Expresii cu logaritmi în puteri. Rezolvarea ecuațiilor logaritmice

Astăzi vom vorbi despre formule logaritmiceși dați o demonstrație exemple de solutie.

Prin ele însele, ele implică modele de soluție conform proprietăților de bază ale logaritmilor. Înainte de a aplica formulele logaritmice la soluție, reamintim pentru dvs., mai întâi toate proprietățile:

Acum, pe baza acestor formule (proprietăți), arătăm exemple de rezolvare a logaritmilor.

Exemple de rezolvare a logaritmilor pe bază de formule.

Logaritm un număr pozitiv b în baza a (notat log a b) este exponentul la care trebuie ridicat a pentru a obține b, cu b > 0, a > 0 și 1.

Conform definiției log a b = x, care este echivalent cu a x = b, deci log a a x = x.

Logaritmi, exemple:

log 2 8 = 3, deoarece 2 3 = 8

log 7 49 = 2 deoarece 7 2 = 49

log 5 1/5 = -1, deoarece 5 -1 = 1/5

Logaritm zecimal este un logaritm obișnuit, a cărui bază este 10. Notat cu lg.

log 10 100 = 2 deoarece 10 2 = 100

logaritmul natural- și logaritmul obișnuit, dar cu baza e (e \u003d 2,71828 ... - un număr irațional). Denumită ln.

Este de dorit să ne amintim formulele sau proprietățile logaritmilor, deoarece vom avea nevoie de ele mai târziu când rezolvăm logaritmi, ecuații logaritmice și inegalități. Să lucrăm din nou prin fiecare formulă cu exemple.

  • Identitatea logaritmică de bază
    un log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritmul produsului este egal cu suma logaritmilor
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Logaritmul coeficientului este egal cu diferența logaritmilor
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Proprietățile gradului unui număr logaritmabil și ale bazei logaritmului

    Exponentul unui număr logaritmic log a b m = mlog a b

    Exponent al bazei logaritmului log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    dacă m = n, obținem log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Trecerea la o nouă fundație
    log a b = log c b / log c a,

    dacă c = b, obținem log b b = 1

    atunci log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

După cum puteți vedea, formulele logaritmului nu sunt atât de complicate pe cât par. Acum, având în vedere exemple de rezolvare a logaritmilor, putem trece la ecuații logaritmice. Vom lua în considerare exemple de rezolvare a ecuațiilor logaritmice mai detaliat în articolul: „”. Nu ratați!

Dacă mai aveți întrebări despre soluție, scrieți-le în comentariile articolului.

Notă: am decis să obțin o educație dintr-o altă clasă de studii în străinătate ca opțiune.

Odată cu dezvoltarea societății, complexitatea producției, s-a dezvoltat și matematica. Mișcare de la simplu la complex. Din metoda contabilă obișnuită de adunare și scădere, cu repetarea lor repetată, s-a ajuns la conceptul de înmulțire și împărțire. Reducerea operației de multiplicare repetată a devenit conceptul de exponențiere. Primele tabele ale dependenței numerelor de bază și ale numărului de exponențiere au fost întocmite încă din secolul al VIII-lea de către matematicianul indian Varasena. Din ele, puteți număra timpul de apariție a logaritmilor.

Contur istoric

Reînvierea Europei în secolul al XVI-lea a stimulat și dezvoltarea mecanicii. T a necesitat o cantitate mare de calcul asociat cu înmulțirea și împărțirea numerelor cu mai multe cifre. Mesele antice au făcut un serviciu grozav. Au făcut posibilă înlocuirea operațiilor complexe cu altele mai simple - adunarea și scăderea. Un mare pas înainte a fost lucrarea matematicianului Michael Stiefel, publicată în 1544, în care a realizat ideea multor matematicieni. Acest lucru a făcut posibilă utilizarea tabelelor nu numai pentru grade sub formă de numere prime, ci și pentru cele raționale arbitrare.

În 1614, scoțianul John Napier, dezvoltând aceste idei, a introdus pentru prima dată noul termen „logaritm al unui număr”. Au fost compilate noi tabele complexe pentru calcularea logaritmilor sinusurilor și cosinusurilor, precum și a tangentelor. Acest lucru a redus foarte mult munca astronomilor.

Au început să apară tabele noi, care au fost folosite cu succes de oamenii de știință timp de trei secole. A trecut mult timp înainte ca noua operație în algebră să-și dobândească forma finală. A fost definit logaritmul și au fost studiate proprietățile acestuia.

