Tabel periodic detaliat. Istoria creației și dezvoltării

Există multe secvențe care se repetă în natură:

  • anotimpuri;
  • Partea zilei;
  • zilele săptămânii…

La mijlocul secolului al XIX-lea, D.I. Mendeleev a observat că proprietățile chimice ale elementelor au și o anumită secvență (se spun că această idee i-a venit în vis). Rezultatul viselor minunate ale omului de știință a fost Tabelul periodic al elementelor chimice, în care D.I. Mendeleev a aranjat elementele chimice în ordinea creșterii masei atomice. În tabelul modern, elementele chimice sunt aranjate în ordinea crescătoare a numărului atomic al elementului (numărul de protoni din nucleul unui atom).

Numărul atomic este afișat deasupra simbolului unui element chimic, sub simbol este masa atomică a acestuia (suma protonilor și neutronilor). Vă rugăm să rețineți că masa atomică a unor elemente nu este un număr întreg! Amintiți-vă de izotopi! Masa atomică este media ponderată a tuturor izotopilor unui element găsiți în natură în condiții naturale.

Sub tabel sunt lantanide și actinide.

Metale, nemetale, metaloizi


Situat în Tabelul Periodic în stânga liniei diagonale în trepte care începe cu Bor (B) și se termină cu poloniu (Po) (excepțiile sunt germaniul (Ge) și antimoniul (Sb). Este ușor de observat că metalele ocupă cele mai multe ale tabelului periodic.Proprietățile de bază ale metalelor: tari (cu excepția mercurului); lucioase; buni conductori electrici și termici; plastic; maleabile; ceda ușor electronii.

Elementele situate în dreapta diagonalei trepte B-Po sunt numite nemetale. Proprietățile nemetalelor sunt exact opuse celor ale metalelor: conductoare slabe de căldură și electricitate; fragil; nemaleabil; non-plastic; acceptă de obicei electroni.

Metaloizi

Între metale și nemetale există semimetale(metaloizi). Ele se caracterizează prin proprietățile atât ale metalelor, cât și ale nemetalelor. Semimetalele și-au găsit aplicația principală în industrie în producția de semiconductori, fără de care nu se poate concepe un singur microcircuit sau microprocesor modern.

Perioade și grupuri

După cum am menționat mai sus, tabelul periodic este format din șapte perioade. În fiecare perioadă, numerele atomice ale elementelor cresc de la stânga la dreapta.

Proprietățile elementelor se modifică secvențial în perioade: astfel sodiul (Na) și magneziul (Mg), situate la începutul celei de-a treia perioade, renunță la electroni (Na cedează un electron: 1s 2 2s 2 2p 6 3s 1 ; Mg dă sus doi electroni: 1s 2 2s 2 2p 6 3s 2). Dar clorul (Cl), situat la sfârșitul perioadei, ia un element: 1s 2 2s 2 2p 6 3s 2 3p 5.

În grupuri, dimpotrivă, toate elementele au aceleași proprietăți. De exemplu, în grupul IA(1), toate elementele de la litiu (Li) la franciu (Fr) donează un electron. Și toate elementele grupului VIIA(17) au un singur element.

Unele grupuri sunt atât de importante încât au primit nume speciale. Aceste grupuri sunt discutate mai jos.

Grupa IA(1). Atomii elementelor acestui grup au un singur electron în stratul lor exterior de electroni, așa că renunță ușor la un electron.

Cele mai importante metale alcaline sunt sodiul (Na) și potasiul (K), deoarece joacă un rol important în viața umană și fac parte din săruri.

Configuratii electronice:

  • Li- 1s 2 2s 1 ;
  • N / A- 1s 2 2s 2 2p 6 3s 1 ;
  • K- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Grupa IIA(2). Atomii elementelor acestui grup au doi electroni în stratul lor exterior de electroni, la care renunță și în timpul reacțiilor chimice. Cel mai important element este calciul (Ca) - baza oaselor și a dinților.

Configuratii electronice:

  • Fi- 1s 2 2s 2 ;
  • Mg- 1s 2 2s 2 2p 6 3s 2 ;
  • Ca- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Grupa VIIA(17). Atomii elementelor acestui grup primesc de obicei câte un electron, deoarece Există cinci elemente pe stratul electronic exterior și doar un electron lipsește din „setul complet”.

Cele mai cunoscute elemente din această grupă: clorul (Cl) - face parte din sare și înălbitor; Iodul (I) este un element care joacă un rol important în activitatea glandei tiroide umane.

Configuratie electronica:

  • F- 1s 2 2s 2 2p 5 ;
  • Cl- 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Grupa VIII(18). Atomii elementelor acestui grup au un strat de electroni exterior complet „complet”. Prin urmare, ei „nu” trebuie să accepte electroni. Și ei „nu vor” să le ofere. Prin urmare, elementele acestui grup sunt foarte „reticente” în a intra în reacții chimice. Multă vreme s-a crezut că nu reacționează deloc (de unde și numele „inert”, adică „inactiv”). Dar chimistul Neil Bartlett a descoperit că unele dintre aceste gaze pot reacţiona în continuare cu alte elemente în anumite condiţii.

Configuratii electronice:

  • Ne- 1s 2 2s 2 2p 6 ;
  • Ar- 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Elemente de valență în grupuri

Este ușor de observat că în cadrul fiecărui grup elementele sunt similare între ele în electronii de valență (electroni ai orbitalilor s și p situati la nivelul energetic exterior).

