The name of the numbers after the million. Principles of naming and the list of large numbers

Many are interested in questions about how large numbers are called and what number is the largest in the world. These interesting questions will be dealt with in this article.

Story

The southern and eastern Slavic peoples used alphabetic numbering to write numbers, and only those letters that are in the Greek alphabet. Above the letter, which denoted the number, they put a special “titlo” icon. The numerical values ​​of the letters increased in the same order in which the letters followed in the Greek alphabet (in the Slavic alphabet, the order of the letters was slightly different). In Russia, Slavic numbering was preserved until the end of the 17th century, and under Peter I they switched to “Arabic numbering”, which we still use today.

The names of the numbers also changed. So, until the 15th century, the number “twenty” was designated as “two ten” (two tens), and then it was reduced for faster pronunciation. The number 40 until the 15th century was called “fourty”, then it was replaced by the word “forty”, which originally denoted a bag containing 40 squirrel or sable skins. The name "million" appeared in Italy in 1500. It was formed by adding an augmentative suffix to the number "mille" (thousand). Later, this name came to Russian.

In the old (XVIII century) "Arithmetic" of Magnitsky, there is a table of names of numbers, brought to the "quadrillion" (10 ^ 24, according to the system through 6 digits). Perelman Ya.I. in the book "Entertaining Arithmetic" the names of large numbers of that time are given, somewhat different from today: septillion (10 ^ 42), octalion (10 ^ 48), nonalion (10 ^ 54), decalion (10 ^ 60), endecalion (10 ^ 66), dodecalion (10 ^ 72) and it is written that "there are no further names."

Ways to build names of large numbers

There are 2 main ways to name large numbers:

  • American system, which is used in the USA, Russia, France, Canada, Italy, Turkey, Greece, Brazil. The names of large numbers are built quite simply: at the beginning there is a Latin ordinal number, and the suffix “-million” is added to it at the end. The exception is the number "million", which is the name of the number one thousand (mille) and the magnifying suffix "-million". The number of zeros in a number that is written in the American system can be found by the formula: 3x + 3, where x is a Latin ordinal number
  • English system most common in the world, it is used in Germany, Spain, Hungary, Poland, Czech Republic, Denmark, Sweden, Finland, Portugal. The names of numbers according to this system are built as follows: the suffix “-million” is added to the Latin numeral, the next number (1000 times larger) is the same Latin numeral, but the suffix “-billion” is added. The number of zeros in a number that is written in the English system and ends with the suffix “-million” can be found by the formula: 6x + 3, where x is a Latin ordinal number. The number of zeros in numbers ending in the suffix “-billion” can be found by the formula: 6x + 6, where x is a Latin ordinal number.

From the English system, only the word billion passed into the Russian language, which is still more correct to call it the way the Americans call it - billion (since the American system for naming numbers is used in Russian).

In addition to numbers that are written in the American or English system using Latin prefixes, non-systemic numbers are known that have their own names without Latin prefixes.

Proper names for large numbers

Number Latin numeral Name Practical value
10 1 10 ten Number of fingers on 2 hands
10 2 100 hundred Approximately half the number of all states on Earth
10 3 1000 one thousand Approximate number of days in 3 years
10 6 1000 000 unus (I) million 5 times more than the number of drops in a 10-litre. bucket of water
10 9 1000 000 000 duo(II) billion (billion) Approximate population of India
10 12 1000 000 000 000 tres(III) trillion
10 15 1000 000 000 000 000 quattor(IV) quadrillion 1/30 of the length of a parsec in meters
10 18 quinque (V) quintillion 1/18 of the number of grains from the legendary award to the inventor of chess
10 21 sex (VI) sextillion 1/6 of the mass of the planet Earth in tons
10 24 septem(VII) septillion Number of molecules in 37.2 liters of air
10 27 octo(VIII) octillion Half the mass of Jupiter in kilograms
10 30 novem(IX) quintillion 1/5 of all microorganisms on the planet
10 33 decem(X) decillion Half the mass of the Sun in grams
  • Vigintillion (from lat. viginti - twenty) - 10 63
  • Centillion (from Latin centum - one hundred) - 10 303
  • Milleillion (from Latin mille - thousand) - 10 3003

For numbers greater than a thousand, the Romans did not have their own names (all the names of numbers below were composite).

Compound names for large numbers

In addition to their own names, for numbers greater than 10 33 you can get compound names by combining prefixes.

