Какие пары называют насыщенными. Что характерно для насыщенного пара с молекулярной точки зрения? Насыщенный пар и его свойства кратко

При естественных условиях пар считают газом. Он может быть насыщенным и нена-сыщенным , что зависит от его плотности, температуры и давления.

Пар, находящийся в динамическом равновесии с собственной жидкостью, является насыщенным .

Динами-ческое равновесие между жидкостью и па-ром возникает тогда, когда количество мо-лекул, вылетающих из свободной повер-хности жидкости, равно количеству моле-кул, возвращающихся в нее.

В открытом сосуде нарушается динами-ческое равновесие, и пар становится нена-сыщенным , поскольку определенное коли-чество молекул испаряется в атмосферу и не возвращается в жидкость.

Насыщенный пар образуется в закрытом сосуде над свобод-ной поверхностью жидкости.

Насыщенный и ненасыщенный пар име-ют разные свойства. Исследуем их.

Рис. 3.2. Изотермическое сжатие пара

Концентрация молекул насы-щенного пара не зависит от его объема.

Пусть ненасыщенный пар при темпе-ратуре T находится в цилиндре с поршнем (рис. 3.2). Начнем медленно его сжимать, чтобы обеспечить изотермический процесс (участок AB). Сначала, если пар значитель-но разреженный, зависимость давления от объема будет соответствовать закону Бой-ля-Мариотта для идеального газа: pV = const. Тем не менее с уменьшением объема ненасыщенного пара (увеличением его плотности) начинает наблюдаться откло-нение от него. Дальнейшее изотермическое сжатие пара ведет к тому, что он начинает конденсироваться (точка В), в цилиндре образуются капельки жидкости и пар ста-новится насыщенным. Его плотность, а следовательно и концентрация молекул, при-обретает максимальное значение для данной температуры. Они не зависят от объема, который занимает насыщенный пар, и оп-ределяются его давлением и температурой.

При сжатии насыщенного пара (участок BC) его давление не будет изменяться (p = const). Это объясняется тем, что с умень-шением объема насыщенный пар конден-сируется, образовывая жидкость. Ее доля в объеме цилиндра все время увеличивается, а объем, который занимает насыщенный пар, уменьшается. Это происходит до тех пор, пока весь насыщенный пар не пере-йдет в жидкое состояние (точка C).

Дальнейшее уменьшение объема вызы-вает стремительное возрастание давления (участок DC), поскольку жидкости почти не сжимаются. Материал с сайта

Итак, при изотермическом сжатии не-насыщенного пара сначала (при незначи-тельной плотности) он проявляет свойства идеального газа. Когда же пар становится насыщенным , его свойства подчиняются дру-гим закономерностям. В частности, при не-высоких температурах его состояние при-близительно описывается уравнением p = nkT, когда концентрация молекул не зависит от объема, занимаемого газом. График зави-симости давления p от объема V, изобра-женный на рис. 3.2, называется изотермой реальных газов .

Изотермы реального газа ха-рактеризуют его равновесное состояние с жидкостью. Их совместимость позволяет оп-ределить зависимость давле-ния насыщенного пара от тем-пературы.

На этой странице материал по темам:

  • Изо­тер­ми­че­ском уве­ли­че­нии дав­ле­ния ненасыщенного пара

  • Что характерно для насыщенного пара с молекулярной точки зрения

  • Насыщенный пар и его свойства кратко

  • Что характерно для насыщенного пара с молекулярной точки зрения?

  • Что характерно для насыщенного газа с молекулярной точки зрения

Вопросы по этому материалу:

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее испарится. Что такое испарение и почему оно происходит?

2.7.1 Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и б´ольшую сторону.

На рис. 2.16 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный ¾хвост¿ графика это небольшое число ¾быстрых¿ молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Число молекул

Быстрые молекулы

Скорость молекул

Рис. 2.16. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т. е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости7 .

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара процесс, обратный испарению жидкости.

2.7.2 Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт

7 При особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен это кипение.

p н = н RT:

увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара увеличиваться; пар достигнет ¾насыщения¿.

Насыщенный пар это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются pн ин . Очевидно, pн ин это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

2.7.3 Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие т. е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (2.6 ).

Как видим, закон Бойля Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно ведь он получен из уравнения Менделеева Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости. Динамическое равновесие в первый момент нарушается, и происходит дополнительное

испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (2.6 ) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2.17 ). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

изохора пара

Рис. 2.17. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

2.7.4 Влажность воздуха

Абсолютная влажность это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха " это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это

отношение выражают в процентах:

" = p 100%: pн

Из уравнения Менделеева-Клапейрона (2.6 ) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (2.6 ), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

" = 100%:н

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар ¾мокрого¿ термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Молекулярно-кинетическая теория позволяет не только понять, почему вещество может находиться в газообразном, жидком и твердом состояниях, но и объяснить процесс перехода вещества из одного состояния в другое.

