710 пусть v объем шара радиуса. Разработка простейшей программы расчета площади круга и объема шара как Windows-приложения

Радиус шара (обозначается как r или R) – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Как и в случае круга, радиус шара является важной величиной, которая необходима для нахождения диаметра шара, длины окружности, площади поверхности и/или объема. Но радиус шара можно найти и по данному значению диаметра, длины окружности и другой величины. Используйте формулу, в которую можно подставить данные значения.

Шаги

Формулы для вычисления радиуса

    Вычислите радиус по диаметру. Радиус равен половине диаметра, поэтому используйте формулу г = D/2 . Эта такая же формула, которая используется при вычислении радиуса и диаметра круга.

    • Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см . Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).
  1. Вычислите радиус по длине окружности. Используйте формулу: r = C/2π . Так как длина окружности C = πD = 2πr, то разделите формулу для вычисления длины окружности на 2π и получите формулу для нахождения радиуса.

    • Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см .
    • Такая же формула используется при вычислении радиуса и длины окружности круга.
  2. Вычислите радиус по объему шара. Используйте формулу: r = ((V/π)(3/4)) 1/3 . Объем шара вычисляется по формуле V = (4/3)πr 3 . Обособив r на одной стороне уравнения, вы получите формулу ((V/π)(3/4)) 3 = г, то есть для вычисления радиуса объем шара делим на π, результат умножаем на 3/4, а полученный результат возводим в степень 1/3 (или извлекаем кубический корень).

    • Например, дан шар с объемом 100 см 3 . Радиус этого шара вычисляется так:
      • ((V/π)(3/4)) 1/3 = r
      • ((100/π)(3/4)) 1/3 = r
      • ((31,83)(3/4)) 1/3 = r
      • (23,87) 1/3 = r
      • 2,88 см = r
  3. Вычислите радиус по площади поверхности. Используйте формулу: г = √(A/(4 π)) . Площадь поверхности шара вычисляется по формуле А = 4πr 2 . Обособив r на одной стороне уравнения, вы получите формулу √(A/(4π)) = r, то есть, чтобы вычислить радиус, нужно извлечь квадратный корень из площади поверхности, деленной на 4π. Вместо того чтобы извлекать корень, выражение (A/(4π)) можно возвести в степень 1/2.

    • Например, дан шар с площадью поверхности 1200 см 3 . Радиус этого шара вычисляется так:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95,49) = r
      • 9,77 см = r

    Определение основных величин

    1. Запомните основные величины, которые имеют отношение к вычислению радиуса шара. Радиус шара – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Радиус шара можно вычислить по данным значениям диаметра, длины окружности, объема или площади поверхности.

      Воспользуйтесь значениями данных величин, чтобы найти радиус. Радиус можно вычислить по данным значениям диаметра, длины окружности, объема и площади поверхности. Более того, указанные величины можно найти по данному значению радиуса. Чтобы вычислить радиус, просто преобразуйте формулы для нахождения указанных величин. Ниже приведены формулы (в которых присутствует радиус) для вычисления диаметра, длины окружности, объема и площади поверхности.

    Нахождение радиуса по расстоянию между двумя точками

    1. Найдите координаты (х,у,z) центра шара. Радиус шара равен расстоянию между его центром и любой точкой, лежащей на поверхности шара. Если известны координаты центра шара и любой точки, лежащей на его поверхности, можно найти радиус шара по специальной формуле, вычислив расстояние между двумя точками. Сначала найдите координаты центра шара. Имейте в виду, что так как шар является трехмерной фигурой, то точка будет иметь три координаты (х,у,z), а не две (х,у).

      • Рассмотрим пример. Дан шар с центром с координатами (4,-1,12) . Воспользуйтесь этими координатами, чтобы найти радиус шара.
    2. Найдите координаты точки, лежащей на поверхности шара. Теперь нужно найти координаты (х,у,z) любой точки, лежащей на поверхности шара. Так как все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара, для вычисления радиуса шара можно выбрать любую точку.