Compound names for large numbers

Number Latin numeral Name Practical value
10 36 undecim (XI) andecillion
10 39 duodecim(XII) duodecillion
10 42 tredecim(XIII) tredecillion 1/100 of the number of air molecules on Earth
10 45 quattuordecim (XIV) quattordecillion
10 48 quindecim (XV) quindecillion
10 51 sedecim (XVI) sexdecillion
10 54 septendecim (XVII) septemdecillion
10 57 octodecillion So many elementary particles in the sun
10 60 novemdecillion
10 63 viginti (XX) vigintillion
10 66 unus et viginti (XXI) anvigintillion
10 69 duo et viginti (XXII) duovigintillion
10 72 tres et viginti (XXIII) trevigintillion
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion So many elementary particles in the universe
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 triginta (XXX) trigintillion
10 96 antirigintillion
  • 10 123 - quadragintillion
  • 10 153 - quinquagintillion
  • 10 183 - sexagintillion
  • 10 213 - septuagintillion
  • 10 243 - octogintillion
  • 10 273 - nonagintillion
  • 10 303 - centillion

Further names can be obtained by direct or reverse order of Latin numerals (it is not known how to correctly):

  • 10 306 - ancentillion or centunillion
  • 10 309 - duocentillion or centduollion
  • 10 312 - trecentillion or centtrillion
  • 10 315 - quattorcentillion or centquadrillion
  • 10 402 - tretrigintacentillion or centtretrigintillion

The second spelling is more in line with the construction of numerals in Latin and avoids ambiguities (for example, in the number trecentillion, which in the first spelling is both 10903 and 10312).

  • 10 603 - decentillion
  • 10 903 - trecentillion
  • 10 1203 - quadringentillion
  • 10 1503 - quingentillion
  • 10 1803 - sescentillion
  • 10 2103 - septingentillion
  • 10 2403 - octingentillion
  • 10 2703 - nongentillion
  • 10 3003 - million
  • 10 6003 - duomillion
  • 10 9003 - tremillion
  • 10 15003 - quinquemillion
  • 10 308760 -ion
  • 10 3000003 - miamimiliaillion
  • 10 6000003 - duomyamimiliaillion

myriad– 10,000. The name is obsolete and practically never used. However, the word “myriad” is widely used, which means not a certain number, but an uncountable, uncountable set of something.

googol ( English . googol) — 10 100 . The American mathematician Edward Kasner first wrote about this number in 1938 in the journal Scripta Mathematica in the article “New Names in Mathematics”. According to him, his 9-year-old nephew Milton Sirotta suggested calling the number this way. This number became public knowledge thanks to the Google search engine, named after him.

Asankheyya(from Chinese asentzi - innumerable) - 10 1 4 0. This number is found in the famous Buddhist treatise Jaina Sutra (100 BC). It is believed that this number is equal to the number of cosmic cycles required to gain nirvana.

Googolplex ( English . Googolplex) — 10^10^100. This number was also invented by Edward Kasner and his nephew, it means one with a googol of zeros.

Skewes number (Skewes' number Sk 1) means e to the power of e to the power of e to the power of 79, i.e. e^e^e^79. This number was proposed by Skewes in 1933 (Skewes. J. London Math. Soc. 8, 277-283, 1933.) in proving the Riemann conjecture concerning prime numbers. Later, Riele (te Riele, H. J. J. "On the Sign of the Difference P(x)-Li(x"). Math. Comput. 48, 323-328, 1987) reduced Skuse's number to e^e^27/4, which is approximately equal to 8.185 10^370. However, this number is not an integer, so it is not included in the table of large numbers.

Second Skewes Number (Sk2) equals 10^10^10^10^3, which is 10^10^10^1000. This number was introduced by J. Skuse in the same article to denote the number up to which the Riemann hypothesis is valid.

For super-large numbers, it is inconvenient to use powers, so there are several ways to write numbers - the notations of Knuth, Conway, Steinhouse, etc.

Hugo Steinhaus suggested writing large numbers inside geometric shapes (triangle, square and circle).

The mathematician Leo Moser finalized Steinhaus's notation, suggesting that after the squares, draw not circles, but pentagons, then hexagons, and so on. Moser also proposed a formal notation for these polygons, so that the numbers could be written without drawing complex patterns.