Metalele alcaline au 1 electron de valență:

  • Li- 1s 2 2s 1 ;
  • N / A- 1s 2 2s 2 2p 6 3s 1 ;
  • K- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Metalele alcalino-pământoase au 2 electroni de valență:

  • Fi- 1s 2 2s 2 ;
  • Mg- 1s 2 2s 2 2p 6 3s 2 ;
  • Ca- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Halogenii au 7 electroni de valență:

  • F- 1s 2 2s 2 2p 5 ;
  • Cl- 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Gazele inerte au 8 electroni de valență:

  • Ne- 1s 2 2s 2 2p 6 ;
  • Ar- 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Pentru mai multe informații, consultați articolul Valența și tabelul configurațiilor electronice ale atomilor elementelor chimice în funcție de perioadă.

Să ne îndreptăm acum atenția asupra elementelor situate în grupuri cu simboluri ÎN. Ele sunt situate în centrul tabelului periodic și sunt numite metale de tranziție.

O caracteristică distinctivă a acestor elemente este prezența în atomii a electronilor care se umplu d-orbitali:

  1. Sc- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ;
  2. Ti- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Separat de masa principală sunt amplasate lantanideȘi actinide- acestea sunt așa-numitele metale de tranziție interne. În atomii acestor elemente, electronii se umplu orbitali f:

  1. Ce- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 1 5d 1 6s 2 ;
  2. Th- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 14 5d 10 6s 2 6p 6 6d 2 7s 2
Eter în tabelul periodic

Eterul lumii este substanța FIECĂRUI element chimic și, prin urmare, FIECĂRĂ substanță; este Materia Absolută adevărată ca Esență care formează elementul Universal.Eterul mondial este sursa și coroana întregului Tabel periodic autentic, începutul și sfârșitul său - alfa și omega din Tabelul periodic al elementelor lui Dmitri Ivanovici Mendeleev.


În filosofia antică, eterul (aithér-greacă), alături de pământ, apă, aer și foc, este unul dintre cele cinci elemente ale ființei (după Aristotel) - a cincea esență (quinta essentia - latină), înțeleasă ca cea mai fină materie atotpătrunzătoare. La sfârșitul secolului al XIX-lea, ipoteza unui eter mondial (ME) care umple tot spațiul lumii a fost răspândită pe scară largă în cercurile științifice. A fost înțeles ca un lichid fără greutate și elastic care pătrunde în toate corpurile. Ei au încercat să explice multe fenomene și proprietăți fizice prin existența eterului.


Prefaţă.
Mendeleev a avut două descoperiri științifice fundamentale:
1 - Descoperirea legii periodice în substanța chimiei,
2 - Descoperirea relației dintre substanța chimiei și substanța eterului și anume: particulele de eter formează molecule, nuclei, electroni etc., dar nu participă la reacții chimice.
Eterul este particule de materie ~ 10-100 de metri în dimensiune (de fapt, ele sunt „primele cărămizi” ale materiei).

Date. Eterul a fost în tabelul periodic original. Celula pentru Eter a fost situată în grupul zero cu gaze inerte și în rândul zero ca principal factor de formare a sistemului pentru construirea Sistemului de elemente chimice. După moartea lui Mendeleev, tabelul a fost distorsionat prin eliminarea Eterului din el și eliminarea grupului zero, ascunzând astfel descoperirea fundamentală a semnificației conceptuale.
În tabelele Ether moderne: 1 - nu este vizibil, 2 - nu poate fi ghicit (din cauza absenței unui grup zero).

Un astfel de fals intenționat împiedică dezvoltarea progresului civilizației.
Dezastrele provocate de om (de exemplu, Cernobîl și Fukushima) ar fi fost evitate dacă s-ar fi investit în timp util resurse adecvate în dezvoltarea unui veritabil tabel periodic. Ascunderea cunoștințelor conceptuale are loc la nivel global pentru a „coborî” civilizația.

Rezultat. În școli și universități predau un tabel periodic decupat.
Evaluarea situației. Tabelul periodic fără eter este același cu umanitatea fără copii - poți trăi, dar nu va exista dezvoltare și nici viitor.
Rezumat. Dacă dușmanii umanității ascund cunoștințele, atunci sarcina noastră este să dezvăluim această cunoaștere.
Concluzie. Vechiul tabel periodic are mai puține elemente și mai multă previziune decât cel modern.
Concluzie. Un nou nivel este posibil doar dacă starea informațională a societății se schimbă.

Concluzie. Revenirea la adevăratul tabel periodic nu mai este o întrebare științifică, ci o problemă politică.

Care a fost principala semnificație politică a învățăturii lui Einstein? A constat în întreruperea accesului omenirii la sursele naturale inepuizabile de energie prin orice mijloace, care au fost deschise prin studiul proprietăților eterului mondial. Dacă reușește pe această cale, oligarhia financiară globală și-ar pierde puterea în această lume, mai ales în lumina retrospectivei acelor ani: Rockefeller au făcut o avere de neimaginat, depășind bugetul Statelor Unite, pe speculația petrolului și pierderea. a rolului petrolului pe care l-a ocupat „aurul negru” în această lume – rolul sânului vital al economiei globale – nu i-a inspirat.

Acest lucru nu a inspirat alți oligarhi - regii cărbunelui și oțelului. Astfel, magnatul financiar Morgan a încetat imediat să finanțeze experimentele lui Nikola Tesla când s-a apropiat de transferul de energie fără fir și de a extrage energie „din neant” - din eterul lumii. După aceea, nimeni nu a oferit asistență financiară proprietarului unui număr imens de soluții tehnice puse în practică - solidaritatea magnaților financiari este ca cea a hoților în drept și un nas fenomenal de unde vine pericolul. Acesta este motivul pentru care împotriva umanității și a fost efectuat un sabotaj sub numele de „Teoria specială a relativității”.

