История развития транспортных подводных туннели в. Подводный тоннель

Туннель завершили в 1988 году, и он тянется на 54 километра, достигая глубины 240 метров, но его подводная часть (23,3 километра) - это карлик рядом с Чаннел-Туннелем или «чуннелем» (Channel Tunnel, Chunnel), соединяющим Великобританию и Францию. Его завершили в 1994 году, и подводная часть туннеля насчитывает от 38,6 до 50 километров, однако погружается всего на 75 метров в глубину.

Однако оба туннеля становятся карликами по сравнению с туннелем Мармарай (Marmaray Tunnel), стоимостью 3,3 миллиарда долларов, который . Его 13,2-километровый железнодорожный путь (в том числе 1400 метров по морскому дну пролива Босфор) соединяет азиатскую и европейскую части Стамбула, тем самым делая его первым железнодорожным туннелем, соединяющим два континента.

Что ж такого замечательного в полуторакилометровом туннеле по сравнению с многокилометровыми «Сейкан» и «Ченнел»? Разница в подходах. В то время как предшественники Мармарай взрывали и пробивались сквозь твердые породы, турецкий туннель был собран по частям в траншее на дне Босфора, что сделало его самым длинным и самым глубоким погружным туннелем, когда-либо созданным. Инженеры выбрали это решение, используя предварительно собранные секции, соединенные толстыми, гибкими, резиново-стальными пластинами, чтобы лучше бороться с региональной сейсмической активностью.

На протяжении какого-то времени культурные и исторические артефакты из старого Стамбула, которые находили на морском дне, замедляли процесс раскопок туннеля Мармарай, поэтому 3,6-километровый туннель Эресунн, соединяющий Швецию и Данию оставался крупнейшим погружным туннелем. Подрядчики выстроили его из 20 элементов по 176 метров каждый, соединенных меньшими, 22-метровыми секциями.

Между погружными туннелями вроде Мармарай и Эресунн и обычными вроде «Чуннеля» есть еще много чего. Давайте углубимся немного и рассмотрим еще один метод строения туннелей, который используется с начала 19 века.

Проходческий щит необычных размеров

Самый старый подход к строительству подводных туннелей без отвода воды известен как проходческий щит; инженеры используют его и по сей день.

Щиты решают распространенную, но весьма неприятную проблему: как копать длинный туннель сквозь мягкую землю, особенно под водой, чтобы его передняя кромка не обрушилась.

Чтобы получить представление о том, как работает щит, представьте себе кофейную чашечку с заостренным концом, в котором есть несколько крупных отверстий. Теперь, взявшись за открытый конец чашечки, продавите ей мягкую землю и увидите как грязь выходит через отверстия. В масштабе настоящего щита несколько людей (mucker и sandhog) будут стоять внутри отсека и очищать его от глины или грязи по мере заполнения. Гидравлические домкраты будут постепенно продавливать щит вперед, а экипаж будет устанавливать металлические поддерживающие кольца, отмечая ими продвижение вперед, а после на их основе делать бетонную или каменную кладку.

Для того, чтобы сквозь стены туннеля не просачивалась вода, передняя часть туннеля или щита иногда подвергается давлению сжатого воздуха. Рабочие, которые могут выдержать только короткие периоды в таких условиях, должны пройти через один или несколько шлюзов и принять меры предосторожности против болезней, связанных с давлением.

Щиты используются до сих пор, особенно при установке трубопровода или водопроводных и канализационных труб. И хоть этот метод достаточно трудоемкий, он обходится лишь в малую часть от того, в какую цену выливается использование его родственников - туннельных буровых машин (ТБМ).

ТБМ - это многоэтажный монстр разрушения, способный прогрызаться через твердую скалу. В передней части его режущей головы находится гигантское колесо с породоразрушающими дисками и ковшами для выгрузки отработанного камня на ленточный конвейер. В некоторых крупных проектах, вроде «Чуннеля», отдельные машины начинали двигаться с противоположных концов и сверлили к конечной точке, используя сложные методы навигации, чтобы не промахнуться в итоге.

Бурение через твердую скалу создает в основном самонесущие туннели, и ТБМ движется вперед быстро и безжалостно (при строительстве туннеля Chunnel машины двигались порой и на 76 метров в день). Минусы: ТБМ ломается чаще, чем подержанная «копейка», и плохо работает с битыми или перекрученными скалами - поэтому иногда продвигаться не удается так быстро, как хотелось бы инженерам.

К счастью, ТБМ и щиты - это не единственные игроки на поле.

