Дифракционные методы исследования структуры кристаллов. Дифракционные методы исследования веществ

Дифракционные методы

Дифракционные методы исследования структуры вещества, основаны на изучении углового распределения интенсивности рассеяния исследуемым веществом излучении рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов. Различают рентгенографию, электронографию, нейтронографию. Во всех случаях первичный, чаще всего монохроматический, пучок направляют на исследуемый объект и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически или с помощью счетчиков. Поскольку длина волны излучения составляет обычно не более 0.2 нм, т. е. соизмерима с расстояниями между атомами в веществе (0.1-0.4 нм), то рассеяние падающей волны представляет собой дифракцию на атомах. По дифракционной картине можно в принципе восстановить атомную структуру вещества. Теория, описывающая связь картины упругого рассеяния с пространств, расположением рассеивающих центров, для всех излучений одинакова. Однако, поскольку взаимодействия разного рода излучений с веществом имеет разную физ. природу, конкретный вид и особенности дифракционной. картины определяются разными характеристиками атомов. Поэтому различные дифракционные методы дают сведения, дополняющие друг друга.

Основы теории дифракции. Плоскую монохроматическую. волну с длиной волны и волновым вектором, где можно рассматривать как пучок частиц с импульсом, где Амплитуда волны, рассеянной совокупностью из атомов, определяется уравнением:

По такой же формуле рассчитывают и атомный фактор, при этом описывает распределение рассеивающей плотности внутри атома. Значения атомного фактора специфичны для каждого вида излучения. Рентгеновские лучи рассеиваются электронными оболочками атомов. Соответствующий атомный фактор численно равен числу электронов в атоме, если выражен в названии электронных единицах, т. е. в относительных единицах амплитуды рассеяния рентгеновского излучения одним свободном электроне. Рассеяние электронов определяется электростатическим потенциалом атома. Атомный фактор для электрона связан соотношением:

исследование молекула спектроскопия дифракционный квантовый


Рисунок 2- Зависимость абсолютных значений атомных факторов рентгеновских лучей (1), электронов (2) и нейтронов (3) от угла рассеяния

Рисунок 3- Относительная зависимость усредненных по углу атомных факторов рентгеновских лучей (сплошная линия), электронов (штриховая)и нейтронов от атомного номера Z

При точных расчетах рассматривают отклонения распределения электронной плотности или потенциала атомов от сферической симметрии и название атомно-температурный фактор, учитывающий влияние тепловых колебаний атомов на рассеяние. Для излучения помимо рассеяния на электронных оболочках атомов существует роль может играть резонансное рассеяние на ядрах. Фактор рассеяния f м зависит от волновых векторов и векторов поляризации падающей и рассеянной волн. Интенсивность I(s) рассеяния объектом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)| 2 . Экспериментально можно определить лишь модули |F(s)|, а для построения функции рассеивающей плотности (r) необходимо знать также фазы (s) для каждого s. Тем не менее теория дифракционных методов позволяет по измеренным I(s) получить функцию (r), т. е. определить структуру веществ. При этом лучшие результаты получают при исследовании кристаллов. Структурный анализ. Монокристалл представляет собой строго упорядоченную систему, поэтому при дифракции образуются лишь дискретные рассеянные пучки, для которых вектор рассеяния равен вектору обратной решетки.

Для построения функции (х, у, z)по экспериментально определяемым величинам применяют метод проб и ошибок, построение и анализ функции межатомных расстояний, метод изоморфных замещений, прямые методы определения фаз. Обработка экспериментальных данных на ЭВМ позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности. Структуры кристаллов изучают с помощью рентгеновского структурного анализа. Этим методом определено более 100 тысяч структур кристаллов.

