Solution of the Cramer equations. Cramer's rule

In the first part, we considered some theoretical material, the substitution method, as well as the method of term-by-term addition of system equations. To everyone who came to the site through this page, I recommend that you read the first part. Perhaps, some visitors will find the material too simple, but in the course of solving systems of linear equations, I made a number of very important remarks and conclusions regarding the solution of mathematical problems in general.

And now we will analyze Cramer's rule, as well as the solution of a system of linear equations using the inverse matrix (matrix method). All materials are presented simply, in detail and clearly, almost all readers will be able to learn how to solve systems using the above methods.

We first consider Cramer's rule in detail for a system of two linear equations in two unknowns. What for? “After all, the simplest system can be solved by the school method, by term-by-term addition!

The fact is that even if sometimes, but there is such a task - to solve a system of two linear equations with two unknowns using Cramer's formulas. Secondly, a simpler example will help you understand how to use Cramer's rule for a more complex case - a system of three equations with three unknowns.

In addition, there are systems of linear equations with two variables, which it is advisable to solve exactly according to Cramer's rule!

Consider the system of equations

At the first step, we calculate the determinant , it is called the main determinant of the system.

Gauss method.

If , then the system has a unique solution, and to find the roots, we must calculate two more determinants:
and

In practice, the above qualifiers can also be denoted by the Latin letter.

The roots of the equation are found by the formulas:
,

Example 7

Solve a system of linear equations

Decision: We see that the coefficients of the equation are quite large, on the right side there are decimal fractions with a comma. The comma is a rather rare guest in practical tasks in mathematics; I took this system from an econometric problem.

How to solve such a system? You can try to express one variable in terms of another, but in this case, you will surely get terrible fancy fractions that are extremely inconvenient to work with, and the design of the solution will look just awful. You can multiply the second equation by 6 and subtract term by term, but the same fractions will appear here.

What to do? In such cases, Cramer's formulas come to the rescue.

;

;

Answer: ,

Both roots have infinite tails and are found approximately, which is quite acceptable (and even commonplace) for econometrics problems.

Comments are not needed here, since the task is solved according to ready-made formulas, however, there is one caveat. When using this method, compulsory The fragment of the assignment is the following fragment: "so the system has a unique solution". Otherwise, the reviewer may punish you for disrespecting Cramer's theorem.

It will not be superfluous to check, which is convenient to carry out on a calculator: we substitute the approximate values ​​\u200b\u200bin the left side of each equation of the system. As a result, with a small error, numbers that are on the right side should be obtained.

Example 8

Express your answer in ordinary improper fractions. Make a check.

This is an example for an independent solution (example of fine design and answer at the end of the lesson).

We turn to the consideration of Cramer's rule for a system of three equations with three unknowns:

We find the main determinant of the system:

If , then the system has infinitely many solutions or is inconsistent (has no solutions). In this case, Cramer's rule will not help, you need to use the Gauss method.

If , then the system has a unique solution, and to find the roots, we must calculate three more determinants:
, ,

And finally, the answer is calculated by the formulas:

As you can see, the “three by three” case is fundamentally no different from the “two by two” case, the column of free terms sequentially “walks” from left to right along the columns of the main determinant.

Example 9

Solve the system using Cramer's formulas.

Decision: Let's solve the system using Cramer's formulas.

, so the system has a unique solution.

Answer: .

Actually, there is nothing special to comment here again, in view of the fact that the decision is made according to ready-made formulas. But there are a couple of notes.

It happens that as a result of calculations, “bad” irreducible fractions are obtained, for example: .
I recommend the following "treatment" algorithm. If there is no computer at hand, we do this:

1) There may be a mistake in the calculations. As soon as you encounter a “bad” shot, you must immediately check whether is the condition rewritten correctly. If the condition is rewritten without errors, then you need to recalculate the determinants using the expansion in another row (column).

2) If no errors were found as a result of the check, then most likely a typo was made in the condition of the assignment. In this case, calmly and CAREFULLY solve the task to the end, and then make sure to check and draw it up on a clean copy after the decision. Of course, checking a fractional answer is an unpleasant task, but it will be a disarming argument for the teacher, who, well, really likes to put a minus for any bad thing like. How to deal with fractions is detailed in the answer for Example 8.