Дайте ему утонуть!

Строить кладку и поддерживающие кольца и одновременно вгрызаться в мягкую землю или твердую скалу - это, конечно, не пикник, но пытаться сдержать море под водой способен разве что Моисей. К счастью, благодаря изобретению американского инженера У. Дж. Уилгуса, затонувшего или погружного трубчатого туннеля (ITT, ПТТ), нам и не нужно пытаться повторить подвиг пророка.

ПТТ не пробиваются сквозь камень или почву; они собираются вместе из частей. Уилгус испытал эту технологию при строительстве железной дороги на реке Детройт, соединяющей Детройт и Виндзор. Технология прижилась, и в 20 веке было построено более 100 таких туннелей.

Чтобы сделать каждый сегмент туннеля, рабочие сливают вместе 30 000 тонн стали и бетона - достаточно для строительства 10-этажного дома - в массивную форму, а после дают настояться в течение месяца. Формы включают пол, стены и потолок туннеля и первоначально закрыты с концов, что делает их водонепроницаемыми при перевозке в море. Перевозят формы погружные понтоны, большие судна, напоминающие нечто среднее между козловым краном и понтонной лодкой.

Спускаясь по предварительно вырытому желобу, каждая часть туннеля заполняется достаточно, чтобы утонуть самостоятельно. Кран медленно опускает секцию в нужное положение, а водолазы направляют его, сверяясь по GPS. Как только каждый новый раздел соединяется со своим соседом, их соединяет плотная резина, которая надувается и сжимается. После экипаж снимает уплотняющую перегородку и откачивает оставшуюся воду. Как только весь туннель будет построен, его засыпят, возможно, битой скалой.

Строительство погружных труб может проводиться глубже, чем в других случаях, поскольку технике не нужно использовать сжатый воздух, чтобы удерживать воду за бортом. Команды могут работать дольше. Кроме того, погружные конструкции могут быть отлиты в любой форме, в отличие от туннеля ТБМ, который повторяет по форме путь продвижения машины. Тем не менее, поскольку погружные туннели составляют лишь часть морского дна или русла реки, для наземных входов и выходов требуются другие механизмы и техники строительства туннелей. В подводном туннелировании, как и в жизни, все средства хороши.

Норвегия - страна фьордов - узких, извилистых и глубоко врезающихся в сушу морских заливов со скалистыми берегами. Их длина в несколько раз превосходит ширину, а берега образованы скалами высотой до 1 км.

Несмотря на необычайную красоту природы, это осложняет транспортную переправу. Обычные тоннели на дне моря во многих местах практически невозможны в виду глубины фьордов, а мосты сложно возводить из-за изрезанного рельефа берегов и крутых скал.

Тогда возникла идея создать плавающие в толще воды автомобильные тоннели . Первые переправы могут появиться между городами Кристиансанн и Тронхейм уже к 2035 году. В случае реализации проекта дорога вдоль моря у автомобилистов будет занимать 10 часов вместо 21 часа из-за отказа от паромных переправ.

Проект представляет собой гибрид тоннеля и моста, висящего ниже поверхности воды, но высоко над дном, которое может быть очень глубоким (Согне-фьорд достигает 1,3 км).

Два тоннеля - по одному в каждом направлении - расположатся на глубине около 30 метров. Каждый из них будет представлять собой жесткую трубу длиной 26 км. Их соединят друг с другом переходы через каждые 250 метров на случай эвакуации.

Наклон тоннелей не должен превышать 5%. Трубы соберут на земле, после чего их погрузят в море. В несколько емкостей для балласта зальют воду, чтобы они опустились на нужную глубину. Сила воздуха, находящегося внутри труб и поднимающая их вверх, будет равна весу емкостей с балластом, опускающим трубы вниз. За счет этого удастся избежать плавучести.

Сверху трубы будут удерживать тросы, закрепленные сверху на понтонах, а к дну их прикрепят тяжелые якоря. Так специалисты достигнут полной неподвижности тоннелей, обеспечивающей безопасную езду.

Однако для автомобилистов тоннели все равно будут относиться к объектам повышенной опасности. Любое происшествие, которое на обычной дороге сочтут мизерным, может привести к катастрофе даже в тоннеле, находящемся внутри горы. А в норвежских тоннелях над каждым квадратным метром дороги будет находиться по 30 тысяч литров воды.

Глубина тоннеля - 30 метров - выбрана для того, чтобы не помешать мореплаванию.