Steinhouse came up with two new super-large numbers: Mega and Megiston. In Moser notation, they are written as follows: Mega – 2, Megiston– 10. Leo Moser suggested also calling a polygon with the number of sides equal to mega – megagon, and also suggested the number "2 in Megagon" - 2. The last number is known as Moser's number or just like Moser.

There are numbers bigger than Moser. The largest number that has been used in a mathematical proof is number Graham(Graham's number). It was first used in 1977 in the proof of one estimate in the Ramsey theory. This number is associated with bichromatic hypercubes and cannot be expressed without a special 64-level system of special mathematical symbols introduced by Knuth in 1976. Donald Knuth (who wrote The Art of Programming and created the TeX editor) came up with the concept of superpower, which he proposed to write with arrows pointing up:

In general

Graham suggested G-numbers:

The number G 63 is called the Graham number, often simply referred to as G. This number is the largest known number in the world and is listed in the Guinness Book of Records.

This is a tablet for learning numbers from 1 to 100. The manual is suitable for children over 4 years old.

Those who are familiar with Montesori education have probably already seen such a sign. She has many applications and now we will get to know them.

The child must know numbers up to 10 perfectly before starting work with the table, since counting up to 10 is the basis of learning numbers up to 100 and above.

With the help of this table, the child will learn the names of numbers up to 100; count up to 100; sequence of numbers. You can also practice counting after 2, 3, 5, etc.

The table can be copied here

It consists of two parts (two-sided). We copy on one side of the sheet a table with numbers up to 100, and on the other, empty cells where you can practice. Laminate the table so that the child can write on it with markers and wipe it off easily.

How to use the table


1. The table can be used to study numbers from 1 to 100.

Starting at 1 and counting up to 100. Initially the parent/teacher shows how this is done.

It is important that the child notices the principle by which numbers are repeated.


2. Mark one number on the laminated chart. The child must say the next 3-4 numbers.


3. Mark some numbers. Ask the child to name their names.

The second version of the exercise - the parent calls arbitrary numbers, and the child finds and marks them.

4. Count in 5.

The child counts 1,2,3,4,5 and notes the last (fifth) number.


5. If you copy the template with numbers again and cut it, you can make cards. They can be placed in the table as you will see in the following lines

In this case, the table is copied on blue cardboard, so that it can be easily distinguished from the white background of the table.


6. Cards can be placed on the table and counted - call the number by putting its card. This helps the child learn all the numbers. Thus he will exercise.

Before that, it is important that the parent divide the cards into 10s (1 to 10; 11 to 20; 21 to 30, etc.). The child takes a card, puts it down and calls a number.


7. When the child has already advanced with the score, you can go to an empty table and arrange the cards there.


8. Account horizontally or vertically.

Arrange the cards in a column or row and read all the numbers in order, following the pattern of their change - 6, 16, 26, 36, etc.


9. Write the missing number.

The parent writes arbitrary numbers to an empty table.

The child must complete the empty cells.

Countless different numbers surround us every day. Surely many people at least once wondered what number is considered the largest. You can simply tell a child that this is a million, but adults are well aware that other numbers follow a million. For example, one has only to add one to the number every time, and it will become more and more - this happens ad infinitum. But if you disassemble the numbers that have names, you can find out what the largest number in the world is called.

The appearance of the names of numbers: what methods are used?

To date, there are 2 systems according to which names are given to numbers - American and English. The first is quite simple, and the second is the most common around the world. The American one allows you to give names to large numbers like this: first, the ordinal number in Latin is indicated, and then the suffix “million” is added (the exception here is a million, meaning a thousand). This system is used by Americans, French, Canadians, and it is also used in our country.

English is widely used in England and Spain. According to it, the numbers are named as follows: the numeral in Latin is “plus” with the suffix “million”, and the next (a thousand times greater) number is “plus” “billion”. For example, a trillion comes first, followed by a trillion, a quadrillion follows a quadrillion, and so on.

So, the same number in different systems can mean different things, for example, an American billion in the English system is called a billion.

Off-system numbers

In addition to numbers that are written according to known systems (given above), there are also off-system ones. They have their own names, which do not include Latin prefixes.

You can start their consideration with a number called a myriad. It is defined as one hundred hundreds (10000). But for its intended purpose, this word is not used, but is used as an indication of an innumerable multitude. Even Dahl's dictionary will kindly provide a definition of such a number.

