At this stage, for example, we can consider how the same numbers will be called, but on a different scale.

You can easily see that the same name in different systems means different numbers. Like a trillion. Therefore, considering the number, you still need to first find out according to which system it is written.

Off-system numbers

It is worth mentioning that, in addition to system numbers, there are also off-system numbers. Maybe among them the largest number was lost? It's worth looking into this.

  1. Google. This number is ten to the hundredth power, that is, one followed by one hundred zeros (10,100). This number was first mentioned back in 1938 by scientist Edward Kasner. A very interesting fact: the global search engine "Google" is named after a rather large number at that time - Google. And the name came up with Kasner's young nephew.
  2. Asankhiya. This is a very interesting name, which is translated from Sanskrit as "innumerable." Its numerical value is one with 140 zeros - 10140. The following fact will be interesting: this was known to people as early as 100 BC. e., as evidenced by the entry in the Jaina Sutra, a famous Buddhist treatise. This number was considered special, because it was believed that the same number of cosmic cycles are needed to reach nirvana. Also at that time, this number was considered the largest.
  3. Googolplex. This number was invented by the same Edward Kasner and his aforementioned nephew. Its numerical designation is ten to the tenth power, which, in turn, consists of the hundredth power (that is, ten to the googolplex power). The scientist also said that in this way you can get as large a number as you want: googoltetraplex, googolhexaplex, googoloctaplex, googoldekaplex, etc.
  4. Graham's number is G. This is the largest number recognized as such in the recent 1980 by the Guinness Book of Records. It is significantly larger than the googolplex and its derivatives. And scientists did say that the whole Universe is not able to contain the entire decimal notation of Graham's number.
  5. Moser number, Skewes number. These numbers are also considered one of the largest and they are most often used in solving various hypotheses and theorems. And since these numbers cannot be written down by generally accepted laws, each scientist does it in his own way.

Latest developments

However, it is still worth saying that there is no limit to perfection. And many scientists believed and still believe that the largest number has not yet been found. And, of course, the honor to do this will fall to them. An American scientist from Missouri worked on this project for a long time, his work was crowned with success. On January 25, 2012, he found the new largest number in the world, which consists of seventeen million digits (which is the 49th Mersenne number). Note: until that time, the largest number was the one found by the computer in 2008, it had 12 thousand digits and looked like this: 2 43112609 - 1.

Not the first time

It is worth saying that this has been confirmed by scientific researchers. This number went through three levels of verification by three scientists on different computers, which took a whopping 39 days. However, these are not the first achievements in such a search for an American scientist. Previously, he had already opened the largest numbers. This happened in 2005 and 2006. In 2008, the computer interrupted Curtis Cooper's streak of victories, but in 2012 he regained the palm and the well-deserved title of discoverer.

About the system

How does it all happen, how do scientists find the biggest numbers? So, today most of the work for them is done by a computer. In this case, Cooper used distributed computing. What does it mean? These calculations are carried out by programs installed on the computers of Internet users who have voluntarily decided to take part in the study. As part of this project, 14 Mersenne numbers were identified, named after the French mathematician (these are prime numbers that are divisible only by themselves and by one). In the form of a formula, it looks like this: M n = 2 n - 1 ("n" in this formula is a natural number).

About bonuses

A logical question may arise: what makes scientists work in this direction? So, this, of course, is the excitement and desire to be a pioneer. However, even here there are bonuses: Curtis Cooper received a cash prize of $3,000 for his brainchild. But that's not all. The Electronic Frontier Special Fund (abbreviation: EFF) encourages such searches and promises to immediately award cash prizes of $150,000 and $250,000 to those who submit 100 million and a billion prime numbers for consideration. So there is no doubt that a huge number of scientists around the world are working in this direction today.