Несмотря на столь нетрадиционное решение, езда в подводной трубе ничем не будет отличаться от проезда по обычному тоннелю. В Норвегии построено 1150 транспортных тоннелей, 35 из которых проходят под водой, так что жителям этой страны будет не в диковинку перемещаться и по плавающим подводным переправам. Например, в 2013 году там открыли самый длинный подводный тоннель Кармей. Ее длина почти 9 км.

3. Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 авария в тоннеле : опасное дорожно-транспортное происшествие, создающее угрозу жизни и здоровью людей и приводящее к повреждению или разрушению транспортных средств, элементов строительных конструкций или оборудования, а также нарушению движения в тоннеле.

3.2 автотранспортный тоннель : городское подземное (или подводное) сооружение, проходящее через грунтовый массив или под водным препятствием, для пропуска автотранспортных средств с целью развязки движения в разных уровнях (на пересечениях, примыканиях или разветвлениях магистралей), увеличения пропускной способности магистралей, преодоления высотных или контурных препятствий, подъезда к крупным городским центрам и др.

3.3 высотный габарит транспортной зоны тоннеля : наименьшее расстояние от верха покрытия дорожной одежды до элементов конструкции или оборудования, расположенного в верхней части тоннеля, обеспечивающее или ограничивающее проезд транспортного средства.

3.4 габарит приближения конструкций и оборудования : предельное очертание свободного пространства в плоскости, перпендикулярной продольной оси проезжей части, внутрь которого не должны входить никакие элементы сооружения или расположенных в нем оборудования или устройств.

3.5 дамба : сооружение в виде насыпи из грунтовых материалов трапецеидального сечения для регулирования водных потоков, преграждения снежных лавин и т. п.; верхнее полотно дамбы в ряде случаев используется для прокладки транспортных коммуникаций .


3.6 марка бетона по морозостойкости : количество циклов попеременного замораживания и оттаивания в воде, которые выдерживают образцы, изготовленные и испытанные на морозостойкость согласно требованиям действующих государственных стандартов

3.7 металлоизоляция : покрытие из стальных листов, объединенных с арматурным каркасом обделки..

3.8 наливной док : построечно-спусковое сооружение, имеющее, как и строительный док, ворота со стороны акватории , но дно наливного дока делается двухступенчатым: верхняя его часть находится выше уровня акватории, а в глубоководной части уровень воды при открытом затворе соответствует уровню акватории. Построечные места в наливном доке располагаются в верхней части бассейна или в смежных камерах, находящихся на одной отметке с верхней ступенью и отделённых от неё специальными затворами Наполняется верхняя ступень наливного дока с помощью насосов, а осушается – самотёком. Наливные доки, как и строительные, оснащаются кранами и оборудованием для заводки и вывода секций тоннеля.

3.9 обделка : несущая конструкция, ограждающая подземную выработку и образующая внутреннюю поверхность подземного сооружения.

3.10 опускные подземные сооружения : различного назначения, конструкции которых возводятся на земной поверхности, а затем опускаются на проектную глубину. Различают опускные сооружения: опускные колодцы, опускную (погружную) крепь, опускные секции подводных тоннелей, опускные тоннели-кессоны.

3.11 подводный тоннель: тоннель, сооружаемый под водным препятствием для пропуска транспортных средств и пешеходов, прокладки инженерных коммуникаций и др.

3.12 понтон: плавсредство, служащее для размещения на нем технологического оборудования.

3.13 портал тоннеля: конструкция для удержания откосов подходных выемок и архитектурно оформленный въезд или выезд из тоннеля,

3.14 притоннельное сооружение: подземное сооружение вспомогательного назначения, примыкающее к основному тоннелю или связанное с ним подземным переходом

3.15 проезжая часть тоннеля: элемент тоннеля, предназначенный для движения транспортных средств

3.16 режим закрытого забоя : режим щитовой проходки, при котором совмещается разработка грунта забоя с воздействием на его поверхность активного пригруза (грунтового и/или пеногрунтового, бентонитовой суспензией, сжатым воздухом), уравновешивающего действующее суммарное давление грунта в забое и гидростатическое давление.

3.17 режим открытого забоя: режим проходки, при котором проходку ведут в устойчивых грунтах. При водопритоке в забое и поступление воды по длине тоннеля применяется местный водоотлив.

3.18 рампа: сооружение, служащее для сопряжения закрытой части тоннеля с поверхностью земли.

3.19 служебный проход: выделенная у стены тоннеля с некоторым возвышением над уровнем проезжей части полоса, предназначенная для прохода по тоннелю служебного персонала.