Для неорганических кристаллов с применением различных методов уточнения (учет поправок на поглощение, анизотропию атомно-температурного фактора и т. д.) удается восстановить функцию с разрешением до 0.05

Рисунок 4- Проекция ядерной плотности кристаллической структуры

Это позволяет определять анизотерапию тепловых колебаний атомов, особенности распределения электронов, обусловленные химической связью, и т. д. С помощью рентгеноструктурного анализа удается расшифровывать атомные структуры кристаллов белков, молекулы которых содержат тысячи атомов. Дифракция рентгеновских лучей используется также для изучения дефектов в кристаллах (в рентгеновской топографии), исследования приповерхностных слоев (в рентгеновской спектрометрии), качественного и количественного определения фазового состава поликристаллических материалов. Электронография как метод изучения структуры кристаллов имеет след. особенности: 1) взаимодействие вещества с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях вещества толщиной 1 -100 нм; 2) f э зависит от атомного ядра слабее, чем f р, что позволяет проще определять положение легких атомов в присутствии тяжелых; Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10 -300 эВ, 0.1-0.4 нм) - эффективный метод исследования поверхностей кристаллов: расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракционной картине и позволяет изучать структуру кристаллов с разрешением 0.2-0.5 нм. Источниками нейтронов для структурного анализа служат ядерные реакторы на быстрых нейтронах, а также импульсные реакторы. Спектр пучка нейтронов, выходящих из канала реактора, непрерывен вследствие максвелловского распределения нейтронов по скоростям (его максимум при 100°С соответствует длине волны 0.13 нм).

Монохроматизацию пучка осуществляют разными способами - с помощью кристаллов-монохроматоров и др. Нейтронографию используется, как правило, для уточнения и дополнения рентгеноструктурных данных. Отсутствие монотонной зависимости f и от атомного номера позволяет достаточно точно определять положение легких атомов. Кроме того, изотопы одного в того же элемента могут иметь сильно различающиеся значения f и (так, f и углеводорода 3.74.10 13 см, у дейтерия 6.67.10 13 см). Это дает возможность изучать расположение изотопов и получать дополнит. сведения о структуре путем изотопного замещения. Исследование магнитного взаимодействия. нейтронов с магнитнами моментами атомов дает информацию о спинах магнитного атомов. Мёссбауэровское -излучение отличается чрезвычайно малой шириной линии - 10 8 эВ (тогда как ширина линии характеристических излучения рентгеновских трубок. 1 эВ). Это обусловливает высокую временную и пространств. согласованность резонансного ядерного рассеяния, что позволяет, в частности, изучать магнитное поле и градиент электрического поля на ядрах. Ограничения метода - слабая мощность мёссбауэровских источников и обязательное присутствие в исследуемом кристалле ядер, для которых наблюдается эффект Мёссбауэра. Структурный анализ некристаллических веществ. Отдельные молекулы в газах, жидкостях и твердых аморфных телах по-разному ориентированы в пространстве, поэтому определить фазы рассеянных волн, как правило, невозможно. В этих случаях интенсивность рассеяния обычно представляют с помощью т. наз. межатомных векторов r jk , которые соединяют пары различных атомов (j и k) в молекулах: r jk = r j - r k . Картина рассеяния усредняется по всем ориентациям:

Дифракционные методы- совокупность методов исследования атомного
строения вещества, использующих дифракцию пучка
фотонов, электронов или нейтронов, рассеиваемого
исследуемым объектом
Рентгеноструктурный анализ позволяет определять
координаты атомов в трёхмерном пространстве
кристаллических веществ
Газовая электронография определяют геометрию
свободных молекул в газах
Нейтронография, в основе которой лежит рассеяние
нейтронов на ядрах атомов, в отличие от первых двух
методов, где используется рассеяние на электронных
оболочках,
Прочие методы
2

Рентгеноструктурный анализ

- один из дифракционных методов исследования
структуры вещества.
Основа: явление дифракции рентгеновских лучей на
трёхмерной кристаллической решётке
Метод позволяет определять атомную структуру
вещества, включающую в себя пространственную
группу элементарной ячейки, её размеры и форму, а
также определить группу симметрии кристалла.
3