      • В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0) . Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.
    3. Вычислите радиус по формуле d = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2). Узнав координаты центра шара и точки, лежащей на его поверхности, вы можете найти расстояние между ними, которое равно радиусу шара. Расстояние между двумя точками вычисляется по формуле d = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2), где d – расстояние между точками, (x 1 ,y 1 ,z 1) – координаты центра шара, (x 2 ,y 2 ,z 2) – координаты точки, лежащей на поверхности шара.

      • В рассматриваемом примере вместо (x 1 ,y 1 ,z 1) подставьте (4,-1,12), а вместо (x 2 ,y 2 ,z 2) подставьте (3,3,0):
        • d = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2)
        • d = √((3 - 4) 2 + (3 - -1) 2 + (0 - 12) 2)
        • d = √((-1) 2 + (4) 2 + (-12) 2)
        • d = √(1 + 16 + 144)
        • d = √(161)
        • d = 12,69 . Это искомый радиус шара.
    4. Имейте в виду, что в общих случаях r = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2). Все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара. Если в формуле для нахождения расстояния между двумя точками "d" заменить на "r", получится формула для вычисления радиуса шара по известным координатам (x 1 ,y 1 ,z 1) центра шара и координатам (x 2 ,y 2 ,z 2) любой точки, лежащей на поверхности шара.

      • Возведите обе стороны этого уравнения в квадрат, и получите r 2 = (x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2 . Отметьте, что это уравнение соответствует уравнению сферы r 2 = x 2 + y 2 + z 2 с центром с координатами (0,0,0).
    • Не забывайте про порядок выполнения математических операций. Если вы не помните этот порядок, а ваш калькулятор умеет работать с круглыми скобками, пользуйтесь ими.
    • В этой статье рассказывается о вычислении радиуса шара. Но если вы испытываете затруднения с изучением геометрии, лучше начать с вычисления величин, связанных с шаром, через известное значение радиуса.
    • π (Пи) – это буква греческого алфавита, которая обозначает постоянную, равную отношению диаметра круга к длине его окружности. Число Пи является иррациональным числом, которое не записывается как отношение действительных чисел. Существует множество приближений, например, отношение 333/106 позволит найти число Пи с точностью до четырех цифр после десятичной запятой. Как правило, пользуются приблизительным значением числа Пи, которое равно 3,14.

Объем шара Теорема Объем шара радиуса R равен 4/3 πR 3 R x B O C M A Доказательство Рассмотрим шар радиуса R с центром в точке O и выберем ось Ox произвольным образом. Сечение шара плоскостью, перпендикулярной к оси Ox и проходящей через точку M этой оси, является кругом с центром в точке M. Обозначим радиус этого круга через R, а его площадь через S(x), где x-абсцисса точки М. Выразим S(x) через х и R. Из прямоугольного треугольника ОМС находим R = OC²-OM² = R²-x² Так как S (x) = п r ², то S (x) = п (R²-x²). Заметим, что эта формула верна для любого положения точки М на диаметре АВ, т.е., для всех х, удовлетворяющих условию –R x R. Применяя основную формулу для вычисления объёмов тел при a = –R, b = R, получаем: R R R R R V = п (R²-x²) dx = п R² dxп - x²dx = п R²x - пx³/3 = 4/3 пR³. -R -R -R -R -R Теорема доказана x


Объёмы шарового сегмента, шарового слоя и шарового сектора А) Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью. На рисунке 1 секущая плоскость α, проходящая ч-з т.В, разделяет шар на 2 шаровых сегмента. Круг, получившийся в сечении, называется основанием каждого из этих сегментов, а длины отрезков АВ и ВС диаметра АС, перпендикулярного к секу- щей плоскости, называются высотами сегментов. х АВ=h α О А С Шаровой сегмент Рис.1


Если радиус шара равен R, а высота сегмента равна h (на рис.1 h =АВ), то объём V шарового сегмента вычисляется по формуле: V = пh² (R-1/3h). · Б) Шаровым слоем называется часть шара, заключённая между 2-мя параллельными секущими плоскостями (рис.2). Круги, получившиеся в сечении шара этими плоскостями, называются основаниями шарового слоя, а расстояние между плоскостями – высотой шарового слоя. Объём шарового слоя можно вычислить как разность объёмов 2-ух шаровых сегментов. А В С х Рис.2 Шаровой слой


В) Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 90 градусов, вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов (рис.3). Шаровой сектор состоит из шарового сегмента и конуса. Если радиус шара равен R, а высота шарового сегмента равна h, то объём V шарового сектора вычисляется по формуле: V = 2/3 пR² h h O R r Рис.3 Шаровой сектор


Площадь сферы В отличие от боковой поверхности цилиндра или конуса сферу нельзя развернуть на плоскость, и, следовательно, для неё не пригоден способ определения и вычисления площади поверхности с помощью развёртки. Для определения площади сферы воспользуемся понятием описанного многогранника. Пусть описанный около сферы многогранник имеет n граней. Будем неограниченно увеличивать n таким образом, чтобы наибольший размер каждой грани описанных многогранников стремился к нулю. За площадь сферы примем предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани => ">

где V – искомый объем шара , π – 3,14 , R – радиус.

Таким образом, при радиусе 10 сантиметров объем шара равен:

V 3,14 × 10 3 = 4186,7

кубических сантиметров.

В геометрии шар определяется как некое тело, представляющее собой совокупность всех точек пространства, которые располагаются от центра на расстоянии, не более заданного, называемого радиусом шара. Поверхность шара именуется сферой, а сам он образуется путем вращения полукруга около его диаметра, остающегося неподвижным.

С этим геометрическим телом очень часто сталкиваются инженеры-конструкторы и архитекторы, которым часто приходится вычислять объем шара . Скажем, в конструкции передней подвески подавляющего большинства современных автомобилей используются так называемые шаровые опоры, в которых, как нетрудно догадаться из самого названия, одними из основных элементов являются именно шары. С их помощью происходит соединение ступиц управляемых колес и рычагов. От того, насколько правильно будет вычислен их объем, во многом зависит не только долговечность этих узлов и правильность их работы, но и безопасность движения.

В технике широчайшее распространение получили такие детали, как шариковые подшипники, с помощью которых происходит крепление осей в неподвижных частях различных узлов и агрегатов и обеспечивается их вращение. Следует заметить, что при их расчете конструкторам требуется найти объем шара (а точнее – шаров, помещаемых в обойму) с высокой степенью точности. Что касается изготовления металлических шариков для подшипников, то они производятся из металлической проволоки при помощи сложного технологического процесса, включающего в себя стадии формовки, закалки, грубой шлифовки, чистовой притирки и очистки. Кстати говоря, те шарики, которые входят в конструкцию всех шариковых ручек, изготавливаются по точно такой же технологии.

Достаточно часто шары используются и в архитектуре, причем там они чаще всего являются декоративными элементами зданий и других сооружений. В большинстве случаев они изготавливаются из гранита, что зачастую требует больших затрат ручного труда. Конечно, соблюдать столь высокую точность изготовления этих шаров, как тех, которые применяются в различных агрегатах и механизмах, не требуется.

Без шаров немыслима такая интересная и популярная игра, как бильярд. Для их производства используются различные материалы (кость, камень, металл, пластмассы) и используются различные технологические процессы. Одним из основных требований, предъявляемых к бильярдным шарам, является их высокая прочность и способность выдерживать высокие механические нагрузки (прежде всего, ударные). Кроме того, их поверхность должна представлять собой точную сферу для того, чтобы обеспечивалось плавное и ровное качение по поверхности бильярдных столов.

Наконец, без таких геометрических тел, как шары, не обходится ни одна новогодняя или рождественская елка. Изготавливаются эти украшения в большинстве случаев из стекла методом выдувания, и при их производстве наибольшее внимание уделяется не точности размеров, а эстетичности изделий. Технологический процесс при этом практически полностью автоматизирован и вручную елочные шары только упаковываются.