3.20 солнцезащитный экран: строительная конструкция, устанавливаемая над примыкающем к въездному порталу участком дороги, для исключения попадания прямого солнечного света или снижения проникновения рассеянного дневного света на проезжую часть этого участка и предназначенная для яркостной адаптации водителя при въезде в автотранспортный тоннель.


3.21 сталежелезобетонные конструкции: железобетонные конструкции, включающие отличные от арматурной стали стальные листовые и фасонные элементы, работающие совместно с железобетонными элементами

3.22 секции подводного тоннеля (опускные ): элементы, из которых сооружают тоннель опускным спсобом.

3.23 сухой док: открытая площадка или котлован на берегу водотока, огражденный со всех сторон насыпными дамбами, высота которых должна быть достаточной для того, чтобы после затопления дока опускные тоннельные секции могли бы находиться на плаву с максимальной осадкой.

3.24 ТПМК: тоннелепроходческий механизированный комплекс (ТПМК)

3.25 тоннель-мост : разновидность подводного тоннеля, расположенного в толще воды на опорах мостового типа.

3.26 транспортная зона: основная часть тоннеля, служащая для проезда транспортных средств или часть комплексного подземного сооружения с расположенными в ней ездовым полотном, другими элементами строительных конструкций, а также эксплуатационным оборудованием, необходимым для использования тоннеля в качестве транспортного сооружения.

3.27 трасса тоннеля: линия, отображающая положение оси тоннеля в пространстве.

3.28 шов деформационный: конструктивный элемент для обеспечения возможности перемещения частей конструкции без силового воздействия элементов обделки друг на друга под влиянием их осадок, изменения температуры, усадки бетона и предупреждения образования трещин.

4. Общие положения

4.1 Подводные транспортные тоннели в течение всего срока их службы должны отвечать требованиям безопасности и бесперебойности движения транспортных средств, надежности и долговечности строительных конструкций, удобства и наименьшей стоимости их содержания в процессе эксплуатации, экологическим требованиям. Тоннели должны обеспечивать социально-экономический эффект, обусловленный уменьшением перепробегов транспортных средств, снижением дорожно-транспортных происшествий, общим улучшением транспортного обслуживания населения.

Подводные тоннели следует относить к I повышенному уровню ответственности сооружений, отказы которых могут привести к тяжелым экономическим, социальным и экологическим последствиям

Принимаемые технические решения, конструкции и материалы должны обеспечивать срок службы тоннельных обделок не менее 100 лет. Межремонтные сроки строительных конструкций должны составлять не менее 50 лет.

4.2 Основные объемно-планировочные и конструктивно-технологические решения - расположение тоннелей и притоннельных сооружений в плане и продольном профиле, длина участков, сооружаемых открытым, опускным и закрытым способом, типы обделок, размещение проезжей части, вентиляционных каналов и кабельных коллекторов по сечению тоннелей, - должны определяться на стадии «Проектная документация» по результатам технико-экономических сопоставлений различных вариантов и с учетом категории дороги, на которой проектируется тоннель.

4.3 В составе тоннелей при необходимости следует предусматривать комплекс эксплуатационно-технических помещений для электротехнических , вентиляционных, водоотливных установок, ввода водопровода и других устройств. По возможности их следует соединять в эксплуатационно-технические блоки.

4.4 Размещаемые в тоннелях приборы и оборудование должны иметь необходимую степень защиты от воздействия агрессивных факторов воздушной среды тоннелей, повышенной влажности , перепада температур, а также от повреждений при механизированной мойке стеновых конструкций или попытках их умышленной порчи.


Прокладку инженерных коммуникаций, за исключением распределительных сетей, подходящих к оборудованию, установленному непосредственно в зонах проезжих участков тоннелей следует предусматривать, как правило, в технических помещениях, обеспечивая высокую степень их защиты, особенно в режимах чрезвычайных ситуаций.

4.5 Срок службы основных эксплуатационных устройств, устанавливаемых в тоннелях и на подходах к нему, должен быть не менее 10 лет.

4.6 При проектировании тоннелей помимо настоящего стандарта следует учитывать требования соответствующих глав СНиП и государственных стандартов РФ, ведомственных нормативных документов, нормативных документов органов государственного управления и надзора и других нормативных документов по строительному проектированию.

5. Исходные данные и инженерные изыскания для проектирования

5.1 Исходные данные

5.1.1 Исходные данные формируются согласно СП 122.13330. Исходными данными для проектирования тоннелей являются:

Геофизические исследования;

Полевые исследования грунтов;

6.2.6 Пропуск магистральных теплосетей, водо - и газопроводов через конструкцию тоннеля не допускается.