Рентгеновское излучение (РИ)
РИ (X-Rays) – электромагнитное излучение с длиной
волны 5*10-2 - 102 A. (E = 250 кэВ – 100 эВ).
4

Рентгеновское излучение
Энергия связи электронов на низшей (К) оболочке
атомов:
H: 13.6 эВ, Be: 115.6 эВ, Cu: 8.983 кэВ
Например, для Cu K-серии:
Выводы:
1. РИ – коротковолновое (0.05 – 100 A) ЭМ излучение.
2. РИ возникает при переходах во внутренних
оболочках атомов (характеристическое РИ)
5

Источники РИ
Источники РИ:
рентгеновская трубка,
синхротрон,
изотопы, ...
Рентгеновская трубка
(Cu - анод)
6

Дифракция РИ на
поликристаллической пробе
7

Дифракция РИ на
поликристаллической пробе
1D проекция
3D картины
Порошковая рентгенограмма
Дифракционный угол 20;
Интенсивность (имп., имп./сек, отн.ед. и пр.
8

Рентгенография

Взаимодействие рентгеновских лучей с
кристаллами, частицами металлов,
молекулами ведет к их рассеиванию. Из
начального пучка лучей с длиной волны X ~
0,5-5 Å возникают вторичные лучи с той же
длиной волны, направление и интенсивность
которых связаны со строением рассеивающего
объекта.
Интенсивность дифрагированного луча зависит
также от размеров и формы объекта.
9

Рентгенография

Рентгенография наноструктурных
материалов позволяет по уширению
рентгеновских пиков достаточно надежно
определить размеры зерен при величинах
2- 100 нм.
Уменьшение размера зерен и увеличение
микродеформаций приводят к уширению
рентгеновских пиков.
Степень уширения оценивается по
полуширине пика или с помощью отношения
интегральной интенсивности рентгеновского
пика к его высоте (интегральная ширина).
10

Порошковая рентгенограмма
Интенсивность пика:
- кристаллическая структура
- количественный анализ
Ширина пика:
микроструктура
(размер ОКР)
Положение пика:
метрика решетки
(параметры ЭЯ)
11

Определение размеров ОКР
Размер областей когерентного рассеяния (ОКР)
можно рассчитать с помощью уравнения DebyeScherrer по формуле: D ср = k · / (β*cos),
где Dср - усредненный по
объему размер кристаллитов,
K - безразмерный коэф-нт
формы частиц (постоянная
Шеррера) 0,9 для сферы;
∆1/2 - полуширина
физического профиля
рефлекса,
- длина волны излучения,
- угол дифракции.
12

Дифракционная картина LaMnO3, полученного золь-гель технологией, прокаленного при Т= 900С.

Дифракционная картина LaMnO3,
полученного золь-гель технологией,
прокаленного при Т= 900 С.
PowderCell 2.2
2492
LA2900.4.x_y
1246
0
20
25
30
35
40
45
50
55
13
60

Определение размеров ОКР
D ср = k · / (β*cos),
Границы применимости уравнения Debye-Scherrer:
неприменима для кристаллов, размеры которых
больше 100 нм.
Факторы, влияющие на уширение пиков на
дифрактограммах:
1. инструментальное уширение
2. уширение из-за размеров кристаллитов
3. другие (искажения и дефекты кристаллической
решетки, дислокации, дефекты упаковки,
микронапряжения, границы зерен, химическая
разнородность и пр.)
14

Рентгенограммы материалов диоксида титана, полученных осаждением (1, 2) и золь-гель метом (3, 4), прокаленных при 500 ⁰C (3), 600 ⁰C (2,4).

Средние размеры кристаллитов полученных материалов,
вычисленные по уравнению Debye-Scherrer, составляют
15
22, 14, 22 нм для материалов 2, 3 и 4 соответственно.