Una dintre primele lovituri a venit la tabelul lui Dmitri Mendeleev, în care eterul era primul număr; gândurile despre eter au dat naștere strălucirii intuiții a lui Mendeleev - tabelul său periodic al elementelor.


Capitolul din articol: V.G. Rodionov. Locul și rolul eterului mondial în adevărata masă a D.I. Mendeleev

6. Argumentum ad rem

Ceea ce este prezentat acum în școli și universități sub titlul „Tabel periodic al elementelor chimice D.I. Mendeleev,” este o falsitate totală.

Ultima dată când Tabelul periodic real a fost publicat într-o formă nedistorsionată a fost în 1906 la Sankt Petersburg (manual „Fundamentals of Chemistry”, ediția a VIII-a). Și numai după 96 de ani de uitare, Tabelul periodic original se ridică pentru prima dată din cenușă datorită publicării unei dizertații în revista ZhRFM a Societății Ruse de Fizică.

După moartea subită a lui D.I. Mendeleev și decesul colegilor săi fideli științifici din Societatea Fizico-Chimică Rusă, fiul prietenului și colegului lui D.I. Mendeleev în cadrul Societății, Boris Nikolaevich Menshutkin, a ridicat pentru prima dată mâna către creația nemuritoare a lui Mendeleev. Desigur, Menshutkin nu a acționat singur - el a executat doar ordinul. La urma urmei, noua paradigmă a relativismului a necesitat abandonarea ideii de eter mondial; și de aceea această cerință a fost ridicată la rangul de dogmă, iar opera lui D.I. Mendeleev a fost falsificată.

Principala distorsiune a Tabelului este transferul „grupului zero” al Tabelului la capătul său, la dreapta, și introducerea așa-numitului. „perioade”. Subliniem că o astfel de manipulare (doar la prima vedere, inofensivă) este explicabilă logic doar ca o eliminare conștientă a verigii metodologice principale din descoperirea lui Mendeleev: sistemul periodic de elemente la începutul său, sursa, adică. în colțul din stânga sus al tabelului, trebuie să aibă un grup zero și un rând zero, unde se află elementul „X” (conform lui Mendeleev - „Newtoniu”), - i.e. difuzare mondială.
Mai mult, fiind singurul element formator de sistem al întregului Tabel al Elementelor Derivate, acest element „X” este argumentul întregului Tabel Periodic. Transferul grupului zero al Tabelului până la capătul său distruge însăși ideea acestui principiu fundamental al întregului sistem de elemente conform lui Mendeleev.

Pentru a confirma cele de mai sus, îi vom acorda cuvântul însuși D.I. Mendeleev.

„... Dacă analogii argonului nu dau deloc compuși, atunci este evident că este imposibil să se includă oricare dintre grupurile de elemente cunoscute anterior și pentru ei ar trebui să se deschidă un grup special zero... Această poziție a analogii de argon în grupul zero este o consecință strict logică a înțelegerii legii periodice și, prin urmare (plasarea în grupul VIII este clar incorectă) a fost acceptată nu numai de mine, ci și de Braizner, Piccini și alții... Acum, când a devenit dincolo de orice îndoială că înaintea acelei grupe I, în care trebuie plasat hidrogenul, există un grup zero, ai cărui reprezentanți au greutăți atomice mai mici decât cele ale elementelor din grupa I, mi se pare imposibil de negat existența. de elemente mai ușoare decât hidrogenul.


Dintre acestea, să acordăm mai întâi atenție elementului din primul rând al primului grup. O notăm cu „y”. Va avea, evident, proprietățile fundamentale ale gazelor argon... „Coroniu”, cu o densitate de aproximativ 0,2 față de hidrogen; și nu poate fi în niciun fel eterul lumii.

Acest element „y”, totuși, este necesar pentru a ne apropia mental de cel mai important și, prin urmare, cel mai rapid element „x”, care, după înțelegerea mea, poate fi considerat eter. Aș dori să-l numesc provizoriu „Newtoniu” - în onoarea nemuritorului Newton... Problema gravitației și problema oricărei energii (!!! - V. Rodionov) nu poate fi imaginată ca fiind rezolvată cu adevărat fără o înțelegere reală a eterului ca mediu mondial care transmite energie la distanţe. O înțelegere reală a eterului nu poate fi realizată ignorând chimia lui și neconsiderându-l o substanță elementară; substanțele elementare sunt acum de neconceput fără subordonarea lor legii periodice” („An Attempt at a Chemical Understanding of the World Ether.” 1905, p. 27).

„Aceste elemente, în funcție de mărimea greutăților lor atomice, au ocupat un loc precis între halogenuri și metale alcaline, așa cum a arătat Ramsay în 1900. Din aceste elemente este necesar să se formeze un grup zero special, care a fost recunoscut pentru prima dată de Errere în Belgia în 1900. Consider că este util să adaug aici că, judecând direct după incapacitatea de a combina elementele grupului zero, analogii argonului ar trebui plasați înaintea elementelor grupului 1 și, în spiritul sistemului periodic, să ne așteptăm la o greutate atomică mai mică decât pentru metale alcaline.