Simple Conclusions

So what is the biggest number today? At the moment, it was found by an American scientist from the University of Missouri, Curtis Cooper, which can be written as follows: 2 57885161 - 1. Moreover, it is also the 48th number of the French mathematician Mersenne. But it is worth saying that there can be no end to these searches. And it is not surprising if, after a certain time, scientists will provide us with the next newly found largest number in the world for consideration. There is no doubt that this will happen in the very near future.

Have you ever wondered how many zeros there are in one million? This is a pretty simple question. What about a billion or a trillion? One followed by nine zeros (1000000000) - what is the name of the number?

A short list of numbers and their quantitative designation

  • Ten (1 zero).
  • One hundred (2 zeros).
  • Thousand (3 zeros).
  • Ten thousand (4 zeros).
  • One hundred thousand (5 zeros).
  • Million (6 zeros).
  • Billion (9 zeros).
  • Trillion (12 zeros).
  • Quadrillion (15 zeros).
  • Quintillion (18 zeros).
  • Sextillion (21 zeros).
  • Septillion (24 zeros).
  • Octalion (27 zeros).
  • Nonalion (30 zeros).
  • Decalion (33 zeros).

Grouping zeros

1000000000 - what is the name of the number that has 9 zeros? It's a billion. For convenience, large numbers are grouped into three sets, separated from each other by a space or punctuation marks such as a comma or period.

This is done to make it easier to read and understand the quantitative value. For example, what is the name of the number 1000000000? In this form, it is worth a little naprechis, count. And if you write 1,000,000,000, then immediately the task becomes easier visually, so you need to count not zeros, but triples of zeros.

Numbers with too many zeros

Of the most popular are million and billion (1000000000). What is a number with 100 zeros called? This is the googol number, also called by Milton Sirotta. That's a wildly huge number. Do you think this is a big number? Then what about a googolplex, a one followed by a googol of zeros? This figure is so large that it is difficult to come up with a meaning for it. In fact, there is no need for such giants, except to count the number of atoms in the infinite Universe.

Is 1 billion a lot?

There are two scales of measurement - short and long. Worldwide in science and finance, 1 billion is 1,000 million. This is on a short scale. According to her, this is a number with 9 zeros.

There is also a long scale, which is used in some European countries, including France, and was formerly used in the UK (until 1971), where a billion was 1 million million, that is, one and 12 zeros. This gradation is also called the long-term scale. The short scale is now predominant in financial and scientific matters.

Some European languages ​​such as Swedish, Danish, Portuguese, Spanish, Italian, Dutch, Norwegian, Polish, German use a billion (or a billion) characters in this system. In Russian, a number with 9 zeros is also described for a short scale of a thousand million, and a trillion is a million million. This avoids unnecessary confusion.

Conversational options

In Russian colloquial speech after the events of 1917 - the Great October Revolution - and the period of hyperinflation in the early 1920s. 1 billion rubles was called "limard". And in the dashing 1990s, a new slang expression “watermelon” appeared for a billion, a million was called a “lemon”.

The word "billion" is now used internationally. This is a natural number, which is displayed in the decimal system as 10 9 (one and 9 zeros). There is also another name - a billion, which is not used in Russia and the CIS countries.

Billion = billion?

Such a word as a billion is used to denote a billion only in those states in which the "short scale" is taken as the basis. These countries are the Russian Federation, the United Kingdom of Great Britain and Northern Ireland, the USA, Canada, Greece and Turkey. In other countries, the concept of a billion means the number 10 12, that is, one and 12 zeros. In countries with a "short scale", including Russia, this figure corresponds to 1 trillion.

Such confusion appeared in France at a time when the formation of such a science as algebra was taking place. The billion originally had 12 zeros. However, everything changed after the appearance of the main manual on arithmetic (author Tranchan) in 1558), where a billion is already a number with 9 zeros (a thousand million).

For several subsequent centuries, these two concepts were used on a par with each other. In the middle of the 20th century, namely in 1948, France switched to a long scale system of numerical names. In this regard, the short scale, once borrowed from the French, is still different from the one they use today.