Abia în secolul al XX-lea, odată cu apariția calculatorului și a calculatorului, omenirea a abandonat vechile mese care funcționau cu succes de-a lungul secolelor al XIII-lea.

Astăzi numim logaritmul lui b pentru a baza numărul x, care este puterea lui a, pentru a obține numărul b. Aceasta se scrie sub formă de formulă: x = log a(b).

De exemplu, log 3(9) va fi egal cu 2. Acest lucru este evident dacă urmați definiția. Dacă ridicăm 3 la puterea lui 2, obținem 9.

Astfel, definiția formulată pune o singură restricție, numerele a și b trebuie să fie reale.

Varietăți de logaritmi

Definiția clasică se numește logaritm real și este de fapt o soluție a ecuației a x = b. Opțiunea a = 1 este limită și nu prezintă interes. Notă: 1 la orice putere este 1.

Valoarea reală a logaritmului definit numai dacă baza și argumentul sunt mai mari decât 0, iar baza nu trebuie să fie egală cu 1.

Loc deosebit în domeniul matematicii jucați logaritmi, care vor fi denumiti în funcție de valoarea bazei lor:

Reguli și restricții

Proprietatea fundamentală a logaritmilor este regula: logaritmul unui produs este egal cu suma logaritmică. log abp = log a(b) + log a(p).

Ca o variantă a acestei declarații, va fi: log c (b / p) \u003d log c (b) - log c (p), funcția coeficient este egală cu diferența funcțiilor.

Este ușor de observat din cele două reguli anterioare că: log a(b p) = p * log a(b).

Alte proprietăți includ:

Cometariu. Nu faceți o greșeală comună - logaritmul sumei nu este egal cu suma logaritmilor.

Timp de multe secole, operația de găsire a logaritmului a fost o sarcină destul de consumatoare de timp. Matematicienii au folosit formula binecunoscută a teoriei logaritmice a expansiunii într-un polinom:

ln (1 + x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ... + ((-1)^(n + 1))* (( x^n)/n), unde n este un număr natural mai mare decât 1, care determină acuratețea calculului.

Logaritmii cu alte baze au fost calculati folosind teorema trecerii de la o baza la alta si proprietatea logaritmului produsului.

Întrucât această metodă este foarte laborioasă și la rezolvarea problemelor practice greu de implementat, au folosit tabele de logaritmi pre-compilate, care au accelerat foarte mult întreaga activitate.

În unele cazuri, s-au folosit grafice de logaritmi special compilate, care au oferit mai puțină acuratețe, dar au accelerat semnificativ căutarea valorii dorite. Curba funcției y = log a(x), construită pe mai multe puncte, permite utilizarea riglei obișnuite pentru a găsi valorile funcției în orice alt punct. Multă vreme, inginerii au folosit așa-numita hârtie milimetrică în aceste scopuri.

În secolul al XVII-lea, au apărut primele condiții auxiliare de calcul analogic, care până în secolul al XIX-lea dobândiseră o formă finită. Cel mai de succes dispozitiv a fost numit regulă de calcul. În ciuda simplității dispozitivului, aspectul său a accelerat semnificativ procesul tuturor calculelor de inginerie, iar acest lucru este dificil de supraestimat. În prezent, puțini oameni sunt familiarizați cu acest dispozitiv.

Apariția calculatoarelor și calculatoarelor a făcut să fie inutilă utilizarea oricăror alte dispozitive.

Ecuații și inegalități

Următoarele formule sunt utilizate pentru a rezolva diverse ecuații și inegalități folosind logaritmi:

  • Trecerea de la o bază la alta: log a(b) = log c(b) / log c(a);
  • Ca o consecință a versiunii anterioare: log a(b) = 1 / log b(a).

Pentru a rezolva inegalitățile, este util să cunoaștem:

  • Valoarea logaritmului va fi pozitivă numai dacă atât baza, cât și argumentul sunt ambele mai mari sau mai mici decât unu; dacă cel puțin o condiție este încălcată, valoarea logaritmului va fi negativă.
  • Dacă funcția logaritm este aplicată în partea dreaptă și stângă a inegalității, iar baza logaritmului este mai mare decât unu, atunci semnul inegalității este păstrat; altfel, se schimba.

