Метод рентгеновской дифракции. Методы исследования строения молекул

Цель работы

Проведение качественного рентгеноструктурного анализа.

Краткая теория

Дифракционные методы исследования являются основным источником сведений об атомарной структуре кристаллов, представляющую собой, как известно, правильную трехмерную периодическую последовательность. Такую последовательность можно рассматривать как дифракционную решетку для электромагнитного излучения, длина которого соизмерима с периодом этой решетки (~10 -8 см). Такие длины волн соответствуют рентгеновскому излучению, а также электронам с энергией 100 кэВ и нейтронам с энергией 0,01 эВ. Соответственно существуют три метода исследования структуры материалов – рентгенографический, электронографический и нейтронографический.

Строго говоря, положение дифракционных максимумов, возникающих при рассеянии рентгеновского излучения на узлах трехмерной кристаллической решетки, описываются уравнениями Лауэ . Однако русский ученый Ю.В.Вульф и независимо от него английские физики Брэгги дали простое истолкование результирующей дифракционной картины рентгеновских лучей в кристалле, объяснив это явление интерференцией “зеркально отраженных от атомных плоскостей” рентгеновских лучей (рис.2.1).

Если разность хода равна целому числу длин волн, то наблюдается максимум. Из рисунка видно, что это имеет место, когда

Δ=n·l=2·d·sinq , где - угол между падающим лучом и атомной плоскостью, - межплоскостное расстояние, - длина волны рентгеновского излучения, - целое число, называемое порядком отражения. Это соотношение называют законом Вульфа-Брэгга.

Рис.2.1. К выводу формулы Вульфа-Брэгга

Применение этого соотношения на практике позволяет решать ряд практически важных задач. В частности, совокупность межплоскостных расстояний характеризует кристаллическую решетку конкретного материала. Очевидно, что зная длину волны используемого рентгеновского излучения и измерив соответствующие углы на рентгенограмме, полученной с помощью той или иной методики рентгеноструктурного анализа можно рассчитать межплоскостные расстояния. Сопоставление рассчитанных межплоскостных расстояний со стандартными межплоскостными расстояниями, хорошо известными для большинства материалов и систематизированными в виде таблиц, позволяет однозначно установить материал, являющийся носителем анализируемой рентгенограммы.



Очевидно также, что смесь различных веществ (фаз) должна дать рентгенограмму, представляющую собой суперпозицию максимумов, характерных для каждой из фаз в отдельности. Несмотря на то, что в этом случае идентификация каждого из веществ усложняется, принцип расчета рентгенограмм остается прежним. Эта группа задач носит название рентгеновского, качественного фазового анализа.

В данной работе для простоты проведения анализа предлагается рассчитать рентгенограмму одного из чистых металлов.

Чаще всего рентгенограммы для фазового анализа получают съемкой поликристаллического образца в монохроматическом излучении. Однако фактически такое излучение состоит из и - серий. (Подробные сведения о принципах получения характеристического рентгеновского излучения приведены в специальной литературе). Поэтому даже на рентгенограмме однофазного материала (например, чистого металла) присутствуют дифракционные максимумы от одних и тех же атомных плоскостей, но для различных длин волн. При этом разность длин волн для и - излучений мала и в большинстве случаев их дифракционные максимумы сливаются. Поэтому при расчете рентгенограмм используется средняя длина волны - излучения, определяемая соотношением

. Табличные данные межплоскостных расстояний приведены в различных справочниках только для - серии. Максимумы, принадлежащие - серии, либо удаляются в процессе съемки, либо выявляются расчетным путем (что более подробно будет описано в методике расчета).

Рис.2.2. Схема хода лучей в камере Дебая:

1- падающий луч; 2- коллиматор; 3- отражающая плоскость; 4- пленка; 5- дифрагмированный луч; 6- тубус; 7- камера Дебая

Классическим приемом получения рентгенограмм поликристаллического (порошкового) материала является съемка в камере Дебая, представляющая собой цилиндр, в центре которого находится образец в виде столбика диаметром в несколько десятых мм (рис.2.2) Плоская пленка, чувствительная к воздействию рентгеновских лучей, прижимается к внутренней поверхности цилиндра.