Формулы

ОБЪЕМ ЦИЛИНДРА

ОБЪЕМ КОНУСА

ОБЪЕМ УСЕЧЕННОГО КОНУСА

ОБЪЕМ ШАРА

V=1/3∏H(R2+r2+Rr)

V=4/3 ∙ ∏R 3


Формулы для вычисления объема: шара, шарового сектора, шарового слоя, шарового сектора и площади сферы

  • Площадь сферы равна:

S = 4 π R 2 ,

где R – это радиус сферы

  • Объем шара равен:

V = 1 π R 3 = 4/3 π R 3

где R – это радиус шара

  • Объем шарового сегмента равен:

V = π h 2 (R - h) ,

где R – это радиус шара, а h – это высота сегмента

  • Объем шарового слоя равен:

V = V 1 – V 2 ,

где V 1 – это объем одного шарового сегмента, а V 2 – это объем второго шарового сегмента

  • Объем шарового сектора равен:

V = π R 2 h ,

где R – это радиус шара, а h – это высота шарового сегмента


Теоретический диктант

Вариант 1

Вписать в текст недостающие по смыслу слова .

  • Всякое сечение шара плоскостью есть круг. Центр этого круга есть …………………… перпендикуляра, опущенного из центра шара на секущую плоскость.

2. Центр шара является его ………………….……. симметрии.

3. Осевое сечение шара есть ………………………….

4. Линии пересечения двух сфер есть…………………

5. Плоскости, равноудаленные от центра, пересекают шар по ……………...кругам.

6. Около любой правильной пирамиды можно описать сферу, причем ее центр лежит на ……………….. пирамиды.

основание

центром

круг

окружность

равным

высоте


Теоретический диктант

Вариант 2

плоскостью

окружность

высоте

перпендикулярен

касания

высоте


Карточка №1

Плоскость перпендикулярная диаметру шара, делит его части 3см и 9см. Найдите объем шара?

288 П см³

Карточка №2

Два равных шара расположены так, что центр одного лежит на поверхности другого. Как относится объем общей части шаров к объему целого шара?

5 / 16

Карточка №3

Какую часть объема шара составляет объем шарового сегмента, у которого высота равна 0,1 диаметра шара, равного 20см?


Задача №1

Объем шара радиуса R равен V . Найдите: объем шара радиуса: а) 2 R б) 0,5 R

Задача №2

Чему равен объем шарового сектора, если радиус окружности основания равен 60см, а радиус шара-75см.


БЫСТРО И КРАТКО НАПИШИТЕ ОТВЕТЫ НА ВОПРОСЫ:

  • Сколько сфер можно провести:

а) через одну и ту же окружность;

б) через окружность и точку, не принадлежащую её плоскости?

2. Сколько сфер можно провести через четыре точки, являющиеся вершинами:

а) квадрата;

б) равнобедренной трапеции;

3. Верно ли, что через любые две точки сферы проходит один большой круг?

4. Через какие две точки сферы можно провести несколько окружностей большого круга?

5. Как должны быть расположены две равные окружности, чтобы через них могла пройти сфера того же радиуса?

бесконечно

одну

бесконечно

бесконечно

Ни одной

Диаметрально противоположные

Иметь общий центр


Теоретический диктант

Вариант 2

Вписать в текст недостающие по смыслу слова.

  • Любая диаметральная плоскость шара является его ………………… симметрии.

2. Осевое сечение сферы есть………………..

3. Центр шара, описанного около правильной пирамиды, лежит на …………………. пирамиды.

4. Радиус сферы, проведенный в точку касания сферы и плоскости ………………...……………………..к касательной плоскости.

5. Касательная плоскость имеет с шаром только одну общую точку …………………….

6. В любую правильную пирамиду можно вписать сферу, причем ее центр лежит на ……………… .…….пирамиды.

плоскостью

окружность

высоте

перпендикулярен

касания

высоте


Ур.52

Уровень1 Вариант 1

1.На расстоянии 12 см от центра шара проведено сечение, радиус которого равен 9см. Найдите объем шара и площадь его поверхности.

2. Сфера радиуса 3см имеет цент в точке О (4;-2;1). Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно плоскости ОХУ. Найдите объем шара, ограниченного данной сферой.

Уровень 1 Вариант 2

1.Через точку, лежащую на сфере, проведено сечение радиуса 3см под углом 60° к радиусу сферы, проведенному в данную точку. Найдите площадь сферы и объем шара.

2. Сфера радиуса 3 имеет центр в точке О (-2;5;3). Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно плоскости ОХ Z . Найдите площадь данной сферы.