Next after the myriad is the googol, denoting 10 to the power of 100. For the first time this name was used in 1938 by an American mathematician E. Kasner, who noted that his nephew came up with this name.

Google (search engine) got its name in honor of Google. Then 1 with a googol of zeros (1010100) is a googolplex - Kasner also came up with such a name.

Even larger than the googolplex is the Skewes number (e to the power of e to the power of e79), proposed by Skuse when proving the Riemann conjecture on prime numbers (1933). There is another Skewes number, but it is used when the Rimmann hypothesis is unfair. It is rather difficult to say which of them is greater, especially when it comes to large degrees. However, this number, despite its "enormity", cannot be considered the most-most of all those that have their own names.

And the leader among the largest numbers in the world is the Graham number (G64). It was he who was used for the first time to conduct proofs in the field of mathematical science (1977).

When it comes to such a number, you need to know that you cannot do without a special 64-level system created by Knuth - the reason for this is the connection of the number G with bichromatic hypercubes. Knuth invented the superdegree, and in order to make it convenient to record it, he suggested using the up arrows. So we learned what the largest number in the world is called. It is worth noting that this number G got into the pages of the famous Book of Records.

It is known that an infinite number of numbers and only a few have names of their own, for most numbers have been given names consisting of small numbers. The largest numbers must be denoted in some way.

"Short" and "long" scale

Number names used today began to receive in the fifteenth century, then the Italians first used the word million, meaning "big thousand", bimillion (million squared) and trimillion (million cubed).

This system was described in his monograph by the Frenchman Nicholas Shuquet, he recommended the use of Latin numerals, adding to them the inflection "-million", thus bimillion became a billion, and three million became a trillion, and so on.

But according to the proposed system of numbers between a million and a billion, he called "a thousand millions." It was not comfortable to work with such a gradation and in 1549 the Frenchman Jacques Peletier advised to call the numbers that are in the specified interval, again using Latin prefixes, while introducing another ending - “-billion”.

So 109 was called a billion, 1015 - billiard, 1021 - trillion.

Gradually, this system began to be used in Europe. But some scientists confused the names of numbers, this created a paradox when the words billion and billion became synonymous. Subsequently, the United States created its own naming convention for large numbers. According to him, the construction of names is carried out in a similar way, but only the numbers differ.

The old system continued to be used in the UK, and therefore was called British, although it was originally created by the French. But since the seventies of the last century, Great Britain also began to apply the system.

Therefore, in order to avoid confusion, the concept created by American scientists is usually called short scale, while the original French-British - long scale.

The short scale has found active use in the USA, Canada, Great Britain, Greece, Romania, and Brazil. In Russia, it is also in use, with only one difference - the number 109 is traditionally called a billion. But the French-British version was preferred in many other countries.

In order to designate numbers larger than a decillion, scientists decided to combine several Latin prefixes, so the undecillion, quattordecillion and others were named. If you use Schuecke system, then according to it, giant numbers will acquire the names "vigintillion", "centillion" and "millionillion" (103003), respectively, according to the long scale, such a number will receive the name "millionillion" (106003).

Numbers with unique names

Many numbers were named without reference to various systems and parts of words. There are a lot of these numbers, for example, this Pi", a dozen, as well as numbers over a million.

AT Ancient Russia has long used its own numerical system. Hundreds of thousands were called legion, a million were called leodroms, tens of millions were crows, hundreds of millions were called decks. It was a “small account”, but the “great account” used the same words, only a different meaning was put into them, for example, leodr could mean a legion of legions (1024), and a deck could already mean ten ravens (1096).

It happened that children came up with names for numbers, for example, mathematician Edward Kasner was given the idea young Milton Sirotta, who proposed giving a name to a number with a hundred zeros (10100) simply googol. This number received the most publicity in the nineties of the twentieth century, when the Google search engine was named after him. The boy also suggested the name "Googleplex", a number that has a googol of zeros.

But Claude Shannon in the middle of the twentieth century, evaluating the moves in a chess game, calculated that there are 10118 of them, now it is "Shannon number".

In an old Buddhist work "Jaina Sutras", written almost twenty-two centuries ago, the number "asankheya" (10140) is noted, which is exactly how many cosmic cycles, according to Buddhists, it is necessary to find nirvana.

Stanley Skuse described large quantities, so "the first Skewes number", equal to 10108.85.1033, and the "second Skewes number" is even more impressive and equals 1010101000.