Испарение и конденсация. Количество воды или любой другой жидкости в открытом сосуде постепенно уменьшается. Происходит испарение жидкости, механизм которого был описан в курсе физики VII класса. При хаотическом движении некоторые молекулы приобретают столь большую кинетическую энергию, что покидают жидкость, преодолевая силы притяжения со стороны остальных молекул.

Одновременно с испарением происходит обратный процесс - переход части хаотически движущихся молекул пара в жидкость. Этот процесс называют конденсацией. Если сосуд открытый, то покинувшие жидкость молекулы могут и не возвратиться в

жидкость. В этих случаях испарение не компенсируется конденсацией и количество жидкости уменьшается. Когда поток воздуха над сосудом уносит образовавшиеся пары, жидкость испаряется быстрее, так как у молекулы пара уменьшается возможность вновь вернуться в жидкость.

Насыщенный пар. Если сосуд с жидкостью плотно закрыть, то убыль ее вскоре прекратится. При неизменной температуре система «жидкость - пар» придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго.

В первый момент, после того как жидкость нальют в сосуд и закроют его, она будет испаряться и плотность пара над жидкостью - увеличиваться. Однако одновременно с этим будет расти число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число молекул пара возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре в конце концов установится динамическое (подвижное) равновесие между жидкостью и паром. Число молекул, покидающих поверхность жидкости, будет равно числу молекул пара, возвращающихся за то же время в жидкость. Одновременно с процессом испарения происходит конденсация, и оба процесса в среднем компенсируют друг друга.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Если воздух из сосуда с жидкостью предварительно откачан, то над поверхностью жидкости будет находиться только насыщенный пар.

Давление насыщенного пара. Что будет происходить с насыщенным паром, если уменьшать занимаемый им объем, например сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной?

При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличивается, и из газа в жидкость начинает переходить большее число молекул, чем из жидкости в газ. Это продолжается до тех пор, пока вновь не установится равновесие и плотность, а значит, и концентрация молекул не примет прежнее значение. Концентрация молекул насыщенного пара, следовательно, не зависит от объема при постоянной температуре.

Так как давление пропорционально концентрации в соответствии с формулой то из независимости концентрации (или плотности) насыщенных паров от объема следует независимость давления насыщенного пара от занимаемого им объема.

Независимое от объема давление пара при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

При сжатии насыщенного пара все большая часть его переходит в жидкое состояние. Жидкость данной массы занимает меньший объем, чем пар той же массы. В результате обьем пара при неизменной его плотности уменьшается.

Мы много раз употребляли слова «газ» и «пар». Никакой принципиальной разницы между газом и паром нет, и эти слова в общем-то равноправны. Но мы привыкли к определенному, относительно небольшому интервалу температуры окружающей среды. Слово «газ» обычно применяют к тем веществам, давление насыщенного пара которых при обычных температурах выше атмосферного (например, углекислый газ). Напротив, о паре говорят тогда, когда при комнатной температуре давление насыщенного пара меньше атмосферного и вещество более устойчиво в жидком состоянии (например, водяной пар).

Независимость давления насыщенного пара от объема установлена на многочисленных экспериментах по изотермическому сжатию пара, находящегося в равновесии со своей жидкостью. Пусть вещество при больших объемах находится в газообразном состоянии. По мере изотермического сжатия плотность и давление его увеличиваются (участок изотермы АВ на рисунке 51). При достижении давления начинается конденсация пара. В дальнейшем при сжатии насыщенного пара давление не меняется до тех пор, пока весь пар не обратится в жидкость (прямая ВС на рисунке 51). После этого давление при сжатии начинает резко возрастать (отрезок кривой так как жидкости мало сжимаемы.

Изображенная на рисунке 51 кривая носит название изотермы реального газа.

ОПРЕДЕЛЕНИЕ

Испарение - это процесс превращения жидкости в пар.

В жидкости (или твердом теле) при любой температуре существует некоторое количество «быстрых» молекул, кинетическая энергия которых больше потенциальной энергии их взаимодействия с остальными частицами вещества. Если такие молекулы оказываются вблизи поверхности, то они могут преодолеть притяжение остальных молекул и вылететь за пределы жидкости, образуя над ней пар. Испарение твердых тел также часто называют возгонкой или сублимацией .

Испарение происходит при любой температуре, при которых данное вещество может находиться в жидком или твердом состояниях. Однако интенсивность испарения зависит от температуры. При повышении температуры количество «быстрых» молекул увеличивается, и, следовательно, интенсивность испарения возрастает. Скорость испарения также зависит от площади свободной поверхности жидкости от вида вещества. Так, например, вода, налитая в блюдце, испарится быстрее воды, налитой в стакан. Спирт испаряется быстрее воды и т.д.

Конденсация

Количество жидкости в открытом сосуде вследствие испарения непрерывно уменьшается. Но в плотно закрытом сосуде этого не происходит. Объясняется это тем, что одновременно с испарением в жидкости (или твердом теле) происходит обратный процесс. Молекулы пара движутся над жидкостью хаотически, поэтому часть из них под действием притяжения молекул свободной поверхности попадает обратно в жидкость. Процесс превращения пара в жидкость называется конденсацией. Процесс превращения пара в твердое тело обычно называют кристаллизацией из пара.