Este exact ceea ce s-a dovedit a fi. Și dacă da, atunci această împrejurare, pe de o parte, servește ca confirmare a corectitudinii principiilor periodice și, pe de altă parte, arată în mod clar relația analogilor de argon cu alte elemente cunoscute anterior. Ca urmare, este posibil să se aplice principiile analizate chiar mai pe scară largă decât înainte și să se aștepte elemente din seria zero cu greutăți atomice mult mai mici decât cele ale hidrogenului.

Astfel, se poate arăta că în primul rând, mai întâi înaintea hidrogenului, există un element al grupului zero cu greutatea atomică de 0,4 (poate că acesta este coronium lui Yong), iar în rândul zero, în grupul zero, există este un element limitator cu o greutate atomică neglijabil de mică, incapabil de interacțiuni chimice și, ca urmare, posedă o mișcare parțială (gaz) proprie extrem de rapidă.

Aceste proprietăți, probabil, ar trebui atribuite atomilor eterului mondial omniprezent (!!! - V. Rodionov). Am indicat această idee în prefața acestei publicații și într-un articol de jurnal rusesc din 1902...” („Fundamentals of Chemistry.” Ed. VIII, 1906, p. 613 și urm.)

Tabelul periodic real. Ribnikov Iuri Stepanovici.


Fizica interzisă. Teoria eterului

Video complet al prelegerii aici: Falsificarea tabelului periodic

Din comentarii:

Pentru chimie, tabelul periodic modern al elementelor este suficient.

Rolul eterului poate fi util în reacțiile nucleare, dar acest lucru nu este foarte semnificativ.
Ținând cont de influența eterului este cel mai apropiat de fenomenele de dezintegrare a izotopilor. Cu toate acestea, această contabilitate este extrem de complexă și prezența tiparelor nu este acceptată de toți oamenii de știință.

Cea mai simplă dovadă a prezenței eterului: Fenomenul de anihilare a unei perechi pozitron-electron și apariția acestei perechi din vid, precum și imposibilitatea prinderii unui electron în repaus. De asemenea, câmpul electromagnetic și o analogie completă între fotonii în vid și undele sonore - fononi în cristale.

Eterul este materie diferențiată, ca să spunem așa, atomi în stare dezasamblată, sau mai corect, particule elementare din care se formează viitorii atomi. Prin urmare, nu are loc în tabelul periodic, deoarece logica construirii acestui sistem nu implică includerea structurilor neintegrale, care sunt atomii înșiși. În caz contrar, este posibil să găsiți un loc pentru quarci, undeva în prima perioadă minus.
Eterul însuși are o structură mai complexă de manifestare pe mai multe niveluri în existența lumii decât știe știința modernă. De îndată ce va dezvălui primele secrete ale acestui eter evaziv, atunci noi motoare pentru toate tipurile de mașini vor fi inventate pe principii complet noi.
Într-adevăr, Tesla a fost poate singurul care a fost aproape de a rezolva misterul așa-zisului eter, dar a fost împiedicat în mod deliberat să-și realizeze planurile. Așadar, până astăzi, geniul care va continua munca marelui inventator și ne va spune tuturor ce este de fapt misteriosul eter și pe ce piedestal poate fi așezat încă nu s-a născut.

Cum a început totul?

Mulți chimiști renumiți de la începutul secolelor XIX și XX au observat de mult timp că proprietățile fizice și chimice ale multor elemente chimice sunt foarte asemănătoare între ele. De exemplu, potasiul, litiul și sodiul sunt toate metale active care, atunci când reacţionează cu apa, formează hidroxizi activi ai acestor metale; Clorul, Fluorul, Bromul în compușii lor cu hidrogen au prezentat aceeași valență egală cu I și toți acești compuși sunt acizi tari. Din această similitudine, s-a sugerat de multă vreme concluzia că toate elementele chimice cunoscute pot fi combinate în grupuri și astfel încât elementele fiecărui grup să aibă un anumit set de caracteristici fizice și chimice. Cu toate acestea, astfel de grupuri au fost adesea compuse incorect din diferite elemente de către diverși oameni de știință și, pentru o lungă perioadă de timp, mulți au ignorat una dintre principalele caracteristici ale elementelor - masa lor atomică. A fost ignorat deoarece a fost și este diferit pentru diferite elemente, ceea ce înseamnă că nu a putut fi folosit ca parametru pentru combinarea în grupuri. Singura excepție a fost chimistul francez Alexandre Emile Chancourtois, el a încercat să aranjeze toate elementele într-un model tridimensional de-a lungul unui helix, dar munca sa nu a fost recunoscută de comunitatea științifică, iar modelul s-a dovedit a fi voluminos și incomod.

Spre deosebire de mulți oameni de știință, D.I. Mendeleev a luat masa atomică (în acele vremuri încă „greutatea atomică”) ca parametru cheie în clasificarea elementelor. În versiunea sa, Dmitri Ivanovici a aranjat elementele în ordinea crescătoare a greutăților lor atomice și aici a apărut un model care, la anumite intervale de elemente, proprietățile lor se repetă periodic. Adevărat, trebuiau făcute excepții: unele elemente au fost schimbate și nu au corespuns creșterii maselor atomice (de exemplu, teluriu și iod), dar corespundeau proprietăților elementelor. Dezvoltarea ulterioară a științei atomo-moleculare a justificat astfel de progrese și a arătat validitatea acestui aranjament. Puteți citi mai multe despre acest lucru în articolul „Care este descoperirea lui Mendeleev”

După cum putem vedea, aranjarea elementelor în această versiune nu este deloc aceeași cu ceea ce vedem în forma sa modernă. În primul rând, grupurile și perioadele sunt schimbate: grupuri pe orizontală, perioade pe verticală și, în al doilea rând, există cumva prea multe grupuri în el - nouăsprezece, în loc de optsprezece acceptate astăzi.