Historically, the United Kingdom has used the long-term billion, but since 1974 official UK statistics have used the short-term scale. Since the 1950s, the short-term scale has been increasingly used in the fields of technical writing and journalism, even though the long-term scale was still maintained.

Sooner or later, everyone is tormented by the question, what is the largest number. A child's question can be answered in a million. What's next? Trillion. And even further? In fact, the answer to the question of what are the largest numbers is simple. It is simply worth adding one to the largest number, as it will no longer be the largest. This procedure can be continued indefinitely. Those. it turns out there is no largest number in the world? Is it infinity?

But if you ask yourself: what is the largest number that exists, and what is its own name? Now we all know...

There are two systems for naming numbers - American and English.

The American system is built quite simply. All names of large numbers are built like this: at the beginning there is a Latin ordinal number, and at the end the suffix -million is added to it. The exception is the name "million" which is the name of the number one thousand (lat. mille) and the magnifying suffix -million (see table). So the numbers are obtained - trillion, quadrillion, quintillion, sextillion, septillion, octillion, nonillion and decillion. The American system is used in the USA, Canada, France and Russia. You can find out the number of zeros in a number written in the American system using the simple formula 3 x + 3 (where x is a Latin numeral).

The English naming system is the most common in the world. It is used, for example, in Great Britain and Spain, as well as in most of the former English and Spanish colonies. The names of numbers in this system are built like this: like this: a suffix -million is added to the Latin numeral, the next number (1000 times larger) is built according to the principle - the same Latin numeral, but the suffix is ​​-billion. That is, after a trillion in the English system comes a trillion, and only then a quadrillion, followed by a quadrillion, and so on. Thus, a quadrillion according to the English and American systems are completely different numbers! You can find out the number of zeros in a number written in the English system and ending with the suffix -million using the formula 6 x + 3 (where x is a Latin numeral) and using the formula 6 x + 6 for numbers ending in -billion.

Only the number billion (10 9) passed from the English system into the Russian language, which, nevertheless, would be more correct to call it the way the Americans call it - a billion, since we have adopted the American system. But who in our country does something according to the rules! 😉 By the way, sometimes the word trillion is also used in Russian (you can see for yourself by running a search in Google or Yandex) and it means, apparently, 1000 trillion, i.e. quadrillion.

In addition to numbers written using Latin prefixes in the American or English system, the so-called off-system numbers are also known, i.e. numbers that have their own names without any Latin prefixes. There are several such numbers, but I will talk about them in more detail a little later.

Let's go back to writing using Latin numerals. It would seem that they can write numbers to infinity, but this is not entirely true. Now I will explain why. First, let's see how the numbers from 1 to 10 33 are called:

And so, now the question arises, what next. What is a decillion? In principle, it is possible, of course, by combining prefixes to generate such monsters as: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion and novemdecillion, but these will already be compound names, and we were interested in our own names numbers. Therefore, according to this system, in addition to the above, you can still get only three proper names - vigintillion (from lat. viginti- twenty), centillion (from lat. percent- one hundred) and a million (from lat. mille- one thousand). The Romans did not have more than a thousand proper names for numbers (all numbers over a thousand were composite). For example, a million (1,000,000) Romans called centena milia i.e. ten hundred thousand. And now, actually, the table:

Thus, according to a similar system, numbers greater than 10 3003, which would have its own, non-compound name, cannot be obtained! But nevertheless, numbers greater than a million are known - these are the same off-system numbers. Finally, let's talk about them.

The smallest such number is a myriad (it is even in Dahl's dictionary), which means a hundred hundreds, that is, 10,000. True, this word is outdated and practically not used, but it is curious that the word "myriad" is widely used, which does not mean a certain number at all, but an uncountable, uncountable set of something. It is believed that the word myriad (English myriad) came to European languages ​​from ancient Egypt.