Так как в поликристалле отдельные кристаллиты расположены хаотически (равновероятно), то всегда найдутся такие атомные плоскости, которые будут расположены к первичному рентгеновскому пучку под углом , удовлетворяющему условию Вульфа-Брегга. Дифрагмированные лучи в этом случае будут описывать вокруг направления первичного луча конус с углом в вершине. Каждому конусу с таким углом (каждому набору плоскостей с определенным межплоскостным расстоянием ) будет соответствовать пара симметричных относительно отверстий линий, получившихся в результате пересечения конуса с цилиндром.

В зависимости от расположения пленки относительно первичного и дифрагмированного лучей (метода зарядки пленки в камере Дебая) дифракционная картина, регистрируемая на пленке, будет различной (рис.2.3).

Рис.2.3. Схемы съемки в цилиндрической камере (цифрами указаны номера линий): прямая; обратная; асимметричная

Для прямой съемки (концы пленки сходятся у входного отверстия – коллиматора) линии располагаются в порядке возрастания углов от середины пленки к ее краям. Расстояние между парой симметричных линий 2L равно дуге окружности, соответствующей углу 4q , т.е. 2L i = 4q×R (в радианах) или 2L i = 2R×4q /360 (в градусах), где - радиус рентгеновской камеры.

Отсюда , где - диаметр камеры.

Обычно диаметр камеры делают равным или кратным 57,3 мм, что облегчает расчет. В частности, при мм (град) = (мм).

Для обратной съемки (концы пленки сходятся у входного отверстия – тубуса) линии рентгенограммы располагаются в порядке возрастания углов от краев пленки к середине. Расстояние между парой симметричных линий равно дуге окружности, соответствующей углу (360- ), т.е. . Отсюда и связаны между собой соотношением , т.е. .

Для асимметричной съемки (концы пленки сходятся у диаметра камеры, перпендикулярного рентгеновскому лучу) линии располагаются в порядке возрастания углов в средней части рентгенограммы от выходного отверстия к входному.

В этом случае при определении углов необходимо учитывать, что расстояния между парами симметричных линий, расположенных у выходного отверстия составляют , а у входного , связанное с соотношением .

В методе Дебая существует три рода ошибок, приводящих к погрешностям в определении межплоскостных расстояний:

Ошибки измерения, связанные с неточностью определения середины дифракционных линий и способом их промера; они определяются выражением , где и могут быть минимизированы высокоточным измерительным инструментом (например, микроскопом – компаратором), неоднократным промером рентгенограмм, а также применением камер Дебая с большим диаметром;

Ошибки, обусловленные геометрическими факторами съемки – смещением образца от центра камеры (эксцентриситет образца); при этом смещение перпендикулярно первичному пучку, ошибку в определении угла не вносит (рис.2.4), напротив, в результате смещения образца вдоль направления первичного пучка симметричные линии рентгенограммы смещаются по направлению друг к другу (или друг от друга), т.е. такой сдвиг вызывают изменение длины дуги, определяющей угол ; ошибки такого рода устраняются на стадии съемки рентгенограмм – образец центрируется в камере с помощью специального установочного микроскопа;

Методы исследования строения молекул

1.3 Дифракционные методы

Дифракционные методы исследования структуры вещества, основаны на изучении углового распределения интенсивности рассеяния исследуемым веществом излучении рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов. Различают рентгенографию, электронографию, нейтронографию. Во всех случаях первичный, чаще всего монохроматический, пучок направляют на исследуемый объект и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически или с помощью счетчиков. Поскольку длина волны излучения составляет обычно не более 0.2 нм, т. е. соизмерима с расстояниями между атомами в веществе (0.1-0.4 нм), то рассеяние падающей волны представляет собой дифракцию на атомах. По дифракционной картине можно в принципе восстановить атомную структуру вещества. Теория, описывающая связь картины упругого рассеяния с пространств, расположением рассеивающих центров, для всех излучений одинакова. Однако, поскольку взаимодействия разного рода излучений с веществом имеет разную физ. природу, конкретный вид и особенности дифракционной. картины определяются разными характеристиками атомов. Поэтому различные дифракционные методы дают сведения, дополняющие друг друга.