Cu toate acestea, doar un an mai târziu, în 1870, Mendeleev a format o nouă versiune a tabelului, care este deja mai recunoscută pentru noi: elemente similare sunt aranjate vertical, formând grupuri, iar 6 perioade sunt situate orizontal. Ceea ce este deosebit de demn de remarcat este faptul că atât în ​​prima cât și a doua versiune a tabelului se poate vedea realizări semnificative pe care predecesorii săi nu le-au avut: tabelul a lăsat cu grijă locuri pentru elemente care, în opinia lui Mendeleev, nu erau încă descoperite. Posturile vacante corespunzătoare sunt indicate printr-un semn de întrebare și le puteți vedea în imaginea de mai sus. Ulterior au fost descoperite efectiv elementele corespunzătoare: Galium, Germaniu, Scandiu. Astfel, Dmitri Ivanovici nu numai că a sistematizat elementele în grupuri și perioade, dar a prezis și descoperirea unor elemente noi, încă necunoscute.

Ulterior, după rezolvarea multor mistere presante ale chimiei din acea vreme - descoperirea de noi elemente, izolarea unui grup de gaze nobile împreună cu participarea lui William Ramsay, stabilirea faptului că Didimiul nu este deloc un element independent, dar este un amestec de alte două - din ce în ce mai multe opțiuni de masă noi și noi, uneori chiar având un aspect non-tabular. Dar nu le vom prezenta pe toate aici, ci le vom prezenta doar versiunea finală, care s-a format în timpul vieții marelui om de știință.

Trecerea de la greutățile atomice la sarcina nucleară.

Din păcate, Dmitri Ivanovici nu a trăit pentru a vedea teoria planetară a structurii atomice și nu a văzut triumful experimentelor lui Rutherford, deși cu descoperirile sale a început o nouă eră în dezvoltarea legii periodice și a întregului sistem periodic. Permiteți-mi să vă reamintesc că din experimentele efectuate de Ernest Rutherford, a rezultat că atomii elementelor constau dintr-un nucleu atomic încărcat pozitiv și electroni încărcați negativ care se rotesc în jurul nucleului. După determinarea sarcinilor nucleelor ​​atomice ale tuturor elementelor cunoscute la acel moment, s-a dovedit că în tabelul periodic ele sunt situate în conformitate cu sarcina nucleului. Și legea periodică a căpătat un nou sens, acum a început să sune așa:

„Proprietățile elementelor chimice, precum și formele și proprietățile substanțelor simple și compușilor pe care îi formează, depind periodic de mărimea sarcinilor nucleelor ​​atomilor lor.”

Acum a devenit clar de ce unele elemente mai ușoare au fost plasate de Mendeleev în spatele predecesorilor lor mai grei - ideea este că ele sunt atât de ordonate în ordinea încărcărilor nucleelor ​​lor. De exemplu, telurul este mai greu decât iodul, dar este enumerat mai devreme în tabel, deoarece sarcina nucleului atomului său și numărul de electroni este 52, în timp ce cea a iodului este 53. Puteți să vă uitați la tabel și să vedeți pentru tu.

După descoperirea structurii atomului și a nucleului atomic, tabelul periodic a mai suferit câteva modificări până a ajuns în sfârșit la forma deja familiară nouă de la școală, versiunea cu perioade scurte a tabelului periodic.

În acest tabel suntem deja familiarizați cu totul: 7 perioade, 10 rânduri, subgrupuri secundare și principale. De asemenea, odată cu descoperirea de noi elemente și umplerea tabelului cu ele, a fost necesară plasarea elementelor precum Actinium și Lanthanum pe rânduri separate, toate fiind denumite Actinides și, respectiv, Lantanide. Această versiune a sistemului a existat de foarte mult timp - în comunitatea științifică mondială aproape până la sfârșitul anilor 80, începutul anilor 90 și în țara noastră chiar mai mult - până în anii 10 ai acestui secol.

O versiune modernă a tabelului periodic.

Cu toate acestea, opțiunea prin care am trecut mulți dintre noi la școală se dovedește a fi destul de confuză, iar confuzia se exprimă în împărțirea subgrupurilor în cele principale și secundare, iar amintirea logicii de afișare a proprietăților elementelor devine destul de dificilă. Desigur, în ciuda acestui fapt, mulți au studiat folosind-o, devenind doctori în științe chimice, dar în vremurile moderne a fost înlocuită cu o nouă versiune - cea de lungă perioadă. Menționez că această opțiune specială este aprobată de IUPAC (Uniunea Internațională de Chimie Pură și Aplicată). Să aruncăm o privire.

Opt grupuri au fost înlocuite cu optsprezece, printre care nu mai există nicio diviziune în principale și secundare, iar toate grupurile sunt dictate de locația electronilor în învelișul atomic. În același timp, am scăpat de perioadele cu două rânduri și cu un singur rând; acum toate perioadele conțin un singur rând. De ce este convenabilă această opțiune? Acum periodicitatea proprietăților elementelor este mai clar vizibilă. Numărul grupului, de fapt, indică numărul de electroni la nivelul exterior și, prin urmare, toate subgrupurile principale ale versiunii vechi sunt situate în primul, al doilea și al treisprezecelea până la al optsprezecelea grup, iar toate grupurile „fostelor laterale” sunt situate în mijlocul mesei. Astfel, acum este clar vizibil din tabel că, dacă acesta este primul grup, atunci acestea sunt metale alcaline și nu cupru sau argint pentru dvs. și este clar că toate metalele de tranzit demonstrează în mod clar asemănarea proprietăților lor datorită umpluturii. al subnivelului d, care are un efect mai mic asupra proprietăților externe, precum și lantanidele și actinidele, prezintă proprietăți similare datorită doar subnivelului f diferit. Astfel, întregul tabel este împărțit în următoarele blocuri: bloc s, pe care sunt umpluți electronii s, bloc d, bloc p și bloc f, cu electroni d, p, respectiv f umpluți.