There are different opinions about the origin of this number. Some believe that it originated in Egypt, while others believe that it was born only in ancient Greece. Be that as it may, in fact, the myriad gained fame precisely thanks to the Greeks. Myriad was the name for 10,000, and there were no names for numbers over ten thousand. However, in the note "Psammit" (i.e., the calculus of sand), Archimedes showed how one can systematically build and name arbitrarily large numbers. In particular, placing 10,000 (myriad) grains of sand in a poppy seed, he finds that in the Universe (a sphere with a diameter of a myriad of Earth diameters) no more than 1063 grains of sand would fit (in our notation). It is curious that modern calculations of the number of atoms in the visible universe lead to the number 1067 (only a myriad times more). The names of the numbers Archimedes suggested are as follows:
1 myriad = 104.
1 di-myriad = myriad myriad = 108.
1 tri-myriad = di-myriad di-myriad = 1016.
1 tetra-myriad = three-myriad three-myriad = 1032.
etc.

Googol (from the English googol) is the number ten to the hundredth power, that is, one with one hundred zeros. The "googol" was first written about in 1938 in the article "New Names in Mathematics" in the January issue of the journal Scripta Mathematica by the American mathematician Edward Kasner. According to him, his nine-year-old nephew Milton Sirotta suggested calling a large number "googol". This number became well-known thanks to the Google search engine named after him. Note that "Google" is a trademark and googol is a number.


Edward Kasner.

On the Internet, you can often find mention that Google is the largest number in the world, but this is not so ...

In the well-known Buddhist treatise Jaina Sutra, dating back to 100 BC, the number Asankheya (from the Chinese. asentzi- incalculable), equal to 10 140. It is believed that this number is equal to the number of cosmic cycles necessary to gain nirvana.

Googolplex (English) googolplex) - a number also invented by Kasner with his nephew and meaning one with a googol of zeros, that is, 10 10100. Here is how Kasner himself describes this "discovery":

Words of wisdom are spoken by children at least as often as by scientists. The name "googol" was invented by a child (Dr. Kasner"s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination(1940) by Kasner and James R. Newman.

Even more than a googolplex number, Skewes' number was proposed by Skewes in 1933 (Skewes. J. London Math. soc. 8, 277-283, 1933.) in proving the Riemann conjecture concerning prime numbers. It means e to the extent e to the extent e to the power of 79, i.e. eee79. Later, Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x)." Math. Comput. 48, 323-328, 1987) reduced Skuse's number to ee27/4, which is approximately equal to 8.185 10370. It is clear that since the value of the Skewes number depends on the number e, then it is not an integer, so we will not consider it, otherwise we would have to recall other non-natural numbers - the number pi, the number e, etc.

But it should be noted that there is a second Skewes number, which in mathematics is denoted as Sk2, which is even larger than the first Skewes number (Sk1). The second Skuse number was introduced by J. Skuse in the same article to denote a number for which the Riemann hypothesis is not valid. Sk2 is 101010103, which is 1010101000 .

As you understand, the more degrees there are, the more difficult it is to understand which of the numbers is greater. For example, looking at the Skewes numbers, without special calculations, it is almost impossible to understand which of these two numbers is larger. Thus, for superlarge numbers, it becomes inconvenient to use powers. Moreover, you can come up with such numbers (and they have already been invented) when the degrees of degrees simply do not fit on the page. Yes, what a page! They won't even fit into a book the size of the entire universe! In this case, the question arises how to write them down. The problem, as you understand, is solvable, and mathematicians have developed several principles for writing such numbers. True, every mathematician who asked this problem came up with his own way of writing, which led to the existence of several, unrelated, ways to write numbers - these are the notations of Knuth, Conway, Steinhouse, etc.

Consider the notation of Hugo Stenhaus (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), which is quite simple. Steinhouse suggested writing large numbers inside geometric shapes - a triangle, a square and a circle:

Steinhouse came up with two new super-large numbers. He called the number - Mega, and the number - Megiston.