Exemple de sarcini

Luați în considerare mai multe opțiuni pentru utilizarea logaritmilor și proprietățile acestora. Exemple cu rezolvarea ecuațiilor:

Luați în considerare opțiunea de a plasa logaritmul în grad:

  • Sarcina 3. Calculați 25^log 5(3). Rezolvare: în condițiile problemei, notația este similară cu următoarea (5^2)^log5(3) sau 5^(2 * log 5(3)). Să-l scriem diferit: 5^log 5(3*2), sau pătratul unui număr ca argument funcție poate fi scris ca pătrat al funcției în sine (5^log 5(3))^2. Folosind proprietățile logaritmilor, această expresie este 3^2. Răspuns: ca rezultat al calculului obținem 9.

Uz practic

Fiind un instrument pur matematic, pare departe de viața reală faptul că logaritmul a câștigat dintr-o dată multă importanță în descrierea obiectelor din lumea reală. Este greu să găsești o știință în care să nu fie folosită. Acest lucru se aplică pe deplin nu numai în domeniul natural, ci și în domeniul cunoașterii umaniste.

Dependențe logaritmice

Iată câteva exemple de dependențe numerice:

Mecanica si fizica

Din punct de vedere istoric, mecanica și fizica s-au dezvoltat întotdeauna folosind metode de cercetare matematică și, în același timp, au servit drept stimulent pentru dezvoltarea matematicii, inclusiv a logaritmilor. Teoria majorității legilor fizicii este scrisă în limbajul matematicii. Dăm doar două exemple de descriere a legilor fizice folosind logaritmul.

Este posibil să se rezolve problema calculării unei cantități atât de complexe precum viteza unei rachete folosind formula Tsiolkovsky, care a pus bazele teoriei explorării spațiului:

V = I * ln(M1/M2), unde

  • V este viteza finală a aeronavei.
  • I este impulsul specific al motorului.
  • M 1 este masa inițială a rachetei.
  • M 2 - masa finală.

Un alt exemplu important- aceasta este utilizarea în formula unui alt mare om de știință, Max Planck, care servește la evaluarea stării de echilibru în termodinamică.

S = k * ln (Ω), unde

  • S este o proprietate termodinamică.
  • k este constanta Boltzmann.
  • Ω este ponderea statistică a diferitelor stări.

Chimie

Mai puțin evidentă ar fi utilizarea formulelor în chimie care conțin raportul logaritmilor. Iată doar două exemple:

  • Ecuația Nernst, starea potențialului redox al mediului în raport cu activitatea substanțelor și constanta de echilibru.
  • De asemenea, calculul unor constante precum indicele de autoproliză și aciditatea soluției nu este complet fără funcția noastră.

Psihologie și biologie

Și este complet de neînțeles ce legătură are psihologia cu asta. Se pare că puterea senzației este bine descrisă de această funcție ca raportul invers dintre valoarea intensității stimulului și valoarea intensității inferioare.

După exemplele de mai sus, nu mai este de mirare că tema logaritmilor este utilizată pe scară largă și în biologie. Se pot scrie volume întregi despre formele biologice corespunzătoare spiralelor logaritmice.

Alte domenii

Se pare că existența lumii este imposibilă fără legătură cu această funcție și guvernează toate legile. Mai ales când legile naturii sunt legate de o progresie geometrică. Merită să vă referiți la site-ul MatProfi și există multe astfel de exemple în următoarele domenii de activitate:

Lista ar putea fi nesfârșită. După ce stăpânești legile de bază ale acestei funcții, te poți cufunda în lumea înțelepciunii infinite.

Confidențialitatea dumneavoastră este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să citiți politica noastră de confidențialitate și să ne spuneți dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica o anumită persoană sau pentru a o contacta.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Următoarele sunt câteva exemple de tipuri de informații personale pe care le putem colecta și modul în care putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa de e-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Informațiile personale pe care le colectăm ne permit să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a vă trimite notificări și mesaje importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o extragere cu premii, un concurs sau un stimulent similar, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • În cazul în care este necesar - în conformitate cu legea, ordinea judiciară, în cadrul procedurilor judiciare și/sau în baza cererilor publice sau a solicitărilor din partea organelor de stat de pe teritoriul Federației Ruse - dezvăluiți informațiile dumneavoastră personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată pentru securitate, aplicarea legii sau în alte scopuri de interes public.
  • În cazul unei reorganizări, fuziuni sau vânzări, putem transfera informațiile personale pe care le colectăm către succesorul terț relevant.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Menținerea confidențialității la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri practicile de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

Ce este un logaritm?