6.2.7 Наибольшие продольные уклоны рамповых участков должны соответствовать требованиям для открытых участков.

6.2.8 Продольный уклон проезжей части из условий водоотвода следует принимать не менее 0,03 за исключением участков вертикальных кривых.

Максимальные продольные уклоны в автодорожных тоннелях не должны превышать 40 ‰, а в сложных топографических и инженерно-геологических условиях при длине тоннеля до 500 м - 60 ‰.

6.2.9 Сопряжение смежных элементов продольного профиля тоннелей следует выполнять путем вписывания выпуклых или вогнутых вертикальных кривых, наименьшие радиусы которых могут приниматься как для открытых участков улиц и магистралей.

ПОДВОДНЫЙ ТОННЕЛЬ (а. underwater tunnel; н. Unterwasserstollen, Unterwassertunnel; ф. tunnel sous-marin; и. tunel submarino) — предназначен для преодоления водного препятствия с целью пропуска транспортных средств и пешеходов, прокладки инженерных коммуникаций и др. Подводные тоннели в отличие от мостов не нарушают режим водотока, не препятствуют судоходству, защищают транспортные средства или коммуникации от неблагоприятных атмосферных воздействий, а при расположении в городе в минимальной степени нарушают архитектурный ансамбль. Преимущества подводных тоннелей по сравнению с мостами в значительной степени возрастают при пологих берегах водотока и при интенсивном судоходстве.

В зависимости от расположения относительно дна водотока (водоёма) различают подводные тоннели, заглубленные в грунтовый массив (рис., а), тоннели на дамбах (рис., б) или отдельных опорах (тоннели-мосты) (рис., в) и "плавающие" тоннели (рис., г).

Тоннели на дамбах, тоннели-мосты и "плавающие" тоннели эффективны при пересечении глубоких водных преград, т.к. при этом сокращается длина тоннельного перехода и улучшаются эксплуатационные показатели трассы.

Первый в мире подводный тоннель (длиной 900 м, шириной 4,9 м и высотой 3,9 м) построен в Вавилоне под рекой Евфрат за 2180 лет до н. э. В мире эксплуатируется большое количество подводных тоннелей различного назначения, среди которых преобладают транспортные тоннели: , метрополитена (табл.).

В подводные тоннели построены под рекой Москвой, Невой, Курой на линиях Московского, Ленинградского и Тбилисского метрополитенов, автодорожные тоннели — под каналом им. Москвы в Москве, под Морским каналом в Ленинграде и др. Предполагается строительство крупнейших подводных тоннелей под проливом Ла-Манш (52 км), Гибралтарским проливом (32 км), Ботническим заливом (22 км), проливом Босфор (12 км), Мессинским проливом и др.

Подводные тоннели располагают на прямой или криволинейной трассе в плане, что связано с необходимостью обхода зон сильных размывов, островов, искусственных подводных сооружений и пр. Глубину заложения подводных тоннелей относительно линии возможных размывов принимают не менее 4-5 м в плотных глинистых грунтах и не менее 8-10 м в несвязных грунтах. При способе опускных секций минимальная глубина заложения в плотных глинистых грунтах 1,5-2 м, а в несвязных грунтах 2,5-3 метров. Радиусы кривых в плане и профиле, продольные уклоны и габариты подводных тоннелей принимаются в зависимости от назначения тоннеля и места его расположения по соответствующим нормам. Ширина подводных тоннелей достигает 40 м и более, высота — 10м (например, в Антверпене).

Способ строительства подводных тоннелей определяется его длиной, размерами поперечного сечения, топографическими, инженерно-геологическими и гидрологического условиями. Подводные тоннели сооружают чаще всего щитовым способом или способом опускных секций. В отдельных случаях применяют горный или открытый способы, а в сложных инженерно-геологических условиях — проходку под сжатым воздухом, опускные кессоны, водопонижение , тампонаж, искусственное замораживание или химическое закрепление грунтов . Конструкции подводных тоннелей, сооружаемых щитовым способом, выполняют в виде круговых тоннельных обделок из чугунных или стальных тюбингов либо из железобетонных элементов с внутренней гидроизоляцией. При горном способе работ устраивают обделки сводчатого очертания из монолитного бетона или железобетона. Опускные секции подводные тоннели могут быть кругового, бинокулярного или прямоугольного поперечного сечения из железобетона с наружной гидроизоляцией. Подводные тоннели оборудуют системами искусственной вентиляции, освещения, водоотвода , а также специальными устройствами, обеспечивающими безопасную эксплуатацию сооружения.