Notations

Of course, depending on the number of degrees contained in a number, it becomes problematic to fix it on writing, and even reading, error bases. some numbers cannot fit on multiple pages, so mathematicians have come up with notations to capture large numbers.

It is worth considering that they are all different, each has its own principle of fixation. Among these, it is worth mentioning notations by Steinghaus, Knuth.

However, the largest number, the Graham number, was used Ronald Graham in 1977 when doing mathematical calculations, and this number is G64.

Have you ever wondered how many zeros there are in one million? This is a pretty simple question. What about a billion or a trillion? One followed by nine zeros (1000000000) - what is the name of the number?

A short list of numbers and their quantitative designation

  • Ten (1 zero).
  • One hundred (2 zeros).
  • Thousand (3 zeros).
  • Ten thousand (4 zeros).
  • One hundred thousand (5 zeros).
  • Million (6 zeros).
  • Billion (9 zeros).
  • Trillion (12 zeros).
  • Quadrillion (15 zeros).
  • Quintillion (18 zeros).
  • Sextillion (21 zeros).
  • Septillion (24 zeros).
  • Octalion (27 zeros).
  • Nonalion (30 zeros).
  • Decalion (33 zeros).

Grouping zeros

1000000000 - what is the name of the number that has 9 zeros? It's a billion. For convenience, large numbers are grouped into three sets, separated from each other by a space or punctuation marks such as a comma or period.

This is done to make it easier to read and understand the quantitative value. For example, what is the name of the number 1000000000? In this form, it is worth a little naprechis, count. And if you write 1,000,000,000, then immediately the task becomes easier visually, so you need to count not zeros, but triples of zeros.

Numbers with too many zeros

Of the most popular are million and billion (1000000000). What is a number with 100 zeros called? This is the googol number, also called by Milton Sirotta. That's a wildly huge number. Do you think this is a big number? Then what about a googolplex, a one followed by a googol of zeros? This figure is so large that it is difficult to come up with a meaning for it. In fact, there is no need for such giants, except to count the number of atoms in the infinite Universe.

Is 1 billion a lot?

There are two scales of measurement - short and long. Worldwide in science and finance, 1 billion is 1,000 million. This is on a short scale. According to her, this is a number with 9 zeros.

There is also a long scale, which is used in some European countries, including France, and was formerly used in the UK (until 1971), where a billion was 1 million million, that is, one and 12 zeros. This gradation is also called the long-term scale. The short scale is now predominant in financial and scientific matters.

Some European languages ​​such as Swedish, Danish, Portuguese, Spanish, Italian, Dutch, Norwegian, Polish, German use a billion (or a billion) characters in this system. In Russian, a number with 9 zeros is also described for a short scale of a thousand million, and a trillion is a million million. This avoids unnecessary confusion.

Conversational options

In Russian colloquial speech after the events of 1917 - the Great October Revolution - and the period of hyperinflation in the early 1920s. 1 billion rubles was called "limard". And in the dashing 1990s, a new slang expression “watermelon” appeared for a billion, a million was called a “lemon”.

The word "billion" is now used internationally. This is a natural number, which is displayed in the decimal system as 10 9 (one and 9 zeros). There is also another name - a billion, which is not used in Russia and the CIS countries.

Billion = billion?

Such a word as a billion is used to denote a billion only in those states in which the "short scale" is taken as the basis. These countries are the Russian Federation, the United Kingdom of Great Britain and Northern Ireland, the USA, Canada, Greece and Turkey. In other countries, the concept of a billion means the number 10 12, that is, one and 12 zeros. In countries with a "short scale", including Russia, this figure corresponds to 1 trillion.

Such confusion appeared in France at a time when the formation of such a science as algebra was taking place. The billion originally had 12 zeros. However, everything changed after the appearance of the main manual on arithmetic (author Tranchan) in 1558), where a billion is already a number with 9 zeros (a thousand million).

For several subsequent centuries, these two concepts were used on a par with each other. In the middle of the 20th century, namely in 1948, France switched to a long scale system of numerical names. In this regard, the short scale, once borrowed from the French, is still different from the one they use today.

Historically, the United Kingdom has used the long-term billion, but since 1974 UK official statistics have used the short-term scale. Since the 1950s, the short-term scale has been increasingly used in the fields of technical writing and journalism, even though the long-term scale was still maintained.