Наночастицы платины на углеродном носителе, размер – 4,2 нм

LM Pt 11_02
3500
3300
3100
2900
2700
2500
2300
2100
1900
1700
1500
35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50
,5
,5
,5
,5
,5
,5
,5 ,5
,5
,5
,5
,5
,5
,5 16,5


это значит?
17

Вопрос: на рентгенограмме нет пиков – что
это значит?
общий термин
“рентгеноаморфный образец”
Две возможности:
1) образец – аморфный (нет дальнего
порядка)
2) “эффективный размер частиц” очень
мал (~3 нм и меньше)
18

Рентгенография тонких пленок
Особенности пленок
Не «бесконечно поглощающие слои»
Значительное текстурирование (эпитаксиальные пленки)
Аморфизация пленок
влияние подложки
19

Рентгенография тонких пленок
20

Рентгенография тонких пленок
Особенности пленок:
текстурирование
Рентгенограммы порошка нитрида
титана TiN (а) и пленок TiN,
полученных химическим
осаждением
TiCl4 + NH3 + 1/2H2 = TiN↓ + 4HCl
при соотношении исходных
компонентов M(TiCl4)/M(NH3) = 0,87
(6, в), 0,17 (г) и температуре
осаждения Т = 1100 (б), 1200 (в),
1400 (г) °С
21

Рентгенография тонких пленок
22

Дифракционные методы исследований
1. Дифракционные методы применимы к
исследованию практически любых объектов в
конденсированном состоянии.
2. Тонкие пленки обычно изучают при малых углах
падения первичного пучка: при больших углах
рассеяния это позволяет увеличить интенсивность,
при малых – исследовать эффекты полного
внешнего отражения и дифракции на сверхрешетках.
3. Для дисперсных систем рассеяние в области
малых углов несет в себе информацию о размерах,
форме и упорядочении частиц.
23

Нейтронография

Нейтрон - частица, подходящая по своим
свойствам для анализа различных материалов.
Ядерные реакторы дают тепловые нейтроны с
максимальной энергией 0,06 эВ, которой
соответствует волна де Бройля, соизмеримая с
величинами межатомных расстояний. На этом и
основан метод структурной нейтронографии.
Соизмеримость энергии тепловых нейтронов с
тепловыми колебаниями атомов и групп молекул
используют для анализа в нейтронной
спектроскопии, а наличие магнитного момента
является основой магнитной нейтронографии.
24

После рассеяния не изменяется. Имеет место так называемое упругое рассеяние. В основе дифракционных методов лежит простое соотношение для длины волны и расстояния между рассеивающими атомами.

  1. Рентгеноструктурный анализ позволяет определять координаты атомов в трёхмерном пространстве кристаллических веществ от простейших соединений до сложных белков.
  2. С помощью газовой электронографии определяют геометрию свободных молекул в газах, то есть молекул, не подверженных влиянию соседних молекул, как это имеет место в кристаллах.
  3. Дифракция электронов - метод исследования структуры твердых тел.
  4. Дифракционным методом является также нейтронография , в основе которой лежит рассеяние нейтронов на ядрах атомов , в отличие от первых двух методов, где используется рассеяние на электронных оболочках.
  5. Дифракция отражённых электронов - кристаллографический метод, применяемый в растровом электронном микроскопе .

Wikimedia Foundation . 2010 .

  • Ядерный магнитный резонанс
  • Рентгеноструктурный анализ

Смотреть что такое "Дифракционные методы" в других словарях:

    ДИФРАКЦИОННЫЕ МЕТОДЫ - исследования структуры в ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в вом излучения рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g излучения. Соотв. различают … Химическая энциклопедия

    дифракционные методы исследования - difrakciniai tyrimo metodai statusas T sritis chemija apibrėžtis Metodai, pagrįsti spindulių ar dalelių difrakcija. atitikmenys: angl. diffractional research techniques rus. дифракционные методы исследования … Chemijos terminų aiškinamasis žodynas