If you have a computer at hand, then use an automated program to check it, which can be downloaded for free at the very beginning of the lesson. By the way, it is most advantageous to use the program right away (even before starting the solution), you will immediately see the intermediate step at which you made a mistake! The same calculator automatically calculates the solution of the system using the matrix method.

Second remark. From time to time there are systems in the equations of which some variables are missing, for example:

Here in the first equation there is no variable , in the second there is no variable . In such cases, it is very important to correctly and CAREFULLY write down the main determinant:
– zeros are put in place of missing variables.
By the way, it is rational to open determinants with zeros in the row (column) in which zero is located, since there are noticeably fewer calculations.

Example 10

Solve the system using Cramer's formulas.

This is an example for self-solving (finishing sample and answer at the end of the lesson).

For the case of a system of 4 equations with 4 unknowns, Cramer's formulas are written according to similar principles. You can see a live example in the Determinant Properties lesson. Reducing the order of the determinant - five 4th order determinants are quite solvable. Although the task is already very reminiscent of a professor's shoe on the chest of a lucky student.

Solution of the system using the inverse matrix

The inverse matrix method is essentially a special case matrix equation(See Example No. 3 of the specified lesson).

To study this section, you need to be able to expand the determinants, find the inverse matrix and perform matrix multiplication. Relevant links will be given as the explanation progresses.

Example 11

Solve the system with the matrix method

Decision: We write the system in matrix form:
, where

Please look at the system of equations and the matrices. By what principle we write elements into matrices, I think everyone understands. The only comment: if some variables were missing in the equations, then zeros would have to be put in the corresponding places in the matrix.

We find the inverse matrix by the formula:
, where is the transposed matrix of algebraic complements of the corresponding elements of the matrix .

First, let's deal with the determinant:

Here the determinant is expanded by the first line.

Attention! If , then the inverse matrix does not exist, and it is impossible to solve the system by the matrix method. In this case, the system is solved by the elimination of unknowns (Gauss method).

Now you need to calculate 9 minors and write them into the matrix of minors

Reference: It is useful to know the meaning of double subscripts in linear algebra. The first digit is the line number in which the element is located. The second digit is the number of the column in which the element is located:

That is, a double subscript indicates that the element is in the first row, third column, while, for example, the element is in the 3rd row, 2nd column

In order to master this paragraph, you must be able to open the qualifiers "two by two" and "three by three". If qualifiers are bad, please study the lesson How to calculate the determinant?

We first consider Cramer's rule in detail for a system of two linear equations in two unknowns. What for? “After all, the simplest system can be solved by the school method, by term-by-term addition!

The fact is that even if sometimes, but there is such a task - to solve a system of two linear equations with two unknowns using Cramer's formulas. Secondly, a simpler example will help you understand how to use Cramer's rule for a more complex case - a system of three equations with three unknowns.

In addition, there are systems of linear equations with two variables, which it is advisable to solve exactly according to Cramer's rule!

Consider the system of equations

At the first step, we calculate the determinant , it is called the main determinant of the system.

Gauss method.

If , then the system has a unique solution, and to find the roots, we must calculate two more determinants:
and

In practice, the above qualifiers can also be denoted by the Latin letter.

The roots of the equation are found by the formulas:
,

Example 7

Solve a system of linear equations

Decision: We see that the coefficients of the equation are quite large, on the right side there are decimal fractions with a comma. The comma is a rather rare guest in practical tasks in mathematics; I took this system from an econometric problem.

How to solve such a system? You can try to express one variable in terms of another, but in this case, you will surely get terrible fancy fractions that are extremely inconvenient to work with, and the design of the solution will look just awful. You can multiply the second equation by 6 and subtract term by term, but the same fractions will appear here.

What to do? In such cases, Cramer's formulas come to the rescue.

;

;

Answer: ,

Both roots have infinite tails and are found approximately, which is quite acceptable (and even commonplace) for econometrics problems.

Comments are not needed here, since the task is solved according to ready-made formulas, however, there is one caveat. When using this method, compulsory The fragment of the assignment is the following fragment: "so the system has a unique solution". Otherwise, the reviewer may punish you for disrespecting Cramer's theorem.