Основы теории дифракции. Плоскую монохроматическую. волну с длиной волны и волновым вектором, где можно рассматривать как пучок частиц с импульсом, где Амплитуда волны, рассеянной совокупностью из атомов, определяется уравнением:

По такой же формуле рассчитывают и атомный фактор, при этом описывает распределение рассеивающей плотности внутри атома. Значения атомного фактора специфичны для каждого вида излучения. Рентгеновские лучи рассеиваются электронными оболочками атомов. Соответствующий атомный фактор численно равен числу электронов в атоме, если выражен в названии электронных единицах, т. е. в относительных единицах амплитуды рассеяния рентгеновского излучения одним свободном электроне. Рассеяние электронов определяется электростатическим потенциалом атома. Атомный фактор для электрона связан соотношением:

исследование молекула спектроскопия дифракционный квантовый

Рисунок 2- Зависимость абсолютных значений атомных факторов рентгеновских лучей (1), электронов (2) и нейтронов (3) от угла рассеяния

Рисунок 3- Относительная зависимость усредненных по углу атомных факторов рентгеновских лучей (сплошная линия), электронов (штриховая)и нейтронов от атомного номера Z

При точных расчетах рассматривают отклонения распределения электронной плотности или потенциала атомов от сферической симметрии и название атомно-температурный фактор, учитывающий влияние тепловых колебаний атомов на рассеяние. Для излучения помимо рассеяния на электронных оболочках атомов существует роль может играть резонансное рассеяние на ядрах. Фактор рассеяния f м зависит от волновых векторов и векторов поляризации падающей и рассеянной волн. Интенсивность I(s) рассеяния объектом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)| 2 . Экспериментально можно определить лишь модули |F(s)|, а для построения функции рассеивающей плотности (r) необходимо знать также фазы (s) для каждого s. Тем не менее теория дифракционных методов позволяет по измеренным I(s) получить функцию (r), т. е. определить структуру веществ. При этом лучшие результаты получают при исследовании кристаллов. Структурный анализ. Монокристалл представляет собой строго упорядоченную систему, поэтому при дифракции образуются лишь дискретные рассеянные пучки, для которых вектор рассеяния равен вектору обратной решетки.

Для построения функции (х, у, z)по экспериментально определяемым величинам применяют метод проб и ошибок, построение и анализ функции межатомных расстояний, метод изоморфных замещений, прямые методы определения фаз. Обработка экспериментальных данных на ЭВМ позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности. Структуры кристаллов изучают с помощью рентгеновского структурного анализа. Этим методом определено более 100 тысяч структур кристаллов.

Для неорганических кристаллов с применением различных методов уточнения (учет поправок на поглощение, анизотропию атомно-температурного фактора и т. д.) удается восстановить функцию с разрешением до 0.05

Рисунок 4- Проекция ядерной плотности кристаллической структуры

Это позволяет определять анизотерапию тепловых колебаний атомов, особенности распределения электронов, обусловленные химической связью, и т. д. С помощью рентгеноструктурного анализа удается расшифровывать атомные структуры кристаллов белков, молекулы которых содержат тысячи атомов. Дифракция рентгеновских лучей используется также для изучения дефектов в кристаллах (в рентгеновской топографии), исследования приповерхностных слоев (в рентгеновской спектрометрии), качественного и количественного определения фазового состава поликристаллических материалов. Электронография как метод изучения структуры кристаллов имеет след. особенности: 1) взаимодействие вещества с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях вещества толщиной 1 -100 нм; 2) f э зависит от атомного ядра слабее, чем f р, что позволяет проще определять положение легких атомов в присутствии тяжелых; Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10 -300 эВ, 0.1-0.4 нм) - эффективный метод исследования поверхностей кристаллов: расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракционной картине и позволяет изучать структуру кристаллов с разрешением 0.2-0.5 нм. Источниками нейтронов для структурного анализа служат ядерные реакторы на быстрых нейтронах, а также импульсные реакторы. Спектр пучка нейтронов, выходящих из канала реактора, непрерывен вследствие максвелловского распределения нейтронов по скоростям (его максимум при 100°С соответствует длине волны 0.13 нм).