    Дифракционные методы (рентгеновские, электронные, нейтронные) - Статьигалогибридные материалыдислокациядифракционное определение среднего размера областей когерентного рассеяния дифракция быстрых электроновдифракция медленных электроновмалоугловое нейтронное рассеяниеобласть когерентного… …

    Методы исследования - можно подразделить на методы сбора информации и методы анализа собранной информации. В зависимости от сферы исследования, предмет и объект исследования различны. Спектроскопические методы Основная статья: Спектроскопические методы Ядерный… … Википедия

    Методы диагностики и исследования наноструктур и наноматериалов - ПодразделыЗондовые методы микроскопии и спектроскопии: атомно силовая, сканирующая туннельная, магнитно силовая и др.Сканирующая электронная микроскопияПросвечивающая электронная микроскопия, в том числе высокого разрешенияЛюминесцентная… … Энциклопедический словарь нанотехнологий

    ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА - основаны на измерении эффекта, вызванного взаимод. с в вом излучения потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате… … Химическая энциклопедия

    КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА - расположение атомов, ионов, молекул в кристалле. Кристалл с определ. хим. ф лой имеет присущую ему К. с., обладающую трёхмерной периодичностью кристаллической решеткой. Термин К. с. употребляют вместо термина кристаллич. решётка, когда речь идёт … Физическая энциклопедия

    Получение, диагностика и сертификация наноразмерных систем - ПодразделыМетоды нанесения элементов наноструктур и наноматериаловФизические методы (лазерные, электронно лучевые, ионно плазменные) осаждения слоев нанометровых толщинХимическое, термическое и электродуговое ocаждение из газовой фазы (в том… … Энциклопедический словарь нанотехнологий

    протеомика - Термин протеомика Термин на английском proteomics Синонимы Аббревиатуры Связанные термины активный центр катализатора, антитело, атомно силовая микроскопия, белки, биологические моторы, биологические нанообъекты, биосенсор, ван дер ваальсово… … Энциклопедический словарь нанотехнологий

    протеом - Термин протеом Термин на английском proteome Синонимы Аббревиатуры Связанные термины антитело, белки, биологические нанообъекты, геном, капсид, кинезин, клетка, масс спектрометрия с лазерной десорбцией и ионизацией, матрикс, внеклеточный,… … Энциклопедический словарь нанотехнологий

Книги

  • Методы компьютерной оптики. Гриф МО РФ , Волков Алексей Васильевич, Головашкин Димитрий Львович, Досколович Леонид Леонидович. Излагаются основы компьютерного синтеза дифракционных оптических элементов (ДОЭ) с широкими функциональными возможностями. Обсуждаются методы получения зонированных пластинок со сложным… Купить за 1116 грн (только Украина)
  • Дифракционные и микроскопические методы и приборы для анализа наночастиц и наноматериалов , Юрий Ягодкин. В учебном пособии рассмотрены физические основы методов и аппаратура для проведения рентгеноструктурного, электроно- и нейтронографического анализов, просвечивающей электронной микроскопии,…

После рассеяния не изменяется. Имеет место так называемое упругое рассеяние. В основе дифракционных методов лежит простое соотношение для длины волны и расстояния между рассеивающими атомами.

  1. Рентгеноструктурный анализ позволяет определять координаты атомов в трёхмерном пространстве кристаллических веществ от простейших соединений до сложных белков.
  2. С помощью газовой электронографии определяют геометрию свободных молекул в газах, то есть молекул, не подверженных влиянию соседних молекул, как это имеет место в кристаллах.
  3. Дифракция электронов - метод исследования структуры твердых тел.
  4. Дифракционным методом является также нейтронография , в основе которой лежит рассеяние нейтронов на ядрах атомов , в отличие от первых двух методов, где используется рассеяние на электронных оболочках.
  5. Дифракция отражённых электронов - кристаллографический метод, применяемый в растровом электронном микроскопе .

Wikimedia Foundation . 2010 .