Тестовая самостоятельная работа ур.52

Уровень2 Вариант 1

1.На расстоянии 2√7см от центра шара проведено сечение. Хорда этого сечения, равна 4см, стягивая угол 90°. Найдите объем шара и площадь его поверхности.

2. Сфера с центром в точке О (2;1;-2) проходит через начало координат. Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно оси абцисс. Найдите объем шара, ограниченного полученной сферой.

Уровень2 Вариант 2

1.На расстоянии 4см от центра шара проведено сечении. Хорда, удаленная от центра этого сечения на √5см, стягивая угол 120°. Найдите объем шара и площадь его поверхности.

2. Сфера с центром в точке О (-1;-2;2) проходит через начало координат. Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно плоскости Z =1. Найдите площадь сферы.


Самостоятельная работа

Вариант 2

  • Диаметр шара ½ дм. Вычислите объём шара и площадь сферы.

2. Волейбольный мяч имеет радиус 12 дм. Какой объём воздуха содержится в мяче?

Вариант 1

  • Радиус шара ¾ дм. Вычислите объём шара и площадь сферы.

2. Футбольный мяч имеет диаметр 30 дм. Какой объём воздуха содержится в мяче?


Самостоятельная работа

Вариант 1

Вариант 2

  • Решить задачи :
  • Записать формулы площади сферы, объема шара и его частей.
  • Решить задачи :

1. Объем шара равен 36Псм³. Найдите площадь сферы, ограничивающей данный шар.

2. В шаре радиуса 15см проведено сечение, площадь которого равна 81см². Найдите объем меньшего шарового сегмента, отсекаемого плоскостью сечения.

3. Найдите объем шарового сектора, если радиус шара равен 6см, а высота соответствующего сегмента составляет шестую часть диаметра шара.

1. Площадь поверхности шара равна 144П см². Найдите объем данного шара.

2. На расстоянии 9м от центра шара проведено сечение, длина окружности которого равна 24П см. Найдите объем меньшего шарового сегмента, отсекаемого плоскостью сечения.

3. Найдите объем шарового сектора, если радиус шара равен 6см, а высота конуса, образующего сектор, составляет треть диаметра шара.


113,04=4πR³/3 = R³=27, R=3. S=4πR², S=4π3²=36π. Ответ: 3,36π. Дано: шар; S=64π см² Найти: R, V Решение: S=4πR², 64π=4πR², = R=4 V=4πR³/3, V=4π4³/3=256π/3. Ответ: 4,256π/3. 3. Дано: шаровой сегмент, r осн.=60 см, Rшара=75 см. Найти: Vшарового сегмента. Решение: V=πh²(R-⅓h) О ₁ С=√R²-r²=√75²-60²=45 h= ОС-ОС ₁ =75-45=30 V=π·30²·(75-⅓·30)=58500π. Ответ: 58500π. " width="640"

Решение задач с самопроверкой.

Дано: шар; V=113,04 см³,

Найти: R, S.

Решение: V=4πR³/3, = 113,04=4πR³/3 = R³=27, R=3.

S=4πR², S=4π3²=36π.

Ответ: 3,36π.

Дано: шар; S=64π см²

Найти: R, V

Решение: S=4πR², 64π=4πR², = R=4

V=4πR³/3, V=4π4³/3=256π/3.

Ответ: 4,256π/3.

3. Дано: шаровой сегмент, r осн.=60 см, Rшара=75 см.

Найти: Vшарового сегмента.

Решение: V=πh²(R-⅓h) О ₁ С=√R²-r²=√75²-60²=45

h= ОС-ОС ₁ =75-45=30 V=π·30²·(75-⅓·30)=58500π.

Ответ: 58500π.


Рефлексия

Отрази свое настроение смайликом.

Возьмите смайлик соответствующий Вашему настроению на конец урока и, уходя прикрепите его на доске с магнитной основой.


Домашнее задание

  • Домашнее задание
  • Повторить формулы объемов шара, шарового сегмента, шарового слоя, шарового сектора. №723, №724, №755

Литература и интернет ресурсы

Учебник по геометрии 10-11 класс Атанасян Л.С., 2008 год

Гаврилова Н.Ф. Поурочные разработки по геометрии 11 класс