The mathematician Leo Moser refined Stenhouse's notation, which was limited by the fact that if it was necessary to write numbers much larger than a megiston, difficulties and inconveniences arose, since many circles had to be drawn one inside the other. Moser suggested drawing not circles after squares, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons, so that numbers could be written without drawing complex patterns. Moser notation looks like this:

    • n[k+1] = "n in n k-gons" = n[k]n.

Thus, according to Moser's notation, Steinhouse's mega is written as 2, and megiston as 10. In addition, Leo Moser suggested calling a polygon with the number of sides equal to mega - megagon. And he proposed the number "2 in Megagon", that is, 2. This number became known as the Moser's number, or simply as a moser.

But the moser is not the largest number. The largest number ever used in a mathematical proof is the limiting value known as Graham's number, first used in 1977 in the proof of one estimate in Ramsey theory. It is associated with bichromatic hypercubes and cannot be expressed without the special 64-level system of special mathematical symbols introduced by Knuth in 1976.

Unfortunately, the number written in the Knuth notation cannot be translated into the Moser notation. Therefore, this system will also have to be explained. In principle, there is nothing complicated in it either. Donald Knuth (yes, yes, this is the same Knuth who wrote The Art of Programming and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing up:

In general, it looks like this:

I think that everything is clear, so let's get back to Graham's number. Graham proposed the so-called G-numbers:

The number G63 became known as the Graham number (it is often denoted simply as G). This number is the largest known number in the world and is even listed in the Guinness Book of Records.

So there are numbers bigger than Graham's number? There is, of course, the Graham number + 1 for starters. As for the significant number… well, there are some fiendishly difficult areas of mathematics (particularly the field known as combinatorics) and computer science where numbers even larger than the Graham number occur. But we have almost reached the limit of what can be rationally and clearly explained.

sources http://ctac.livejournal.com/23807.html
http://www.uznayvse.ru/interesting-facts/samoe-bolshoe-chislo.html
http://www.vokrugsveta.ru/quiz/310/

https://masterok.livejournal.com/4481720.html

June 17th, 2015

“I see clumps of vague numbers lurking out there in the dark, behind the little spot of light that the mind candle gives. They whisper to each other; talking about who knows what. Perhaps they do not like us very much for capturing their little brothers with our minds. Or maybe they just lead an unambiguous numerical way of life, out there, beyond our understanding.''
Douglas Ray

We continue ours. Today we have numbers...

Sooner or later, everyone is tormented by the question, what is the largest number. A child's question can be answered in a million. What's next? Trillion. And even further? In fact, the answer to the question of what are the largest numbers is simple. It is simply worth adding one to the largest number, as it will no longer be the largest. This procedure can be continued indefinitely.

But if you ask yourself: what is the largest number that exists, and what is its own name?

Now we all know...

There are two systems for naming numbers - American and English.

The American system is built quite simply. All names of large numbers are built like this: at the beginning there is a Latin ordinal number, and at the end the suffix -million is added to it. The exception is the name "million" which is the name of the number one thousand (lat. mille) and the magnifying suffix -million (see table). So the numbers are obtained - trillion, quadrillion, quintillion, sextillion, septillion, octillion, nonillion and decillion. The American system is used in the USA, Canada, France and Russia. You can find out the number of zeros in a number written in the American system using the simple formula 3 x + 3 (where x is a Latin numeral).

The English naming system is the most common in the world. It is used, for example, in Great Britain and Spain, as well as in most of the former English and Spanish colonies. The names of numbers in this system are built like this: like this: a suffix -million is added to the Latin numeral, the next number (1000 times larger) is built according to the principle - the same Latin numeral, but the suffix is ​​-billion. That is, after a trillion in the English system comes a trillion, and only then a quadrillion, followed by a quadrillion, and so on. Thus, a quadrillion according to the English and American systems are completely different numbers! You can find out the number of zeros in a number written in the English system and ending with the suffix -million using the formula 6 x + 3 (where x is a Latin numeral) and using the formula 6 x + 6 for numbers ending in -billion.