Смотреть что такое "Дифракционные методы" в других словарях:

    Исследования структуры в ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в вом излучения рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g излучения. Соотв. различают … Химическая энциклопедия

    дифракционные методы исследования - difrakciniai tyrimo metodai statusas T sritis chemija apibrėžtis Metodai, pagrįsti spindulių ar dalelių difrakcija. atitikmenys: angl. diffractional research techniques rus. дифракционные методы исследования … Chemijos terminų aiškinamasis žodynas

    Статьигалогибридные материалыдислокациядифракционное определение среднего размера областей когерентного рассеяния дифракция быстрых электроновдифракция медленных электроновмалоугловое нейтронное рассеяниеобласть когерентного… …

    Можно подразделить на методы сбора информации и методы анализа собранной информации. В зависимости от сферы исследования, предмет и объект исследования различны. Спектроскопические методы Основная статья: Спектроскопические методы Ядерный… … Википедия

    ПодразделыЗондовые методы микроскопии и спектроскопии: атомно силовая, сканирующая туннельная, магнитно силовая и др.Сканирующая электронная микроскопияПросвечивающая электронная микроскопия, в том числе высокого разрешенияЛюминесцентная… … Энциклопедический словарь нанотехнологий

    Основаны на измерении эффекта, вызванного взаимод. с в вом излучения потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате… … Химическая энциклопедия

    Расположение атомов, ионов, молекул в кристалле. Кристалл с определ. хим. ф лой имеет присущую ему К. с., обладающую трёхмерной периодичностью кристаллической решеткой. Термин К. с. употребляют вместо термина кристаллич. решётка, когда речь идёт … Физическая энциклопедия

    ПодразделыМетоды нанесения элементов наноструктур и наноматериаловФизические методы (лазерные, электронно лучевые, ионно плазменные) осаждения слоев нанометровых толщинХимическое, термическое и электродуговое ocаждение из газовой фазы (в том… … Энциклопедический словарь нанотехнологий

    Термин протеомика Термин на английском proteomics Синонимы Аббревиатуры Связанные термины активный центр катализатора, антитело, атомно силовая микроскопия, белки, биологические моторы, биологические нанообъекты, биосенсор, ван дер ваальсово… … Энциклопедический словарь нанотехнологий

    Термин протеом Термин на английском proteome Синонимы Аббревиатуры Связанные термины антитело, белки, биологические нанообъекты, геном, капсид, кинезин, клетка, масс спектрометрия с лазерной десорбцией и ионизацией, матрикс, внеклеточный,… … Энциклопедический словарь нанотехнологий

Книги

  • Методы компьютерной оптики. Гриф МО РФ , Волков Алексей Васильевич, Головашкин Димитрий Львович, Досколович Леонид Леонидович. Излагаются основы компьютерного синтеза дифракционных оптических элементов (ДОЭ) с широкими функциональными возможностями. Обсуждаются методы получения зонированных пластинок со сложным…
  • Дифракционные и микроскопические методы и приборы для анализа наночастиц и наноматериалов , Юрий Ягодкин. В учебном пособии рассмотрены физические основы методов и аппаратура для проведения рентгеноструктурного, электроно- и нейтронографического анализов, просвечивающей электронной микроскопии,…

Тема: Кристаллическое состояние силикатных материалов. Методы изучения структуры кристаллических веществ. Основные правила построения ионно-ковалентных структур.

Лекция № 4.

1. Силикаты в кристаллическом сосотянии.

2. Методы изучения структуры кристаллических веществ.a

3. Основные правила построения ионно-ковалентных структур.

ДТА - дифференциальный термический анализa

ТГ - термогравиметрический анализ

К дифракционным методам исследования структуры относятся рентгенография, электронография и нейтронография. Методы ос­нованы на использовании излучений с длиной волны, соизмеримой с расстоянием между структурными элементами кристаллов. Про­ходя через кристалл, лучи дифрагируют, возникающая дифракци­онная картина строго соответствует структуре исследуемого ве­щества.