Подводные тоннели в качестве транспортных тоннелей и пере­ходов широко используют в крупных городах для преодоления судоходных рек, каналов и заливов. Основные преимущества строительства подводных тоннелей по сравнению с мостовым переходом водных преград заключаются в следующем: не на­рушается бытовой режим водотока, они не препятствуют судо­ходству и работе существующих береговых сооружений (при­стани, причалы и т. п.). Особо большие преимущества подвод­ные тоннели имеют, когда по реке или каналу проходят крупно­тоннажные судна, что вызывает необходимость при мостовом варианте иметь большую высоту и длину пролетных строений моста, а следовательно, и мощные опоры, что в свою очередь приводит к значительному увеличению стоимости мостового пе­рехода в целом.

Выбор тоннельного или мостового вариантов должен ре­шаться на основании учета всей совокупности факторов - тех­нических, эксплуатационных и экономических.

Строительство подводных тоннелей осуществляют следую­щим образом.

Основным элементом подводного тоннеля являются опуск­ные секции, которые в основном применяют круговой или пря­моугольной формы. Опускная секция круговой формы сечения (рис. 3, а) обычно имеет обделку, включающую стальную оболочку, внутри которой располагается железобетонная крепь. Толщина опускной секции круговой формы изменяется в преде­лах 0,5-0,7 м.

Опускные секции прямоугольной формы изготовляют из мо­нолитного железобетона. В зависимости от пропускной способ­ности тоннеля опускные секции имеют различное число отсе­ков. Они могут быть однопролетными и многопролетными. На рис. 3, б представлена однопролетная опускная секция, при­нятая при строительстве Канонерского подводного тоннеля под Морским каналом в Санкт-Петербурге. Тоннель предназначен для двухполосного автомобильного транспорта с боковым проходом для людей 1 и вентиляционной галереей 2. Длина каждой сек­ции 75 м. Конструкция секции выполнена из монолитного же­лезобетона с толщиной 0,93 м. Масса секции около 8000 т. Наружная гидроизоляция 3 стальная с толщиной 6 мм, кото­рую одновременно используют как опалубку для возведения железобетонной обделки секции. На рис. 3, в представлена секция подводного тоннеля «Лафонтен» в г. Монреале (Кана­да) через реку Св. Лаврентия. Опускная секция имеет прямо­угольную форму с размерами 36,73x7,85 м и длиной 109,7 м. Масса секции 32 000 т. Секции изготовлены из монолитного железобетона с преднапряженной арматурой 1 , для чего ис­пользовали тросы из 48 проволок диаметром 7 мм и временные тяжи 2. Обделка имеет гидроизоляцию 3. Секции по торцам оборудуют временными водонепроницаемыми диафрагмами, в которых предусматривают шлюзы с затворами для пропуска людей и для контроля за герметичностью при стыковании секций.

Для размещения опускных секций в русле водной преграды устраивают траншею. Размеры траншеи определяются основ­ными размерами секции. Ширина траншей по дну на 2-3 м и больше ширины секции, а глубина траншеи не менее 0,5-0,7 м. В основании траншей укладывают гравийную или щебеночную подготовку.

Изготовление погружных секций обычно производят в су­хом доке или доке-шлюзе, которые располагают на берегу и с таким расчетом, чтобы они могли быть использованы при за­вершении строительства в качестве рампового подходного уча­стка при эксплуатации тоннеля.

Рисунок 3. Формы сечения опускных секций подводных тоннелей

В доке изготовляют в зависимости от потребного количества или все секции, когда водоток имеет небольшую ширину, или часть их по мере развития работ по строительству подводного тоннеля.

После изготовления секций в док-шлюз закачивают воду до уровня ее в водотоке. Секции всплывают и на плаву буксируются до места установки. Перед погружением на секции уста­навливают специальную трубу для возможности прохода по ней людей и подачи материалов, а также монтируют визирные мачты, по которым контролируют положение секций. Секции погружают, заполняя водой специальные балластные емкости, размещенные внутри их. После погружения и установки секции ее стыкуют с помощью специального профиля резиновой ман­жеты и стяжного устройства в виде домкрата. В дальнейшем стык омоноличивают изнутри секции. После установки всех погружных секций и проверки герметичности стыков произво­дят засыпку их обломочными материалами на высоту 1,5-3 м.