It will not be superfluous to check, which is convenient to carry out on a calculator: we substitute the approximate values ​​\u200b\u200bin the left side of each equation of the system. As a result, with a small error, numbers that are on the right side should be obtained.

Example 8

Express your answer in ordinary improper fractions. Make a check.

This is an example for an independent solution (example of fine design and answer at the end of the lesson).

We turn to the consideration of Cramer's rule for a system of three equations with three unknowns:

We find the main determinant of the system:

If , then the system has infinitely many solutions or is inconsistent (has no solutions). In this case, Cramer's rule will not help, you need to use the Gauss method.

If , then the system has a unique solution, and to find the roots, we must calculate three more determinants:
, ,

And finally, the answer is calculated by the formulas:

As you can see, the “three by three” case is fundamentally no different from the “two by two” case, the column of free terms sequentially “walks” from left to right along the columns of the main determinant.

Example 9

Solve the system using Cramer's formulas.

Decision: Let's solve the system using Cramer's formulas.

, so the system has a unique solution.

Answer: .

Actually, there is nothing special to comment here again, in view of the fact that the decision is made according to ready-made formulas. But there are a couple of notes.

It happens that as a result of calculations, “bad” irreducible fractions are obtained, for example: .
I recommend the following "treatment" algorithm. If there is no computer at hand, we do this:

1) There may be a mistake in the calculations. As soon as you encounter a “bad” shot, you must immediately check whether is the condition rewritten correctly. If the condition is rewritten without errors, then you need to recalculate the determinants using the expansion in another row (column).

2) If no errors were found as a result of the check, then most likely a typo was made in the condition of the assignment. In this case, calmly and CAREFULLY solve the task to the end, and then make sure to check and draw it up on a clean copy after the decision. Of course, checking a fractional answer is an unpleasant task, but it will be a disarming argument for the teacher, who, well, really likes to put a minus for any bad thing like. How to deal with fractions is detailed in the answer for Example 8.

If you have a computer at hand, then use an automated program to check it, which can be downloaded for free at the very beginning of the lesson. By the way, it is most advantageous to use the program right away (even before starting the solution), you will immediately see the intermediate step at which you made a mistake! The same calculator automatically calculates the solution of the system using the matrix method.

Second remark. From time to time there are systems in the equations of which some variables are missing, for example:

Here in the first equation there is no variable , in the second there is no variable . In such cases, it is very important to correctly and CAREFULLY write down the main determinant:
– zeros are put in place of missing variables.
By the way, it is rational to open determinants with zeros in the row (column) in which zero is located, since there are noticeably fewer calculations.

Example 10

Solve the system using Cramer's formulas.

This is an example for self-solving (finishing sample and answer at the end of the lesson).

For the case of a system of 4 equations with 4 unknowns, Cramer's formulas are written according to similar principles. You can see a live example in the Determinant Properties lesson. Reducing the order of the determinant - five 4th order determinants are quite solvable. Although the task is already very reminiscent of a professor's shoe on the chest of a lucky student.


Solution of the system using the inverse matrix

The inverse matrix method is essentially a special case matrix equation(See Example No. 3 of the specified lesson).

To study this section, you need to be able to expand the determinants, find the inverse matrix and perform matrix multiplication. Relevant links will be given as the explanation progresses.

Example 11

Solve the system with the matrix method

Decision: We write the system in matrix form:
, where

Please look at the system of equations and the matrices. By what principle we write elements into matrices, I think everyone understands. The only comment: if some variables were missing in the equations, then zeros would have to be put in the corresponding places in the matrix.

We find the inverse matrix by the formula:
, where is the transposed matrix of algebraic complements of the corresponding elements of the matrix .

First, let's deal with the determinant:

Here the determinant is expanded by the first line.

Attention! If , then the inverse matrix does not exist, and it is impossible to solve the system by the matrix method. In this case, the system is solved by the elimination of unknowns (Gauss method).

Now you need to calculate 9 minors and write them into the matrix of minors

Reference: It is useful to know the meaning of double subscripts in linear algebra. The first digit is the line number in which the element is located. The second digit is the number of the column in which the element is located:

That is, a double subscript indicates that the element is in the first row, third column, while, for example, the element is in the 3rd row, 2nd column

In the course of solving, it is better to describe the calculation of minors in detail, although, with a certain experience, they can be adjusted to count with errors orally.