Din păcate, la noi această opțiune a fost inclusă în manualele școlare doar în ultimii 2-3 ani, și chiar și atunci nu în toate. Și degeaba. Cu ce ​​este legat asta? Ei bine, în primul rând, cu vremurile de stagnare din anii 90, când nu era deloc dezvoltare în țară, ca să nu mai vorbim de sectorul educațional, și a fost în anii 90 când comunitatea chimică mondială a trecut la această opțiune. În al doilea rând, cu o ușoară inerție și dificultăți în a percepe totul nou, deoarece profesorii noștri sunt obișnuiți cu versiunea veche, de scurtă durată a tabelului, în ciuda faptului că atunci când studiați chimia este mult mai complex și mai puțin convenabil.

O versiune extinsă a tabelului periodic.

Dar timpul nu stă pe loc și nici știința și tehnologia. Cel de-al 118-lea element al tabelului periodic a fost deja descoperit, ceea ce înseamnă că în curând va trebui să deschidem următoarea, a opta, perioadă a tabelului. În plus, va apărea un nou subnivel de energie: subnivelul g. Elementele sale constitutive vor trebui mutate în jos pe masă, precum lantanidele sau actinidele, sau această masă va trebui extinsă de două ori, astfel încât să nu mai încapă pe o coală A4. Aici voi oferi doar un link către Wikipedia (vezi Tabelul periodic extins) și nu voi repeta din nou descrierea acestei opțiuni. Oricine este interesat poate accesa linkul și se poate cunoaște.

În această versiune, nici elementele f (lantanide și actinide) și nici elementele g („elemente ale viitorului” de la nr. 121-128) nu sunt plasate separat, dar fac tabelul cu 32 de celule mai lat. De asemenea, elementul Heliu este plasat în a doua grupă, deoarece face parte din blocul s.

În general, este puțin probabil ca viitorii chimiști să folosească această opțiune; cel mai probabil, tabelul periodic va fi înlocuit cu una dintre alternativele care sunt deja propuse de oameni de știință curajoși: sistemul Benfey, „Galaxia chimică” a lui Stewart sau o altă opțiune. . Dar acest lucru se va întâmpla numai după ce se ajunge la a doua insulă de stabilitate a elementelor chimice și, cel mai probabil, va fi nevoie de mai mult pentru claritate în fizica nucleară decât în ​​chimie, dar pentru moment, sistemul periodic bun și vechi al lui Dmitri Ivanovici ne va fi suficient. .

Elementul 115 al tabelului periodic, moscoviul, este un element sintetic supergreu cu simbolul Mc și numărul atomic 115. A fost obținut pentru prima dată în 2003 de o echipă comună de oameni de știință ruși și americani de la Institutul Comun de Cercetare Nucleară (JINR) din Dubna. , Rusia. În decembrie 2015, a fost recunoscut ca unul dintre cele patru elemente noi de către Grupul de lucru comun al organizațiilor științifice internaționale IUPAC/IUPAP. Pe 28 noiembrie 2016, a fost numit oficial în onoarea regiunii Moscova, unde se află JINR.

Caracteristică

Elementul 115 al tabelului periodic este o substanță extrem de radioactivă: cel mai stabil izotop cunoscut al său, moscoviul-290, are un timp de înjumătățire de doar 0,8 secunde. Oamenii de știință clasifică moscoviul ca un metal netranzițional, cu o serie de caracteristici similare cu bismutul. În tabelul periodic, aparține elementelor transactinide ale blocului p din a 7-a perioadă și este plasat în grupul 15 ca cel mai greu pnictogen (element subgrup de azot), deși nu a fost confirmat să se comporte ca un omolog mai greu al bismutului. .

Conform calculelor, elementul are unele proprietăți asemănătoare omologilor mai ușoare: azot, fosfor, arsen, antimoniu și bismut. În același timp, demonstrează câteva diferențe semnificative față de acestea. Până în prezent, au fost sintetizați aproximativ 100 de atomi de moscoviu, care au numere de masă de la 287 la 290.

Proprietăți fizice

Electronii de valență ai elementului 115 din tabelul periodic, moscoviul, sunt împărțiți în trei subcopii: 7s (doi electroni), 7p 1/2 (doi electroni) și 7p 3/2 (un electron). Primele două dintre ele sunt stabilizate relativistic și, prin urmare, se comportă ca gazele nobile, în timp ce ultimele sunt destabilizate relativistic și pot participa cu ușurință la interacțiuni chimice. Astfel, potențialul de ionizare primară al moscoviului ar trebui să fie de aproximativ 5,58 eV. Conform calculelor, moscoviul ar trebui să fie un metal dens datorită greutății sale atomice mari, cu o densitate de aproximativ 13,5 g/cm 3 .

Caracteristici estimate de proiectare:

  • Faza: solida.
  • Punct de topire: 400°C (670°K, 750°F).
  • Punct de fierbere: 1100°C (1400°K, 2000°F).
  • Căldura specifică de fuziune: 5,90-5,98 kJ/mol.
  • Căldura specifică de vaporizare și condensare: 138 kJ/mol.