Only the number billion (10 9 ) passed from the English system into the Russian language, which, nevertheless, would be more correct to call it the way the Americans call it - a billion, since we have adopted the American system. But who in our country does something according to the rules! ;-) By the way, sometimes the word trillion is also used in Russian (you can see for yourself by running a search in Google or Yandex) and it means, apparently, 1000 trillion, i.e. quadrillion.

In addition to numbers written using Latin prefixes in the American or English system, the so-called off-system numbers are also known, i.e. numbers that have their own names without any Latin prefixes. There are several such numbers, but I will talk about them in more detail a little later.

Let's go back to writing using Latin numerals. It would seem that they can write numbers to infinity, but this is not entirely true. Now I will explain why. Let's first see how the numbers from 1 to 10 33 are called:

And so, now the question arises, what next. What is a decillion? In principle, it is possible, of course, by combining prefixes to generate such monsters as: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion and novemdecillion, but these will already be compound names, and we were interested in our own names numbers. Therefore, according to this system, in addition to those indicated above, you can still get only three - vigintillion (from lat.viginti- twenty), centillion (from lat.percent- one hundred) and a million (from lat.mille- one thousand). The Romans did not have more than a thousand proper names for numbers (all numbers over a thousand were composite). For example, a million (1,000,000) Romans calledcentena miliai.e. ten hundred thousand. And now, actually, the table:

Thus, according to a similar system, numbers are greater than 10 3003 , which would have its own, non-compound name, it is impossible to get! But nevertheless, numbers greater than a million are known - these are the very non-systemic numbers. Finally, let's talk about them.


The smallest such number is a myriad (it is even in Dahl's dictionary), which means a hundred hundreds, that is, 10,000. True, this word is outdated and practically not used, but it is curious that the word "myriad" is widely used, which does not mean a certain number at all, but an uncountable, uncountable set of something. It is believed that the word myriad (English myriad) came to European languages ​​from ancient Egypt.

There are different opinions about the origin of this number. Some believe that it originated in Egypt, while others believe that it was born only in ancient Greece. Be that as it may, in fact, the myriad gained fame precisely thanks to the Greeks. Myriad was the name for 10,000, and there were no names for numbers over ten thousand. However, in the note "Psammit" (i.e., the calculus of sand), Archimedes showed how one can systematically build and name arbitrarily large numbers. In particular, placing 10,000 (myriad) grains of sand in a poppy seed, he finds that in the Universe (a ball with a diameter of a myriad of Earth diameters) would fit (in our notation) no more than 10 63 grains of sand. It is curious that modern calculations of the number of atoms in the visible universe lead to the number 10 67 (only a myriad of times more). The names of the numbers Archimedes suggested are as follows:
1 myriad = 10 4 .
1 di-myriad = myriad myriad = 10 8 .
1 tri-myriad = di-myriad di-myriad = 10 16 .
1 tetra-myriad = three-myriad three-myriad = 10 32 .
etc.



Googol (from the English googol) is the number ten to the hundredth power, that is, one with one hundred zeros. The "googol" was first written about in 1938 in the article "New Names in Mathematics" in the January issue of the journal Scripta Mathematica by the American mathematician Edward Kasner. According to him, his nine-year-old nephew Milton Sirotta suggested calling a large number "googol". This number became well-known thanks to the search engine named after him. Google. Note that "Google" is a trademark and googol is a number.


Edward Kasner.

On the Internet, you can often find mention that - but this is not so ...

In the well-known Buddhist treatise Jaina Sutra, dating back to 100 BC, the number Asankheya (from the Chinese. asentzi- incalculable), equal to 10 140. It is believed that this number is equal to the number of cosmic cycles required to gain nirvana.