Cramer's method is based on the use of determinants in solving systems of linear equations. This greatly speeds up the solution process.

Cramer's method can be used to solve a system of as many linear equations as there are unknowns in each equation. If the determinant of the system is not equal to zero, then Cramer's method can be used in the solution; if it is equal to zero, then it cannot. In addition, Cramer's method can be used to solve systems of linear equations that have a unique solution.

Definition. The determinant, composed of the coefficients of the unknowns, is called the determinant of the system and is denoted by (delta).

Determinants

are obtained by replacing the coefficients at the corresponding unknowns by free terms:

;

.

Cramer's theorem. If the determinant of the system is nonzero, then the system of linear equations has one single solution, and the unknown is equal to the ratio of the determinants. The denominator contains the determinant of the system, and the numerator contains the determinant obtained from the determinant of the system by replacing the coefficients with the unknown by free terms. This theorem holds for a system of linear equations of any order.

Example 1 Solve the system of linear equations:

According to Cramer's theorem we have:

So, the solution of system (2):

online calculator, Cramer's solution method.

Three cases in solving systems of linear equations

As appears from Cramer's theorems, when solving a system of linear equations, three cases may occur:

First case: the system of linear equations has a unique solution

(the system is consistent and definite)

Second case: the system of linear equations has an infinite number of solutions

(the system is consistent and indeterminate)

** ,

those. the coefficients of the unknowns and the free terms are proportional.

Third case: the system of linear equations has no solutions

(system inconsistent)

So the system m linear equations with n variables is called incompatible if it has no solutions, and joint if it has at least one solution. A joint system of equations that has only one solution is called certain, and more than one uncertain.

Examples of solving systems of linear equations by the Cramer method

Let the system

.

Based on Cramer's theorem

………….
,

where
-

system identifier. The remaining determinants are obtained by replacing the column with the coefficients of the corresponding variable (unknown) with free members:

Example 2

.

Therefore, the system is definite. To find its solution, we calculate the determinants

By Cramer's formulas we find:



So, (1; 0; -1) is the only solution to the system.

To check the solutions of systems of equations 3 X 3 and 4 X 4, you can use the online calculator, the Cramer solving method.

If there are no variables in the system of linear equations in one or more equations, then in the determinant the elements corresponding to them are equal to zero! This is the next example.

Example 3 Solve the system of linear equations by Cramer's method:

.

Decision. We find the determinant of the system:

Look carefully at the system of equations and at the determinant of the system and repeat the answer to the question in which cases one or more elements of the determinant are equal to zero. So, the determinant is not equal to zero, therefore, the system is definite. To find its solution, we calculate the determinants for the unknowns

By Cramer's formulas we find:

So, the solution of the system is (2; -1; 1).

To check the solutions of systems of equations 3 X 3 and 4 X 4, you can use the online calculator, the Cramer solving method.

Top of page

We continue to solve systems using the Cramer method together

As already mentioned, if the determinant of the system is equal to zero, and the determinants for the unknowns are not equal to zero, the system is inconsistent, that is, it has no solutions. Let's illustrate with the following example.

Example 6 Solve the system of linear equations by Cramer's method:

Decision. We find the determinant of the system:

The determinant of the system is equal to zero, therefore, the system of linear equations is either inconsistent and definite, or inconsistent, that is, it has no solutions. To clarify, we calculate the determinants for the unknowns

The determinants for the unknowns are not equal to zero, therefore, the system is inconsistent, that is, it has no solutions.

To check the solutions of systems of equations 3 X 3 and 4 X 4, you can use the online calculator, the Cramer solving method.

In problems on systems of linear equations, there are also those where, in addition to the letters denoting variables, there are also other letters. These letters stand for some number, most often a real number. In practice, such equations and systems of equations lead to problems to find the general properties of any phenomena and objects. That is, you invented some new material or device, and to describe its properties, which are common regardless of the size or number of copies, you need to solve a system of linear equations, where instead of some coefficients for variables there are letters. You don't have to look far for examples.

The next example is for a similar problem, only the number of equations, variables, and letters denoting some real number increases.

Example 8 Solve the system of linear equations by Cramer's method:

Decision. We find the determinant of the system:

Finding determinants for unknowns