Proprietăți chimice

Elementul 115 al tabelului periodic este al treilea în seria 7p de elemente chimice și este cel mai greu membru al grupului 15 din tabelul periodic, clasându-se sub bismut. Interacțiunea chimică a moscoviului într-o soluție apoasă este determinată de caracteristicile ionilor Mc + și Mc 3+. Primele sunt, probabil, ușor hidrolizate și formează legături ionice cu halogeni, cianuri și amoniac. Hidroxidul de Moscovy(I) (McOH), carbonatul (Mc 2 CO 3 ), oxalatul (Mc 2 C 2 O 4) și fluorura (McF) trebuie dizolvate în apă. Sulfura (Mc 2 S) trebuie să fie insolubilă. Clorura (McCl), bromura (McBr), iodura (McI) și tiocianatul (McSCN) sunt compuși ușor solubili.

Fluorura de Moscovium(III) (McF 3) și tiosonida (McS 3) sunt probabil insolubile în apă (similar cu compușii de bismut corespunzători). În timp ce clorura (III) (McCl 3), bromura (McBr 3) și iodura (McI 3) ar trebui să fie ușor solubile și ușor hidrolizate pentru a forma oxohalogenuri, cum ar fi McOCl și McOBr (de asemenea, similar cu bismutul). Oxizii de Moscovium(I) și (III) au stări de oxidare similare, iar stabilitatea lor relativă depinde în mare măsură de elementele cu care reacționează.

Incertitudine

Datorită faptului că elementul 115 din tabelul periodic este sintetizat experimental o singură dată, caracteristicile sale exacte sunt problematice. Oamenii de știință trebuie să se bazeze pe calcule teoretice și să le compare cu elemente mai stabile cu proprietăți similare.

În 2011, au fost efectuate experimente pentru a crea izotopi de nihonium, flerovium și moscovium în reacții între „acceleratori” (calciu-48) și „ținte” (american-243 și plutoniu-244) pentru a studia proprietățile acestora. Cu toate acestea, „țintele” au inclus impurități de plumb și bismut și, prin urmare, unii izotopi de bismut și poloniu au fost obținuți în reacțiile de transfer de nucleoni, ceea ce a complicat experimentul. Între timp, datele obținute vor ajuta oamenii de știință în viitor să studieze mai în detaliu omologii grei ai bismutului și poloniului, cum ar fi moscovium și livermorium.

Deschidere

Prima sinteză de succes a elementului 115 din tabelul periodic a fost o lucrare comună a oamenilor de știință ruși și americani în august 2003 la JINR din Dubna. Echipa condusă de fizicianul nuclear Yuri Oganesyan, pe lângă specialiștii interni, a inclus și colegi de la Laboratorul Național Lawrence Livermore. Cercetătorii au publicat informații în Physical Review pe 2 februarie 2004 că au bombardat americiu-243 cu ioni de calciu-48 la ciclotronul U-400 și au obținut patru atomi din noua substanță (un nucleu de 287 Mc și trei nuclee de 288 Mc). Acești atomi se descompun (dezintegrare) prin emiterea de particule alfa către elementul nihonium în aproximativ 100 de milisecunde. Doi izotopi mai grei ai moscoviului, 289 Mc și 290 Mc, au fost descoperiți în 2009–2010.

Inițial, IUPAC nu a putut aproba descoperirea noului element. A fost necesară confirmarea din alte surse. În următorii câțiva ani, experimentele ulterioare au fost evaluate în continuare, iar afirmația echipei Dubna că a descoperit elementul 115 a fost din nou prezentată.

În august 2013, o echipă de cercetători de la Universitatea Lund și Institutul cu ioni grei din Darmstadt (Germania) a anunțat că au repetat experimentul din 2004, confirmând rezultatele obținute la Dubna. O confirmare suplimentară a fost publicată de o echipă de oameni de știință care lucrează la Berkeley în 2015. În decembrie 2015, grupul de lucru mixt IUPAC/IUPAP a recunoscut descoperirea acestui element și a acordat prioritate echipei de cercetători ruso-americani în descoperire.

Nume

În 1979, conform recomandării IUPAC, s-a decis să se numească elementul 115 din tabelul periodic „ununpentium” și să-l noteze cu simbolul corespunzător UUP. Deși numele a fost folosit pe scară largă de atunci pentru a se referi la elementul nedescoperit (dar prezis teoretic), el nu a prins în comunitatea fizicii. Cel mai adesea, substanța a fost numită astfel - elementul nr. 115 sau E115.

La 30 decembrie 2015, descoperirea unui nou element a fost recunoscută de Uniunea Internațională de Chimie Pură și Aplicată. Conform noilor reguli, descoperitorii au dreptul de a-și propune propriul nume pentru o substanță nouă. La început s-a planificat să se numească elementul 115 din tabelul periodic „langevinium” în onoarea fizicianului Paul Langevin. Ulterior, o echipă de oameni de știință din Dubna, ca opțiune, a propus numele „Moscova” în onoarea regiunii Moscova, unde a fost făcută descoperirea. În iunie 2016, IUPAC a aprobat inițiativa și a aprobat oficial denumirea „moscovium” pe 28 noiembrie 2016.


TABELUL PERIODIC LUI MENDELEEV

Construcția tabelului periodic al elementelor chimice a lui Mendeleev corespunde perioadelor caracteristice teoriei numerelor și bazelor ortogonale. Adăugarea matricelor Hadamard cu matrici de ordine pare și impar creează o bază structurală a elementelor matricei imbricate: matrice de ordinea întâi (Odin), a doua (Euler), a treia (Mersenne), a patra (Hadamard) și a cincea (Fermat).