После того, как мы нальем жидкость в сосуд и плотно его закроем, жидкость начнет испаряться, и плотность пара над свободной поверхностью жидкости будет увеличиваться. Однако, одновременно с этим будет расти число молекул, возвращающихся обратно в жидкость. В открытом сосуде ситуация иная: покинувшие жидкость молекулы могут не возвращаться в жидкость. В закрытом сосуде с течением времени устанавливается равновесное состояние: число молекул, покидающих поверхность жидкости, становится равным числу молекул пара, возвращающихся в жидкость. Такое состояние называется состоянием динамического равновесия (рис.1). В состоянии динамического равновесия между жидкостью и паром одновременно происходит и испарение и конденсация, и оба процесса компенсируют друг друга.

Рис.1. Жидкость в состоянии динамического равновесия

Насыщенный и ненасыщенный пар

ОПРЕДЕЛЕНИЕ

Насыщенный пар - это пар, находящийся в состоянии динамического равновесия со своей жидкостью.

Название «насыщенный» подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара. Насыщенный пар имеет максимальную плотность при данной температуре, а, следовательно, оказывает максимальное давление на стенки сосуда.

ОПРЕДЕЛЕНИЕ

Ненасыщенный пар - пар, не достигший состояния динамического равновесия.

У разных жидкостей насыщение пара происходит при различных плотностях, что обусловлено различием в молекулярной структуре, т.е. различием сил межмолекулярного взаимодействия. В жидкостях, у которых силы взаимодействия молекул велики (например, в ртути), состояние динамического равновесия достигается при небольших плотностях пара, так как количество молекул, способных покинуть поверхность жидкости, невелико. Наоборот, у летучих жидкостей с малыми силами притяжения молекул, при тех же температурах из жидкости вылетает значительное количество молекул и насыщение пара достигается при большой плотности. Примерами таких жидкостей являются этанол, эфир и др.

Так как интенсивность процесса конденсации пара пропорциональна концентрации молекул пара, а интенсивность процесса испарения зависит только от температуры и резко возрастает с ее ростом, то концентрация молекул в насыщенном паре зависит только от температуры жидкости. Поэтому давление насыщенного пара зависит только от температуры и не зависит от объема. Причем с ростом температуры величина концентрации молекул насыщенного пара и, следовательно, плотность и давление насыщенного пара быстро растут. Конкретные зависимости давления и плотности насыщенного пара от температуры различны для разных веществ и могут быть найдены из справочных таблиц. При этом оказывается, что насыщенный пар, как правило, хорошо описывается уравнением Клайперона-Менделеева. Однако, при сжатии или нагревании масса насыщенного пара изменяется.

Ненасыщенный пар с достаточной степенью точности подчиняется законам идеального газа.

Примеры решения задач

ПРИМЕР 1

Задание В закрытом сосуде вместимостью 0,5 л при температуре находятся в равновесии пары воды и капля воды. Определить массу водяного пара в сосуде.
Решение При температуре давление насыщенного пара равно атмосферному, поэтому Па.

Запишем уравнение Менделеева-Клапейрона:

откуда найдем массу водяного пара:

Молярная масса водяного пара определяется так же, как и молярная масса воды .

Переведем единицы в систему СИ: объем сосуда температура пара .

Вычислим:

Ответ Масса водяного пара в сосуде 0,3 г.

ПРИМЕР 2

Задание В сосуде объемом 1 л при температуре находятся в равновесии вода, водяной пар и азот. Объем жидкой воды много меньше объема сосуда. Давление в сосуде составляет 300 кПа, атмосферное давление 100 кПа. Найти общее количество вещества в газообразном состоянии. Каково парциальное давление азота в системе? Какова масса водяного пара? Какова масса азота?
Решение Запишем уравнение Менделеева-Клапейрона для газовой смеси водяной пар + азот:

откуда найдем общее количество вещества в газообразном состоянии:

Универсальная газовая постоянная .

Переведем единицы в систему СИ: объем сосуда давление в сосуде температура .

Вычислим:

По закону Дальтона, давление в сосуде равно сумме парциальных давлений водяного пара и азота:

откуда парциальное давление азота:

При температуре давление насыщенного пара равно атмосферному, поэтому .

Темы кодификатора ЕГЭ : насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее - испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика - это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение , а молекулы, покинувшие жидкость, образуют пар .

Итак, испарение - это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен - это кипение ).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией . Конденсация пара - процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара - увеличиваться; пар достигнет «насыщения».

Насыщенный пар - это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным .

Давление и плотность насыщенного пара обозначаются и . Очевидно, и - это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного - тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева - Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

(1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма .

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость - до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие - т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма .

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1) .

Как видим, закон Бойля - Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется . Это и не удивительно - ведь он получен из уравнения Менделеева - Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры .

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие - но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону .

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2 ). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще - ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Абсолютная влажность - это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха - это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1) , напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр . Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.