Метод дифракции рентгеновского излучения .

Развитие рентгеноструктурного анализа началось со знаменитого опыта М. Лауэ (1912), показавшего, что пучок рентгеновского излучения, проходя
через кристалл, испытывает дифракцию, причем симметрия, рас­пределения дифракционных максимумов соответствует симметрии
кристалла. Дифракционные максимумы возникают во всех направлениях, отвечающих основному закону рентгеноструктурного ана­лиза- уравнению Вульф а - Брэгга

Дифракционные методы можно условно разделить на две группы: 1) угол падения луча на кристалл постоянный, а длина излуче­ния меняется; 2) длина волны постоянная, а угол падения меняется.

К методам первой группы относится метод Лауэ, заключа­ющийся в том, что полихроматическое рентгеновское излучение на­правляется на неподвижный монокристалл, за которым располага­ется фотопленка. Из множества длин волн, имеющихся в полихро­матическом излучении, всегда найдется такая волна, которая удовлетворяет условиям уравнения Вульфа - Брзгга. Метод Лауэ дает возможность выявить симметрию кристалла. К методам вто­рой группы относятся методы вращения монокристалла и поликристаллического образца. В методе вращения монокристалла
монохроматический луч направляется на монокристалл, вращаю­щийся вокруг оси, нормальной к направлению луча. При этом раз­личные плоскости кристалла попадают в положение, соответству­ющее условиям дифракции, что приводит к образованию соответст­вующей дифракционной картины. Измерением интегральной интенсивности и определением набора структурных амплитуд мож­но расшифровать структуру кристалла.

При изучении поликристаллических материалов образец осве­щается монохроматическим излучением. В множестве произвольно ориентированных кристаллов всегда найдется такой, ориентировка которого отвечает уравнению Вульфа-Брэгга. Отраженный луч регистрируется фотоспособом (рис.2) либо ионизационными или сцинтилляционными счетчиками, сигнал через систему усилителей и пересчетных устройств подается на потенциометр, записывающий кривую распре­деления интенсивности (рис.3). По расположению дифракционных максимумов судят о геометрии решетки, а по их интенсивности - о распределении электронной плотности, т. е. о вероятности нахожде­ния электронов в той или иной точке кристалла (рис. 4). Распреде­ление электронной плотности дает возможность определять не толь­ко положение атомов в решетке, но и тип химической связи. Высо­котемпературные приставки к дифрактометрам позволяют регист­рировать полиморфные превращения при нагревании, следить за твердофазовыми реакциями.


Рентгенография дает также возможность изучать дефекты в кристаллах.

выход луча; 4 - область малых углов 9

Рис. 2. Съемка рентгенограммы по­ликристаллических образцов методом фоторегистрации:

Рис. 3. Рентгенограмма кварца, по­лученная на установке со сцинтилляционным методом регистрации

Метод дифракции электронов (электронография). Метод осно­ван на том, что при взаимодействии с электростатическим полем атомов происходит рассеяние пучка электронов. В отличие от рент­геновского, электронное излучение может проникать лишь на небольшую глубину, поэтому исследуемые образцы должны иметь вид тонких пленок. При помощи электронографии можно, помимо определения межплоскостных расстояний в кристалле, изучать положение легких атомов в решетке, чего нельзя сделать при помо­щи рентгеновского излучения, слабо рассеивающегося легкими атомами.

Метод дифракции нейтронов . Для получения пучка нейтронов необходим атомный реактор, поэтому данный метод используется сравнительно редко. При выходе из реактора пучок значительно ослаблен, поэтому необходимо использовать широкий пучок и со­ответственно увеличивать размер образца. Преимуществом метода является возможность определения пространственного положения атомов водорода, что невозможно сделать другими дифракционны­ми методами.

Рис. 4. Распределение электронной плотности (о) и структура (б) кри­сталла с ковалентной связью (ал­маз)