Atenţie!
Sunt suplimentare
material în secțiunea specială 555.
Pentru cei care puternic „nu foarte...”
Și pentru cei care „foarte mult...”)

Ce este un logaritm? Cum se rezolvă logaritmii? Aceste întrebări îi încurcă pe mulți absolvenți. În mod tradițional, subiectul logaritmilor este considerat complex, de neînțeles și înfricoșător. Mai ales - ecuații cu logaritmi.

Acest lucru nu este absolut adevărat. Absolut! Nu crezi? Bun. Acum, timp de aproximativ 10 - 20 de minute:

1. Înțelegeți ce este un logaritm.

2. Învață să rezolvi o întreagă clasă de ecuații exponențiale. Chiar dacă nu ai auzit de ei.

3. Învață să calculezi logaritmi simpli.

Mai mult, pentru aceasta, va trebui să cunoașteți doar tabla înmulțirii și cum se ridică un număr la o putere...

Simt că te îndoiești... Ei bine, ține timpul! Merge!

Mai întâi, rezolvă următoarea ecuație în minte:

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Învățarea - cu interes!)

vă puteți familiariza cu funcțiile și derivatele.

    Sa incepem cu proprietățile logaritmului unității. Formularea sa este următoarea: logaritmul unității este egal cu zero, adică log a 1=0 pentru orice a>0, a≠1. Demonstrarea este simplă: deoarece a 0 =1 pentru orice a care îndeplinește condițiile de mai sus a>0 și a≠1 , atunci egalitatea dovedită log a 1=0 urmează imediat din definiția logaritmului.

    Să dăm exemple de aplicare a proprietății considerate: log 3 1=0 , lg1=0 și .

    Să trecem la următoarea proprietate: logaritmul unui număr egal cu baza este egal cu unu, adică log a a=1 pentru a>0, a≠1. Într-adevăr, deoarece a 1 =a pentru orice a , atunci prin definiția logaritmului log a a=1 .

    Exemple de utilizare a acestei proprietăți a logaritmilor sunt log 5 5=1 , log 5.6 5.6 și lne=1 .

    De exemplu, log 2 2 7 =7 , log10 -4 =-4 și .

    Logaritmul produsului a două numere pozitive x și y este egal cu produsul logaritmilor acestor numere: log a (x y)=log a x+log a y, a>0, a≠1. Să demonstrăm proprietatea logaritmului produsului. Datorită proprietăților gradului a log a x+log a y =a log a x a log a y, și deoarece prin identitatea logaritmică principală un log a x =x și un log a y =y , atunci un log a x a log a y =x y . Astfel, un log a x+log a y =x y , de unde egalitatea cerută urmează prin definiția logaritmului.

    Să arătăm exemple de utilizare a proprietății logaritmului produsului: log 5 (2 3)=log 5 2+log 5 3 și .

    Proprietatea logaritmului produsului poate fi generalizată la produsul unui număr finit n de numere pozitive x 1 , x 2 , …, x n ca log a (x 1 x 2 ... x n)= log a x 1 + log a x 2 +…+ log a x n . Această egalitate este ușor de demonstrat.

    De exemplu, logaritmul natural al unui produs poate fi înlocuit cu suma a trei logaritmi naturali ai numerelor 4 , e , și .

    Logaritmul câtului a două numere pozitive x și y este egal cu diferența dintre logaritmii acestor numere. Proprietatea logaritmului coeficientului corespunde unei formule de forma , unde a>0 , a≠1 , x și y sunt niște numere pozitive. Valabilitatea acestei formule este dovedită ca formula pentru logaritmul produsului: din moment ce , apoi prin definiția logaritmului .

    Iată un exemplu de utilizare a acestei proprietăți a logaritmului: .

    Să trecem la proprietatea logaritmului gradului. Logaritmul unui grad este egal cu produsul exponentului și logaritmul modulului bazei acestui grad. Scriem această proprietate a logaritmului gradului sub forma unei formule: log a b p =p log a |b|, unde a>0, a≠1, b și p sunt numere astfel încât gradul lui b p are sens și b p >0.