Монохроматизацию пучка осуществляют разными способами - с помощью кристаллов-монохроматоров и др. Нейтронографию используется, как правило, для уточнения и дополнения рентгеноструктурных данных. Отсутствие монотонной зависимости f и от атомного номера позволяет достаточно точно определять положение легких атомов. Кроме того, изотопы одного в того же элемента могут иметь сильно различающиеся значения f и (так, f и углеводорода 3.74.10 13 см, у дейтерия 6.67.10 13 см). Это дает возможность изучать расположение изотопов и получать дополнит. сведения о структуре путем изотопного замещения. Исследование магнитного взаимодействия. нейтронов с магнитнами моментами атомов дает информацию о спинах магнитного атомов. Мёссбауэровское -излучение отличается чрезвычайно малой шириной линии - 10 8 эВ (тогда как ширина линии характеристических излучения рентгеновских трубок. 1 эВ). Это обусловливает высокую временную и пространств. согласованность резонансного ядерного рассеяния, что позволяет, в частности, изучать магнитное поле и градиент электрического поля на ядрах. Ограничения метода - слабая мощность мёссбауэровских источников и обязательное присутствие в исследуемом кристалле ядер, для которых наблюдается эффект Мёссбауэра. Структурный анализ некристаллических веществ. Отдельные молекулы в газах, жидкостях и твердых аморфных телах по-разному ориентированы в пространстве, поэтому определить фазы рассеянных волн, как правило, невозможно. В этих случаях интенсивность рассеяния обычно представляют с помощью т. наз. межатомных векторов r jk , которые соединяют пары различных атомов (j и k) в молекулах: r jk = r j - r k . Картина рассеяния усредняется по всем ориентациям:

Полуэмпирические методы квантовой химии, методы расчета мол. характеристик или свойств вещества с привлечением экспериментальных данных...

Методы исследования строения молекул

Принципиально иное направление расчетной квантовой химии, сыгравшее огромную роль в современном развитии химии в целом, состоит в полном или частичном отказе от вычисления одноэлектронных (3.18) и двухэлектронных (3.19)-(3.20) интегралов...

В оптике решетками называют все пространственные периодические структуры (чаще всего такие структуры имеют вид параллельных штрихов), которые оказывают влияние на амплитуду и/или фазу оптического излучения...

Оптические приборы с дифракционной решеткой

Спектрограф. Так называется прибор для фотографической регистрации спектра. Простейшая схема спектрографа показана на рис. 3.1. Его основные элементы: щель S, диспергирующая система D, фокусирующая оптика L1 и L2 и кассета с фотослоем Р...

Обычно анализируемый образец состоит не из одного вещества, а из смеси веществ. Одни из них представляют интерес для исследователя, другие являются примесями, осложняющими анализ. И хотя существуют аналитические методики...

Физические принципы, заложенные в основу измерения концентрации вещества кондуктометрическим методом

Применяются для относительных измерений электропроводности, гл. обр. для высокочастотного титрования. Измерения проводят с применением емкостных (С-) или индуктивных (L-) ячеек, представляющих собой сосуды из диэлектрика...

Характеристики микромеханических реле на основе тонких слоистых исполнительных элементов

1. Оптическая микроскопия (оптический микроскоп Аксиоскоп (Axio Imager), производитель: «Карл Цейз» (Carl Zeiss) - для определения линейных размеров подвижных элементов. Прибор последовательно фокусируют на верхнюю и нижнюю горизонтальные поверхности...

Частотный датчик уровня

Электромеханические методы сочетают механическую систему передачи сигналов о перемещении поплавка с электрическим устройством съема сигналов и электрической системы дальнейшей передачи информации об этом перемещении...

После рассеяния не изменяется. Имеет место так называемое упругое рассеяние. В основе дифракционных методов лежит простое соотношение для длины волны и расстояния между рассеивающими атомами.

  1. Рентгеноструктурный анализ позволяет определять координаты атомов в трёхмерном пространстве кристаллических веществ от простейших соединений до сложных белков.
  2. С помощью газовой электронографии определяют геометрию свободных молекул в газах, то есть молекул, не подверженных влиянию соседних молекул, как это имеет место в кристаллах.
  3. Дифракция электронов - метод исследования структуры твердых тел.
  4. Дифракционным методом является также нейтронография , в основе которой лежит рассеяние нейтронов на ядрах атомов , в отличие от первых двух методов, где используется рассеяние на электронных оболочках.
  5. Дифракция отражённых электронов - кристаллографический метод, применяемый в растровом электронном микроскопе .