Este ușor de observat că sunt 4 comenzi k Matricele Hadamard corespund elementelor inerte cu o masă atomică multiplu de patru: heliu 4, neon 20, argon 40 (39.948), etc., dar și elementele de bază ale vieții și tehnologiei digitale: carbon 12, oxigen 16, siliciu 28 , germaniu 72.

Se pare că cu matrice Mersenne de ordine 4 k–1, dimpotrivă, tot ce este activ, otrăvitor, distructiv și coroziv este legat. Dar acestea sunt și elemente radioactive - surse de energie și plumb 207 (produsul final, sărurile otrăvitoare). Fluorul, desigur, este 19. Ordinele matricelor Mersenne corespund secvenței elementelor radioactive numite seria actiniului: uraniu 235, plutoniu 239 (un izotop care este o sursă mai puternică de energie atomică decât uraniul) etc. Acestea sunt, de asemenea, metale alcaline litiu 7, sodiu 23 și potasiu 39.

Galiu – greutate atomică 68

comenzi 4 k–2 Matrice Euler (Mersenne dublă) corespund azotului 14 (baza atmosferei). Sarea de masă este formată din doi atomi „de tip mersenne” de sodiu 23 și clor 35; împreună această combinație este caracteristică matricelor Euler. Clorul mai masiv, cu o greutate de 35,4, este puțin sub dimensiunea Hadamard de 36. Cristale de sare de masă: un cub (! adică un personaj docil, Hadamards) și un octaedru (mai sfidător, acesta este, fără îndoială, Euler).

În fizica atomică, tranziția fier 56 - nichel 59 este granița dintre elementele care furnizează energie în timpul sintezei unui nucleu mai mare (bombă cu hidrogen) și dezintegrare (bombă cu uraniu). Ordinul 58 este renumit pentru faptul că nu numai că nu are analogi ai matricelor Hadamard sub formă de matrice Belevich cu zerouri pe diagonală, dar nici nu are multe matrici ponderate - cea mai apropiată matrice ortogonală W(58,53) are 5 zerouri în fiecare coloană și rând (decalaj adânc).

În seria corespunzătoare matricelor Fermat și substituțiilor lor de ordinul 4 k+1, prin voința sorții costă Fermium 257. Nu poți spune nimic, o lovitură exactă. Aici există aurul 197. Cuprul 64 (63.547) și argintul 108 (107.868), simboluri ale electronicii, nu ajung, după cum se vede, la aur și corespund unor matrici Hadamard mai modeste. Cuprul, cu greutatea sa atomică nu departe de 63, este activ din punct de vedere chimic - oxizii săi verzi sunt bine cunoscuți.

Cristale de bor sub mărire mare

CU ratia de aur borul este legat - masa atomică dintre toate celelalte elemente este cea mai apropiată de 10 (mai precis 10,8, proximitatea greutății atomice de numerele impare are și un efect). Borul este un element destul de complex. Borul joacă un rol complicat în istoria vieții însăși. Structura cadrului în structurile sale este mult mai complexă decât în ​​diamant. Tipul unic de legătură chimică care permite borului să absoarbă orice impuritate este foarte puțin înțeles, deși un număr mare de oameni de știință au primit deja premii Nobel pentru cercetările legate de acesta. Forma cristalului de bor este un icosaedru, cu cinci triunghiuri formând vârful.

Misterul Platinei. Cel de-al cincilea element este, fără îndoială, metalele nobile precum aurul. Suprastructură peste dimensiunea 4 Hadamard k, 1 mare.

Uraniu izotop stabil 238

Să ne amintim, totuși, că numerele Fermat sunt rare (cel mai apropiat este 257). Cristalele de aur nativ au o formă apropiată de cub, dar și pentagrama scânteie. Cel mai apropiat vecin al său, platina, un metal nobil, se află la mai puțin de 4 greutate atomică distanță de aurul 197. Platina are o greutate atomică nu de 193, dar puțin mai mare, 194 (ordinea matricelor Euler). Este un lucru mic, dar o aduce în tabăra elementelor ceva mai agresive. Merită să ne amintim, în legătură, că, datorită inerției sale (se dizolvă, poate, în acva regia), platina este folosită ca catalizator activ pentru procesele chimice.

Platina spongioasă aprinde hidrogenul la temperatura camerei. Caracterul platinei nu este deloc pașnic; iridiul 192 (un amestec de izotopi 191 și 193) se comportă mai pașnic. Seamănă mai mult cu cuprul, dar cu greutatea și caracterul aurului.

Între neon 20 și sodiu 23 nu există niciun element cu greutatea atomică 22. Desigur, greutățile atomice sunt o caracteristică integrală. Dar printre izotopi, la rândul lor, există și o corelație interesantă a proprietăților cu proprietățile numerelor și matricele corespunzătoare ale bazelor ortogonale. Combustibilul nuclear cel mai utilizat este izotopul uraniului 235 (ordinea matricei Mersenne), în care este posibilă o reacție nucleară în lanț autosusținută. În natură, acest element apare sub formă stabilă uraniu 238 (ordinul matricei euleriane). Nu există niciun element cu greutatea atomică 13. În ceea ce privește haosul, se corelează numărul limitat de elemente stabile ale tabelului periodic și dificultatea de a găsi matrici de nivel de ordin înalt din cauza barierei observate în matricele de ordinul al treisprezecelea.

Izotopi ai elementelor chimice, insula de stabilitate