    Mai întâi demonstrăm această proprietate pentru b pozitiv. Identitatea logaritmică de bază ne permite să reprezentăm numărul b ca un log a b , apoi b p =(a log a b) p , iar expresia rezultată, datorită proprietății puterii, este egală cu a p log a b . Ajungem deci la egalitatea b p =a p log a b , din care, prin definiția logaritmului, concluzionăm că log a b p =p log a b .

    Rămâne de demonstrat această proprietate pentru negativul b . Aici observăm că expresia log a b p pentru negativ b are sens doar pentru exponenții pari p (deoarece valoarea gradului b p trebuie să fie mai mare decât zero, altfel logaritmul nu va avea sens), iar în acest caz b p =|b| p . Apoi b p =|b| p =(a log a |b|) p =a p log a |b|, de unde log a b p =p log a |b| .

    De exemplu, și ln(-3) 4 =4 ln|-3|=4 ln3 .

    Rezultă din proprietatea anterioară proprietatea logaritmului de la rădăcină: logaritmul rădăcinii de gradul al n-lea este egal cu produsul fracției 1/n și logaritmul expresiei rădăcinii, adică , unde a>0 , a≠1 , n este un număr natural mai mare decât unu, b>0 .

    Dovada se bazează pe egalitatea (vezi ), care este valabilă pentru orice b pozitiv și pe proprietatea logaritmului gradului: .

    Iată un exemplu de utilizare a acestei proprietăți: .

    Acum să demonstrăm formula de conversie la noua bază a logaritmului drăguț . Pentru a face acest lucru, este suficient să dovedim validitatea egalității log c b=log a b log c a . Identitatea logaritmică de bază ne permite să reprezentăm numărul b ca log a b , apoi log c b=log c a log a b . Rămâne să folosim proprietatea logaritmului gradului: log c a log a b = log a b log c a. Astfel, se demonstrează egalitatea log c b=log a b log c a, ceea ce înseamnă că se dovedește și formula pentru trecerea la o nouă bază a logaritmului.

    Să arătăm câteva exemple de aplicare a acestei proprietăți a logaritmilor: și .

    Formula pentru trecerea la o nouă bază vă permite să treceți la lucrul cu logaritmi care au o bază „convenabilă”. De exemplu, poate fi folosit pentru a comuta la logaritmi naturali sau zecimali, astfel încât să puteți calcula valoarea logaritmului din tabelul de logaritmi. Formula pentru trecerea la o nouă bază a logaritmului permite, de asemenea, în unele cazuri să se găsească valoarea unui logaritm dat, când sunt cunoscute valorile unor logaritmi cu alte baze.

    Deseori folosit este un caz special al formulei pentru trecerea la o nouă bază a logaritmului pentru c=b de forma . Aceasta arată că log a b și log b a – . De exemplu, .

    De asemenea, este des folosită formula , care este util pentru găsirea valorilor logaritmice. Pentru a ne confirma cuvintele, vom arăta cum se calculează valoarea logaritmului formei folosindu-l. Noi avem . Pentru a demonstra formula este suficient să folosiți formula de tranziție la noua bază a logaritmului a: .

    Rămâne de demonstrat proprietățile de comparație ale logaritmilor.

    Să demonstrăm că pentru orice numere pozitive b 1 și b 2 , b 1 log a b 2 , iar pentru a>1, inegalitatea log a b 1

    În cele din urmă, rămâne de demonstrat ultima dintre proprietățile enumerate ale logaritmilor. Ne limităm la demonstrarea primei sale părți, adică demonstrăm că dacă a 1 >1 , a 2 >1 și a 1 1 este adevărat log a 1 b>log a 2 b . Enunțurile rămase ale acestei proprietăți a logaritmilor sunt dovedite printr-un principiu similar.

    Să folosim metoda opusă. Să presupunem că pentru a 1 >1 , a 2 >1 și a 1 1 log a 1 b≤log a 2 b este adevărat. Prin proprietățile logaritmilor, aceste inegalități pot fi rescrise ca și respectiv, iar din acestea rezultă că log b a 1 ≤log b a 2 și, respectiv, log b a 1 ≥log b a 2. Atunci, prin proprietățile puterilor cu aceleași baze, trebuie îndeplinite egalitățile b log b a 1 ≥b log b a 2 și b log b a 1 ≥b log b a 2, adică a 1 ≥a 2 . Astfel, am ajuns la o contradicție cu condiția a 1

Bibliografie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi alţii.Algebra şi începuturile analizei: un manual pentru clasele 10-11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru solicitanții la școlile tehnice).