Wikimedia Foundation . 2010 .

  • Ядерный магнитный резонанс
  • Рентгеноструктурный анализ

Смотреть что такое "Дифракционные методы" в других словарях:

    ДИФРАКЦИОННЫЕ МЕТОДЫ - исследования структуры в ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в вом излучения рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g излучения. Соотв. различают … Химическая энциклопедия

    дифракционные методы исследования - difrakciniai tyrimo metodai statusas T sritis chemija apibrėžtis Metodai, pagrįsti spindulių ar dalelių difrakcija. atitikmenys: angl. diffractional research techniques rus. дифракционные методы исследования … Chemijos terminų aiškinamasis žodynas

    Дифракционные методы (рентгеновские, электронные, нейтронные) - Статьигалогибридные материалыдислокациядифракционное определение среднего размера областей когерентного рассеяния дифракция быстрых электроновдифракция медленных электроновмалоугловое нейтронное рассеяниеобласть когерентного… …

    Методы исследования - можно подразделить на методы сбора информации и методы анализа собранной информации. В зависимости от сферы исследования, предмет и объект исследования различны. Спектроскопические методы Основная статья: Спектроскопические методы Ядерный… … Википедия

    Методы диагностики и исследования наноструктур и наноматериалов - ПодразделыЗондовые методы микроскопии и спектроскопии: атомно силовая, сканирующая туннельная, магнитно силовая и др.Сканирующая электронная микроскопияПросвечивающая электронная микроскопия, в том числе высокого разрешенияЛюминесцентная… … Энциклопедический словарь нанотехнологий

    ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА - основаны на измерении эффекта, вызванного взаимод. с в вом излучения потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате… … Химическая энциклопедия

    КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА - расположение атомов, ионов, молекул в кристалле. Кристалл с определ. хим. ф лой имеет присущую ему К. с., обладающую трёхмерной периодичностью кристаллической решеткой. Термин К. с. употребляют вместо термина кристаллич. решётка, когда речь идёт … Физическая энциклопедия

    Получение, диагностика и сертификация наноразмерных систем - ПодразделыМетоды нанесения элементов наноструктур и наноматериаловФизические методы (лазерные, электронно лучевые, ионно плазменные) осаждения слоев нанометровых толщинХимическое, термическое и электродуговое ocаждение из газовой фазы (в том… … Энциклопедический словарь нанотехнологий

    протеомика - Термин протеомика Термин на английском proteomics Синонимы Аббревиатуры Связанные термины активный центр катализатора, антитело, атомно силовая микроскопия, белки, биологические моторы, биологические нанообъекты, биосенсор, ван дер ваальсово… … Энциклопедический словарь нанотехнологий

    протеом - Термин протеом Термин на английском proteome Синонимы Аббревиатуры Связанные термины антитело, белки, биологические нанообъекты, геном, капсид, кинезин, клетка, масс спектрометрия с лазерной десорбцией и ионизацией, матрикс, внеклеточный,… … Энциклопедический словарь нанотехнологий

Книги

  • Методы компьютерной оптики. Гриф МО РФ , Волков Алексей Васильевич, Головашкин Димитрий Львович, Досколович Леонид Леонидович. Излагаются основы компьютерного синтеза дифракционных оптических элементов (ДОЭ) с широкими функциональными возможностями. Обсуждаются методы получения зонированных пластинок со сложным… Купить за 1116 грн (только Украина)
  • Дифракционные и микроскопические методы и приборы для анализа наночастиц и наноматериалов , Юрий Ягодкин. В учебном пособии рассмотрены физические основы методов и аппаратура для проведения рентгеноструктурного, электроно- и нейтронографического анализов, просвечивающей электронной микроскопии,…

Тема: Кристаллическое состояние силикатных материалов. Методы изучения структуры кристаллических веществ. Основные правила построения ионно-ковалентных структур.

Лекция № 4.

1. Силикаты в кристаллическом сосотянии.

2. Методы изучения структуры кристаллических веществ.a

3. Основные правила построения ионно-ковалентных структур.