Googolplex (English) googolplex) - a number also invented by Kasner with his nephew and meaning one with a googol of zeros, that is, 10 10100 . Here is how Kasner himself describes this "discovery":


Words of wisdom are spoken by children at least as often as by scientists. The name "googol" was invented by a child (Dr. Kasner"s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination(1940) by Kasner and James R. Newman.

Even larger than the googolplex number, Skewes' number was proposed by Skewes in 1933 (Skewes. J. London Math. soc. 8, 277-283, 1933.) in proving the Riemann conjecture concerning primes. It means e to the extent e to the extent e to the power of 79, i.e. ee e 79 . Later, Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x)." Math. Comput. 48, 323-328, 1987) reduced Skuse's number to ee 27/4 , which is approximately equal to 8.185 10 370 . It is clear that since the value of the Skewes number depends on the number e, then it is not an integer, so we will not consider it, otherwise we would have to recall other non-natural numbers - the number pi, the number e, etc.


But it should be noted that there is a second Skewes number, which in mathematics is denoted as Sk2 , which is even larger than the first Skewes number (Sk1 ). Skuse's second number, was introduced by J. Skuse in the same article to denote a number for which the Riemann hypothesis is not valid. Sk2 is 1010 10103 , i.e. 1010 101000 .

As you understand, the more degrees there are, the more difficult it is to understand which of the numbers is greater. For example, looking at the Skewes numbers, without special calculations, it is almost impossible to understand which of these two numbers is larger. Thus, for superlarge numbers, it becomes inconvenient to use powers. Moreover, you can come up with such numbers (and they have already been invented) when the degrees of degrees simply do not fit on the page. Yes, what a page! They won't even fit into a book the size of the entire universe! In this case, the question arises how to write them down. The problem, as you understand, is solvable, and mathematicians have developed several principles for writing such numbers. True, every mathematician who asked this problem came up with his own way of writing, which led to the existence of several, unrelated, ways to write numbers - these are the notations of Knuth, Conway, Steinhaus, etc.

Consider the notation of Hugo Stenhaus (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), which is quite simple. Steinhouse suggested writing large numbers inside geometric shapes - a triangle, a square and a circle:

Steinhouse came up with two new super-large numbers. He called the number - Mega, and the number - Megiston.

The mathematician Leo Moser refined Stenhouse's notation, which was limited by the fact that if it was necessary to write numbers much larger than a megiston, difficulties and inconveniences arose, since many circles had to be drawn one inside the other. Moser suggested drawing not circles after squares, but pentagons, then hexagons, and so on. He also proposed a formal notation for these polygons, so that numbers could be written without drawing complex patterns. Moser notation looks like this:

Thus, according to Moser's notation, Steinhouse's mega is written as 2, and megiston as 10. In addition, Leo Moser suggested calling a polygon with the number of sides equal to mega - megagon. And he proposed the number "2 in Megagon", that is, 2. This number became known as Moser's number or simply as moser.


But the moser is not the largest number. The largest number ever used in a mathematical proof is the limiting value known as Graham's number, first used in 1977 in the proof of one estimate in Ramsey theory. It is associated with bichromatic hypercubes and cannot be expressed without the special 64-level system of special mathematical symbols introduced by Knuth in 1976.

Unfortunately, the number written in the Knuth notation cannot be translated into the Moser notation. Therefore, this system will also have to be explained. In principle, there is nothing complicated in it either. Donald Knuth (yes, yes, this is the same Knuth who wrote The Art of Programming and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing up:

In general, it looks like this:

I think that everything is clear, so let's get back to Graham's number. Graham proposed the so-called G-numbers:


  1. G1 = 3..3, where the number of superdegree arrows is 33.

  2. G2 = ..3, where the number of superdegree arrows is equal to G1 .

  3. G3 = ..3, where the number of superdegree arrows is equal to G2 .


  4. G63 = ..3, where the number of superpower arrows is G62 .

The number G63 became known as the Graham number (it is often denoted simply as G). This number is the largest known number in the world and is even listed in the Guinness Book of Records. And here