ДТА - дифференциальный термический анализa

ТГ - термогравиметрический анализ

К дифракционным методам исследования структуры относятся рентгенография, электронография и нейтронография. Методы ос­нованы на использовании излучений с длиной волны, соизмеримой с расстоянием между структурными элементами кристаллов. Про­ходя через кристалл, лучи дифрагируют, возникающая дифракци­онная картина строго соответствует структуре исследуемого ве­щества.

Метод дифракции рентгеновского излучения .

Развитие рентгеноструктурного анализа началось со знаменитого опыта М. Лауэ (1912), показавшего, что пучок рентгеновского излучения, проходя
через кристалл, испытывает дифракцию, причем симметрия, рас­пределения дифракционных максимумов соответствует симметрии
кристалла. Дифракционные максимумы возникают во всех направлениях, отвечающих основному закону рентгеноструктурного ана­лиза- уравнению Вульф а - Брэгга

Дифракционные методы можно условно разделить на две группы: 1) угол падения луча на кристалл постоянный, а длина излуче­ния меняется; 2) длина волны постоянная, а угол падения меняется.

К методам первой группы относится метод Лауэ, заключа­ющийся в том, что полихроматическое рентгеновское излучение на­правляется на неподвижный монокристалл, за которым располага­ется фотопленка. Из множества длин волн, имеющихся в полихро­матическом излучении, всегда найдется такая волна, которая удовлетворяет условиям уравнения Вульфа - Брзгга. Метод Лауэ дает возможность выявить симметрию кристалла. К методам вто­рой группы относятся методы вращения монокристалла и поликристаллического образца. В методе вращения монокристалла
монохроматический луч направляется на монокристалл, вращаю­щийся вокруг оси, нормальной к направлению луча. При этом раз­личные плоскости кристалла попадают в положение, соответству­ющее условиям дифракции, что приводит к образованию соответст­вующей дифракционной картины. Измерением интегральной интенсивности и определением набора структурных амплитуд мож­но расшифровать структуру кристалла.

При изучении поликристаллических материалов образец осве­щается монохроматическим излучением. В множестве произвольно ориентированных кристаллов всегда найдется такой, ориентировка которого отвечает уравнению Вульфа-Брэгга. Отраженный луч регистрируется фотоспособом (рис.2) либо ионизационными или сцинтилляционными счетчиками, сигнал через систему усилителей и пересчетных устройств подается на потенциометр, записывающий кривую распре­деления интенсивности (рис.3). По расположению дифракционных максимумов судят о геометрии решетки, а по их интенсивности - о распределении электронной плотности, т. е. о вероятности нахожде­ния электронов в той или иной точке кристалла (рис. 4). Распреде­ление электронной плотности дает возможность определять не толь­ко положение атомов в решетке, но и тип химической связи. Высо­котемпературные приставки к дифрактометрам позволяют регист­рировать полиморфные превращения при нагревании, следить за твердофазовыми реакциями.


Рентгенография дает также возможность изучать дефекты в кристаллах.

выход луча; 4 - область малых углов 9

Рис. 2. Съемка рентгенограммы по­ликристаллических образцов методом фоторегистрации:

Рис. 3. Рентгенограмма кварца, по­лученная на установке со сцинтилляционным методом регистрации

Метод дифракции электронов (электронография). Метод осно­ван на том, что при взаимодействии с электростатическим полем атомов происходит рассеяние пучка электронов. В отличие от рент­геновского, электронное излучение может проникать лишь на небольшую глубину, поэтому исследуемые образцы должны иметь вид тонких пленок. При помощи электронографии можно, помимо определения межплоскостных расстояний в кристалле, изучать положение легких атомов в решетке, чего нельзя сделать при помо­щи рентгеновского излучения, слабо рассеивающегося легкими атомами.

Метод дифракции нейтронов . Для получения пучка нейтронов необходим атомный реактор, поэтому данный метод используется сравнительно редко. При выходе из реактора пучок значительно ослаблен, поэтому необходимо использовать широкий пучок и со­ответственно увеличивать размер образца. Преимуществом метода является возможность определения пространственного положения атомов водорода, что невозможно сделать другими дифракционны­ми методами.

Рис. 4. Распределение электронной плотности (о) и структура (б) кри­сталла с ковалентной связью (ал­маз)